Entscheidungsbaumverfahren

Größe: px
Ab Seite anzeigen:

Download "Entscheidungsbaumverfahren"

Transkript

1 Entscheidungsbaumverfahren Allgemeine Beschreibung Der Entscheidungsbaum ist die Darstellung einer Entscheidungsregel, anhand derer Objekte in Klassen eingeteilt werden. Die Klassifizierung erfolgt durch die hintereinander geschaltete Abfrage der Ausprägung bestimmter, vorher festgelegter Eigenschaften. In der Kreditwürdigkeitsprüfung kann das Entscheidungsbaumverfahren verwendet werden, um Kreditnehmer anhand von bestimmten Merkmalen in Qualitäts- bzw. Rating-Klassen einzuteilen. Die Anwendung des Entscheidungsbaumverfahrens ist relativ einfach. Viel komplexer ist die Konstruktion eines Entscheidungsbaums. Dafür werden rekursive Partitionierungs-Algorithmen eingesetzt. Eine Lernstichprobe mit bekannten Klassenzugehörigkeiten der beinhalteten Stichprobenelemente bildet dabei die Datenbasis zur Gewinnung optimaler Trennkriterien für jede Abfrage und zur Ermittlung der optimalen Baumgröße. Mathematisch-Statistische Verfahren des Risiko-Managements - SS Das CART-Verfahren (I) (Classification and Regression Trees) Das CART-Verfahren unterstützt nur rein binäre Entscheidungsbäume, d.h. bei jedem Schritt erfolgt die Aufteilung in jeweils 2 Teilmengen. Ausgehend vom Wurzelknoten, der alle Elemente der Stichprobe enthält, entstehen durch eine Ja/Nein-Frage 2 Tochterknoten als disjunkte Teilmengen der Lernstichprobe. Als Zwischenknoten können diese ebenfalls zu 2 Tochterknoten führen oder sie sind bereits Endknoten. Dabei können einer Ratingklasse mehrere Endknoten zugeordnet sein. Mathematisch-Statistische Verfahren des Risiko-Managements - SS

2 Das CART-Verfahren (II) Klassifikationsbaum zum Kreditbeispiel 1: schlechter Kreditnehmer, 2: guter Kreditnehmer Als Prädiktoren für die Bonität eines Kunden dienen laufendes Konto', Laufzeit, bisherige Zahlungsmoral, Darlehenshöhe, Mathematisch-Statistische Verfahren des Risiko-Managements - SS Das CART-Verfahren (III) XI laufendes Konto, trichotom mit den Kategorien "kein laufendes Konto" (1), "gutes laufendes Konto", d. h. > 200,- DM oder Gehaltskonto seit mind. 1 Jahr (2), und der Referenzkategorie "weniger als 200,- DM" (= 3); X3 Laufzeit in Monaten, metrisch; X4 Darlehenshöhe in DM, metrisch, X5 bisherige Zahlungsmoral, dichotom mit den Kategorien "gut" und "schlecht" (Referenzkategorie); dabei entspricht "gut" den Kategorien 1, 2, 3 und "schlecht" den Kategorien 4, 5 X6 Verwendungszweck, mit den Kategorien "privat" und "beruflich" ; dabei entspricht "privat" den Kategorien 1-6, 8 und "beruflich" den restlichen Kategorien in Tab. 2.1, Kap. 8; X7 "Geschlecht", mit der Referenzkategorie "männlich, aber nicht ledig X8 "Familienstand/Geschlecht", mit der Referenzkategorie "geschieden/getrennt lebend oder männlich verheiratet/weiblich ledig". Mathematisch-Statistische Verfahren des Risiko-Managements - SS

3 Das CART-Verfahren (IV) Aufteilung der Eltern- in Tochterknoten (Trennkriterium) Die Trennkriterien sind so zu wählen, daß die entstehenden Tochterknoten im Hinblick auf eine resultierende Klassenverteilung möglichst homogen sind. Bei CART wird jede Verzweigung nur durch eine Variable bestimmt, wobei gilt: (1) Für jede mindestens ordinal skalierte Variable x i kommen sämtliche Verzweigungen A {xi c} A {x i > c} für alle c R, in Betracht. (2) Für jede kategorial-nomiale Variable xi {a1,...,am } i kommen sämtliche Verzweigungen A S,A S mit S {a1,...,am } in Betracht. i Mathematisch-Statistische Verfahren des Risiko-Managements - SS Das CART-Verfahren (V) Mathematisch-Statistische Verfahren des Risiko-Managements - SS

4 Das CART-Verfahren (VI) Beispiele für Unreinheitsfunktionen die Entropie der Gini-Index φ ( π ) = πi log πi φ (π) = π i π j i i j Mathematisch-Statistische Verfahren des Risiko-Managements - SS Das CART-Verfahren (VII) Mathematisch-Statistische Verfahren des Risiko-Managements - SS

5 Das CART-Verfahren (VIII) Overfitting vermeiden!! Fuzzy-Set-Theorie, Graphentheorie Mathematisch-Statistische Verfahren des Risiko-Managements - SS Spezielle Standards für Entscheidungsbaumverfahren (I) Formulierung der Klassifikationsfunktion Die Definition der möglichen Klassenzugehörigkeiten der zu analysierenden Objekte muß dargelegt und erläutert werden. Die Wahl der möglichen Trennvariablen muß erläutert werden. Die Definition der Unreinheitsfunktion, welche die Ausprägung der Trennkriterien im Entscheidungsbaum bestimmt, muß dargelegt werden. Die Wahl dieser Funktion muß begründet werden. Die Verwendung von Ersatzsplits bei fehlenden Merkmalswerten der zu klassifizierenden Objekte, d.h. die Verwendung anderer Merkmalswerte mit ähnlichem Klassifikationseffekt, ist zulässig, muß aber ausreichend dokumentiert werden. Mathematisch-Statistische Verfahren des Risiko-Managements - SS

6 Spezielle Standards für EBV (II) Schätzung der Fehlklassifikationsrate, Festlegung der Endknoten Die Definition des verwendeteten Resubstitutionsschätzers oder eines anderen Schätzers der Fehlklassifikationsrate zur Bestimmung der optimalen Größe des Entscheidungsbaums muß dargelegt werden. Die Wahl dieses Schätzers muß begründet werden. Das Verfahren der Zuordnung der Endknoten eines Entscheidungsbaumes zu Objektklassen muß dargelegt werden. Insbesondere sollte dargelegt werden, daß der Grad der Fehlklassifikation der Lernstichprobenelemente bei der gewählten Zuordnung optimal ist. Das Verfahren zur endgültigen Festlegung der Baumgröße unter Verwendung der Fehlklassifikationsrate muß dargelegt werden. Die Fehlklassifikationsrate des festgelegten Entscheidungsbaumes muß anhand eines Teststichprobenverfahrens überprüft und dokumentiert werden. Das Teststichprobenverfahren muß erläutert werden. Lernstichprobe und eine zugehörige Teststichprobe darzulegen. Mathematisch-Statistische Verfahren des Risiko-Managements - SS Beispiel: Privat-Kredit-Scoring (I) Jeder Privatkreditkunde wird durch 20 Merkmale charakterisiert, die zum Teil nominal, ordinal oder kardinal skaliert sind. Mathematisch-Statistische Verfahren des Risiko-Managements - SS

7 Beispiel: Privat-Kredit-Scoring (II) Mathematisch-Statistische Verfahren des Risiko-Managements - SS Beispiel: Privat-Kredit-Scoring (III) Mathematisch-Statistische Verfahren des Risiko-Managements - SS

8 Beispiel: Privat-Kredit-Scoring (IV) Mathematisch-Statistische Verfahren des Risiko-Managements - SS Beispiel: Privat-Kredit-Scoring (V) Mathematisch-Statistische Verfahren des Risiko-Managements - SS

9 Beispiel: Privat-Kredit-Scoring (VI) Mathematisch-Statistische Verfahren des Risiko-Managements - SS Beispiel: Privat-Kredit-Scoring (VII) Das Datenmaterial ist eine geschichtete Stichprobe von Konsumentenkrediten einer Großbank mit 300 schlechten und 700 guten Krediten. Mathematisch-Statistische Verfahren des Risiko-Managements - SS

Kreditscoring zur Klassifikation von Kreditnehmern. Variablenübersicht des Datensatzes "Kreditscoring zur Klassifikation von Kreditnehmern"

Kreditscoring zur Klassifikation von Kreditnehmern. Variablenübersicht des Datensatzes Kreditscoring zur Klassifikation von Kreditnehmern Ergänzung zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Kreditscoring zur Klassifikation von Kreditnehmern Beschreibung des Datensatzes Die Vergabe von Privatkrediten wird von der Bonität der

Mehr

Datei Kredit.sav, Variablenbeschreibung und Umkodierungen. Variablenübersicht des Datensatzes "Kreditscoring zur Klassifikation von Kreditnehmern"

Datei Kredit.sav, Variablenbeschreibung und Umkodierungen. Variablenübersicht des Datensatzes Kreditscoring zur Klassifikation von Kreditnehmern A Beschreibung des Original-Datensatzes Kreditscoring Die vorliegende Datei enthält die Daten aus einer geschichteten Lernstichprobe, welche von einer süddeutschen Großbank durchgeführt wurde. Bei einer

Mehr

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining Gliederung 1. Einführung 2. Grundlagen Data Mining Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining 3. Ausgewählte Methoden des Data

Mehr

I. II. I. II. III. IV. I. II. III. I. II. III. IV. I. II. III. IV. V. I. II. III. IV. V. VI. I. II. I. II. III. I. II. I. II. I. II. I. II. III. I. II. III. IV. V. VI. VII. VIII.

Mehr

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table("c:\\compaufg\\kredit.

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table(c:\\compaufg\\kredit. Lösung 16.3 Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit

Mehr

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002)

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) 3. Entscheidungsbäume Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) (aus Wilhelm 2001) Beispiel: (aus Böhm 2003) Wann sind Entscheidungsbäume

Mehr

Methoden der Datenanalyse AI-basierte Decision Support Systeme WS 2006/07

Methoden der Datenanalyse AI-basierte Decision Support Systeme WS 2006/07 Regression Trees Methoden der Datenanalyse AI-basierte Decision Support Systeme WS 2006/07 Ao.Univ.Prof. Dr. Marcus Hudec marcus.hudec@univie.ac.at Institut für Scientific Computing, Universität Wien 2

Mehr

9 Diskriminanzanalyse

9 Diskriminanzanalyse 9 Diskriminanzanalyse 9.1 Problemstellung Ziel einer Diskriminanzanalyse: Bereits bekannte Objektgruppen (Klassen/Cluster) anhand ihrer Merkmale charakterisieren und unterscheiden sowie neue Objekte in

Mehr

Erkennung von Adressenausfallrisiken

Erkennung von Adressenausfallrisiken Christian Kus Erkennung von Adressenausfallrisiken Kontodatenanalyse unter Einsatz binärer logistischer Regressionsmodelle Verlag Dr. Kovac Hamburg 2010 Inhalt Seite Abkürzungen Abbildungs-/Tabellenverzeichnis

Mehr

Management Support Systeme

Management Support Systeme Management Support Systeme WS 24-25 4.-6. Uhr PD Dr. Peter Gluchowski Folie Gliederung MSS WS 4/5. Einführung Management Support Systeme: Informationssysteme zur Unterstützung betrieblicher Fach- und Führungskräfte

Mehr

Fallbeispiel: Kreditscoring

Fallbeispiel: Kreditscoring Fallbeispiel: Kreditscoring Stefan Lang 14. Juni 2005 SS 2005 Datensatzbeschreibung (1) Ziel Untersuchung der Bonität eines Kunden in Abhängigkeit von erklärenden Variablen Zielvariable Bonität des Kunden:

Mehr

8. Februar 2007. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt.

8. Februar 2007. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt. L. Fahrmeir, C. Belitz Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 8. Februar 2007 Hinweise:

Mehr

Data Mining Anwendungen und Techniken

Data Mining Anwendungen und Techniken Data Mining Anwendungen und Techniken Knut Hinkelmann DFKI GmbH Entdecken von Wissen in banken Wissen Unternehmen sammeln ungeheure mengen enthalten wettbewerbsrelevantes Wissen Ziel: Entdecken dieses

Mehr

Diskriminanzanalyse Beispiel

Diskriminanzanalyse Beispiel Diskriminanzanalyse Ziel bei der Diskriminanzanalyse ist die Analyse von Gruppenunterschieden, d. h. der Untersuchung von zwei oder mehr Gruppen hinsichtlich einer Vielzahl von Variablen. Diese Methode

Mehr

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall )

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall ) Zusammenhänge von Variablen Regressionsanalysen linearer Zusammenhang ( Idealfall ) kein Zusammenhang nichtlinearer monotoner Zusammenhang (i.d.regel berechenbar über Variablentransformationen mittels

Mehr

Maschinelles Lernen Entscheidungsbäume

Maschinelles Lernen Entscheidungsbäume Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Maschinelles Lernen Entscheidungsbäume Paul Prasse Entscheidungsbäume Eine von vielen Anwendungen: Kreditrisiken Kredit - Sicherheiten

Mehr

1 Predictive Analytics mit Random Forest

1 Predictive Analytics mit Random Forest Predictive Analytics Demokratie im Wald 1 Agenda 1. Predictive Analytics Übersicht 2. Random Forest Grundkonzepte und Anwendungsfelder 3. Entscheidungsbaum Classification and Regression Tree (CART) 4.

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Entscheidungsbäume

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Entscheidungsbäume Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Entscheidungsbäume Christoph Sawade/Niels Landwehr Jules Rasetaharison, Tobias Scheffer Entscheidungsbäume Eine von vielen Anwendungen:

Mehr

Kontingenzkoeffizient (nach Pearson)

Kontingenzkoeffizient (nach Pearson) Assoziationsmaß für zwei nominale Merkmale misst die Unabhängigkeit zweier Merkmale gibt keine Richtung eines Zusammenhanges an 46 o jl beobachtete Häufigkeiten der Kombination von Merkmalsausprägungen

Mehr

Kapitel 4: Binäre Regression

Kapitel 4: Binäre Regression Kapitel 4: Binäre Regression Steffen Unkel (basierend auf Folien von Nora Fenske) Statistik III für Nebenfachstudierende WS 2013/2014 4.1 Motivation Ausgangssituation Gegeben sind Daten (y i, x i1,...,

Mehr

Kommentierter SPSS-Ausdruck zur logistischen Regression

Kommentierter SPSS-Ausdruck zur logistischen Regression Daten: POK V AG 3 (POKV_AG3_V07.SAV) Kommentierter SPSS-Ausdruck zur logistischen Regression Fragestellung: Welchen Einfluss hat die Fachnähe und das Geschlecht auf die interpersonale Attraktion einer

Mehr

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Phasen des Forschungsprozesses Auswahl des Forschungsproblems Theoriebildung Theoretische Phase Konzeptspezifikation / Operationalisierung

Mehr

Credit Risk Management

Credit Risk Management Credit Risk Management. Mathematisch-Statistische Verfahren des Risikomanagements - SS2004 1 Einführung (I) Die drei Kernbereiche des Credit Risk Management Kreditprozesse vertriebswegedeterminiert Kreditprozesse

Mehr

29. Mai 2006. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt.

29. Mai 2006. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt. L. Fahrmeir, C. Belitz Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 29. Mai 2006 Hinweise:

Mehr

Multinomiale logistische Regression

Multinomiale logistische Regression Multinomiale logistische Regression Die multinomiale logistische Regression dient zur Schätzung von Gruppenzugehörigkeiten bzw. einer entsprechenden Wahrscheinlichkeit hierfür, wobei als abhänginge Variable

Mehr

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik Ludwig Fahrmeir, Nora Fenske Institut für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik 29. März 21 Hinweise:

Mehr

Seminar Text- und Datamining Datamining-Grundlagen

Seminar Text- und Datamining Datamining-Grundlagen Seminar Text- und Datamining Datamining-Grundlagen Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 23.05.2013 Gliederung 1 Klassifikationsprobleme 2 Evaluation

Mehr

Algorithmische Modelle als neues Paradigma

Algorithmische Modelle als neues Paradigma Algorithmische Modelle als neues Paradigma Axel Schwer Seminar über Philosophische Grundlagen der Statistik, WS 2010/11 Betreuer: Prof. Dr. Thomas Augustin München, den 28. Januar 2011 1 / 29 LEO BREIMAN

Mehr

Einführung in die Logistische Regression. Fortbildung zur 19.Informationstagung Tumordokumentation

Einführung in die Logistische Regression. Fortbildung zur 19.Informationstagung Tumordokumentation Einführung in die Logistische Regression Fortbildung zur 9.Informationstagung Tumordokumentation Bernd Schicke, Tumorzentrum Berlin FB Bayreuth, 29.März 20 Gliederung Einleitung Schätzen von Maßzahlen

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Allgemeine Regressionsanalyse. Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl. deterministisch

Allgemeine Regressionsanalyse. Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl. deterministisch Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 9.1 Allgemeine Regressionsanalyse Daten (X j, Y j ), j = 1,..., N unabhängig Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl.

Mehr

Automatische Mustererkennung zur Klassifikation von Konsumentenverhalten am Beispiel der Kreditwürdigkeitsprüfung

Automatische Mustererkennung zur Klassifikation von Konsumentenverhalten am Beispiel der Kreditwürdigkeitsprüfung Prof. Dr. Gerhard Arminger Dipl.-Ök. Alexandra Schwarz Bergische Universität Wuppertal Fachbereich Wirtschaftswissenschaft Fach Statistik Automatische Mustererkennung zur Klassifikation von Konsumentenverhalten

Mehr

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression Institut für Soziologie Methoden 2 Regressionsanalyse I: Einfache lineare Regression Programm Anwendungsbereich Vorgehensweise Interpretation Annahmen Zusammenfassung Übungsaufgabe Literatur # 2 Anwendungsbereich

Mehr

Data Mining und maschinelles Lernen

Data Mining und maschinelles Lernen Data Mining und maschinelles Lernen Einführung und Anwendung mit WEKA Caren Brinckmann 16. August 2000 http://www.coli.uni-sb.de/~cabr/vortraege/ml.pdf http://www.cs.waikato.ac.nz/ml/weka/ Inhalt Einführung:

Mehr

2.Tutorium Generalisierte Regression

2.Tutorium Generalisierte Regression 2.Tutorium Generalisierte Regression - Binäre Regression - Moritz Berger: 04.11.2013 und 11.11.2013 Shuai Shao: 06.11.2013 und 13.11.2013 Institut für Statistik, LMU München 1 / 16 Gliederung 1 Erweiterte

Mehr

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen aussagenlogischer Regeln: Wissensbasis (Kontextwissen): Formelmenge,

Mehr

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren)

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Multiple Regression 1 Was ist multiple lineare Regression? Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Annahme: Der Zusammenhang

Mehr

Data Mining und Text Mining Einführung. S2 Einfache Regellerner

Data Mining und Text Mining Einführung. S2 Einfache Regellerner Data Mining und Text Mining Einführung S2 Einfache Regellerner Hans Hermann Weber Univ. Erlangen, Informatik 8 Wintersemester 2003 hans.hermann.weber@gmx.de Inhalt Einiges über Regeln und Bäume R1 ein

Mehr

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Computer Vision: 3D-Geometrie D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Lochkamera Modell C Projektionszentrum, Optische Achse, Bildebene, P Hauptpunkt (optische Achse kreuzt die Bildebene),

Mehr

Grundbegriffe (1) Grundbegriffe (2)

Grundbegriffe (1) Grundbegriffe (2) Grundbegriffe (1) S.1 Äquivalenzklasse Unter einer Äquivalenzklasse versteht man eine Klasse von Objekten, die man hinsichtlich bestimmter Merkmalsausprägungen als gleich (äquivalent) betrachtet. (z.b.

Mehr

Übungsserie Nr. 10 mit Lösungen

Übungsserie Nr. 10 mit Lösungen Übungsserie Nr. 10 mit Lösungen 1 Ein Untersuchungsdesign sieht einen multivariaten Vergleich einer Stichprobe von Frauen mit einer Stichprobe von Männern hinsichtlich der Merkmale X1, X2 und X3 vor (Codierung:

Mehr

Data Mining (ehem. Entscheidungsunterstützungssysteme)

Data Mining (ehem. Entscheidungsunterstützungssysteme) Data Mining (ehem. Entscheidungsunterstützungssysteme) Melanie Pfoh Anja Tetzner Christian Schieder Übung WS 2014/15 AGENDA TEIL 1 Aufgabe 1 (Wiederholung OPAL / Vorlesungsinhalte) ENTSCHEIDUNG UND ENTSCHEIDUNGSTHEORIE

Mehr

TEXTKLASSIFIKATION. WS 2011/12 Computerlinguistik I Deasy Sukarya & Tania Bellini

TEXTKLASSIFIKATION. WS 2011/12 Computerlinguistik I Deasy Sukarya & Tania Bellini TEXTKLASSIFIKATION WS 2011/12 Computerlinguistik I Deasy Sukarya & Tania Bellini GLIEDERUNG 1. Allgemeines Was ist Textklassifikation? 2. Aufbau eines Textklassifikationssystems 3. Arten von Textklassifikationssystemen

Mehr

Data-Mining Aufspüren von Mustern mit Hilfe von Entscheidungsbäumen

Data-Mining Aufspüren von Mustern mit Hilfe von Entscheidungsbäumen Hausarbeit Im Rahmen des Seminars Datenanalyse Thema: Data-Mining Aufspüren von Mustern mit Hilfe von Entscheidungsbäumen Seminarleiter: Dr. Siegbert Klinke Humboldt-Universität zu Berlin Abteilung Statistik

Mehr

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY 5.2. Nichtparametrische Tests 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY Voraussetzungen: - Die Verteilungen der beiden Grundgesamtheiten sollten eine ähnliche Form aufweisen. - Die

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

Quantitative Methoden der Bildungsforschung

Quantitative Methoden der Bildungsforschung Glieung Wieholung Korrelationen Grundlagen lineare Regression Lineare Regression in SPSS Übung Wieholung Korrelationen Standardisiertes Zusammenhangsmaß (unstandardisiert: Kovarianz) linearer Zusammenhang

Mehr

DATA-FORECASTER. Erich Steiner steiner@softopt.de SoftOpt www.softopt.de. 7. April 2003

DATA-FORECASTER. Erich Steiner steiner@softopt.de SoftOpt www.softopt.de. 7. April 2003 DATA-FORECASTER Erich Steiner steiner@softopt.de SoftOpt www.softopt.de 7. April 2003 Was ist DATA-FORECASTER? 1 Was ist DATA-FORECASTER? 1 eine Software für Datamining Was ist DATA-FORECASTER? 1 eine

Mehr

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur.

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur. Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Die Analyse und modellhafte

Mehr

Neue Kreditwürdigkeitsprüfung

Neue Kreditwürdigkeitsprüfung Bankinternes Rating 5.2 Kreditwürdigkeitsprüfung Seite 7 Neue Kreditwürdigkeitsprüfung Inhalt Bankinternes Rating-Verfahren Bankinterne Rating-Systeme Internes Rating nach Basel II Anforderungen an das

Mehr

Kapitel 4: Data Mining

Kapitel 4: Data Mining LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2011 Kapitel 4: Data Mining Vorlesung:

Mehr

3.2 Bivariate Verteilungen

3.2 Bivariate Verteilungen 3.2 Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt i, i = 1,..., n, werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare/Kombinationen von

Mehr

Grundlagen der Programmierung 2. Bäume

Grundlagen der Programmierung 2. Bäume Grundlagen der Programmierung 2 Bäume Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 24. Mai 2006 Graphen Graph: Menge von Knoten undzugehörige (gerichtete oder ungerichtete)

Mehr

Diversitätsinklusion in der universitären Fernlehre: Studienziele und Studienerfolg. Katharina Stößel & Stefan Stürmer FernUniversität in Hagen

Diversitätsinklusion in der universitären Fernlehre: Studienziele und Studienerfolg. Katharina Stößel & Stefan Stürmer FernUniversität in Hagen Diversitätsinklusion in der universitären Fernlehre: Studienziele und Studienerfolg Katharina Stößel & Stefan Stürmer FernUniversität in Hagen Institut für Psychologie Lehrgebiet Diversität im (Fern)Studium

Mehr

Credit Risk Management

Credit Risk Management Credit Risk Management. Mathematisch-Statistische Verfahren des Risikomanagements SS 2006 1 Einführung (I) Die drei Kernbereiche des Credit Risk Management Kreditprozesse vertriebswegedeterminiert Kreditprozesse

Mehr

Data Mining im Marketing SS 2000

Data Mining im Marketing SS 2000 KATHOLISCHE UNIVERSITÄT EICHSTÄTT WIRTSCHAFTSWISSENSCHAFTLICHE FAKULTÄT INGOLSTADT LEHRSTUHL FÜR ABWL UND WIRTSCHAFTSINFORMATIK PROF. DR. KLAUS D. WILDE Data Mining im Marketing SS 000 Theorie zu: Entscheidungsbäumen

Mehr

Data-Mining: Ausgewählte Verfahren und Werkzeuge

Data-Mining: Ausgewählte Verfahren und Werkzeuge Fakultät Informatik Institut für Angewandte Informatik Lehrstuhl Technische Informationssysteme Data-Mining: Ausgewählte Verfahren und Vortragender: Jia Mu Betreuer: Dipl.-Inf. Denis Stein Dresden, den

Mehr

MS SQL Server 2012 (4)

MS SQL Server 2012 (4) MS SQL Server 2012 (4) Data Mining, Analyse und multivariate Verfahren Marco Skulschus Jan Tittel Marcus Wiederstein Webseite zum Buch: http://vvwvv.comelio-medien.com/buch-kataiog/ms sql_server/ms sql

Mehr

0 Im folgenden sei die Wortlänge gleich 8 (d. h.: es wird mit Bytes gearbeitet).

0 Im folgenden sei die Wortlänge gleich 8 (d. h.: es wird mit Bytes gearbeitet). Aufgabe 0 Im folgenden sei die Wortlänge gleich 8 (d. h.: es wird mit Bytes gearbeitet). 1. i) Wie ist die Darstellung von 50 im Zweier =Komplement? ii) Wie ist die Darstellung von 62 im Einer =Komplement?

Mehr

SCHRIFTENREIHE DES INSTITUTS FÜR KREDIT- U. VERSICHERUNGSWIRTSCHAFT ABTEILUNG BANKBETRIEBSLEHRE. Wolfgang Ippisch

SCHRIFTENREIHE DES INSTITUTS FÜR KREDIT- U. VERSICHERUNGSWIRTSCHAFT ABTEILUNG BANKBETRIEBSLEHRE. Wolfgang Ippisch SCHRIFTENREIHE DES INSTITUTS FÜR KREDIT- U. VERSICHERUNGSWIRTSCHAFT ABTEILUNG BANKBETRIEBSLEHRE Wolfgang Ippisch BANKBETRIEBLICHES ZINSSPANNEN- MANAGEMENT INSTRUMENTELLE ASPEKTE EINER FRISTEN- UND RENTABIU1ÄTS-

Mehr

Inhaltsverzeichnis. I Einführung in STATISTICA 1. 1 Erste Schritte in STATISTICA 3

Inhaltsverzeichnis. I Einführung in STATISTICA 1. 1 Erste Schritte in STATISTICA 3 I Einführung in STATISTICA 1 1 Erste Schritte in STATISTICA 3 2 Datenhaltung in STATISTICA 11 2.1 Die unterschiedlichen Dateitypen in STATISTICA....... 11 2.2 Import von Daten......... 12 2.3 Export von

Mehr

Inhaltsverzeichnis Vorwort Konzepte des Active Directory

Inhaltsverzeichnis Vorwort Konzepte des Active Directory Vorwort.................................................................. XI Warum dieses Buch.................................................... XI Kapitelübersicht.......................................................

Mehr

Hauptseminar am Fachgebiet für Quantitative Methoden der Wirtschaftswissenschaften

Hauptseminar am Fachgebiet für Quantitative Methoden der Wirtschaftswissenschaften Hauptseminar am Fachgebiet für Quantitative Methoden der Wirtschaftswissenschaften Fehlende Daten in der Multivariaten Statistik SS 2011 Allgemeines Das Seminar richtet sich in erster Linie an Studierende

Mehr

Data Mining und Knowledge Discovery in Databases

Data Mining und Knowledge Discovery in Databases Data Mining und Knowledge Discovery in Databases Begriffsabgrenzungen... Phasen der KDD...3 3 Datenvorverarbeitung...4 3. Datenproblematik...4 3. Möglichkeiten der Datenvorverarbeitung...4 4 Data Mining

Mehr

Gliederung DANKSAGUNG GLIEDERUNG

Gliederung DANKSAGUNG GLIEDERUNG Gliederung DANKSAGUNG GLIEDERUNG V VII I TABELLENVERZEICHNIS X II ABBILDUNGSVERZEICHNIS XIII III ABKÜRKZUNGSVERZEICHNIS XV 1 EINLEITUNG 1 1.1 PROBLEMSTELLUNG 1 1.2 ZIELSETZUNGEN UND FRAGESTELLUNGEN 3 1.3

Mehr

Kreditstudie. Kreditsumme, -zins und -laufzeit betrachtet nach Wohnort und Geschlecht des/r Kreditnehmer/s

Kreditstudie. Kreditsumme, -zins und -laufzeit betrachtet nach Wohnort und Geschlecht des/r Kreditnehmer/s Kreditstudie Kreditsumme, -zins und -laufzeit betrachtet nach Wohnort und Geschlecht des/r Kreditnehmer/s CHECK24 2015 Agenda 1 2 3 4 5 Zusammenfassung Methodik Kreditsumme, -zins & -laufzeit nach Bundesland

Mehr

Abhängigkeit zweier Merkmale

Abhängigkeit zweier Merkmale Abhängigkeit zweier Merkmale Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/33 Allgemeine Situation Neben der Untersuchung auf Unterschiede zwischen zwei oder mehreren Untersuchungsgruppen hinsichtlich

Mehr

Data Mining: Klassifikations- und Clusteringverfahren

Data Mining: Klassifikations- und Clusteringverfahren Westfälische Wilhelms-Universität Münster Data Mining: Klassifikations- und Clusteringverfahren Ausarbeitung im Rahmen des Projektseminars CRM für Finanzdienstleister im Fachgebiet Wirtschaftsinformatik

Mehr

9 Resümee. Resümee 216

9 Resümee. Resümee 216 Resümee 216 9 Resümee In der vorliegenden Arbeit werden verschiedene Methoden der Datenreduktion auf ihre Leistungsfähigkeit im sozialwissenschaftlichstatistischen Umfeld anhand eines konkreten Anwendungsfalls

Mehr

Eine computergestützte Einführung mit

Eine computergestützte Einführung mit Thomas Cleff Deskriptive Statistik und Explorative Datenanalyse Eine computergestützte Einführung mit Excel, SPSS und STATA 3., überarbeitete und erweiterte Auflage ^ Springer Inhaltsverzeichnis 1 Statistik

Mehr

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen Ergebnisse 77 5 Ergebnisse Das folgende Kapitel widmet sich der statistischen Auswertung der Daten zur Ü- berprüfung der Hypothesen. Die hier verwendeten Daten wurden mit den in 4.3 beschriebenen Instrumenten

Mehr

Übungsblatt LV Künstliche Intelligenz, Data Mining (1), 2014

Übungsblatt LV Künstliche Intelligenz, Data Mining (1), 2014 Übungsblatt LV Künstliche Intelligenz, Data Mining (1), 2014 Aufgabe 1. Data Mining a) Mit welchen Aufgabenstellungen befasst sich Data Mining? b) Was versteht man unter Transparenz einer Wissensrepräsentation?

Mehr

6. METRISCHE UND KATEGORIALE MERKMALE

6. METRISCHE UND KATEGORIALE MERKMALE 6. METRISCHE UND KATEGORIALE MERKMALE wenn an einer Beobachtungseinheit eine (oder mehrere) metrische und eine (oder mehrere) kategoriale Variable(n) erhoben wurden Beispiel: Haushaltsarbeit von Teenagern

Mehr

0 Einführung: Was ist Statistik

0 Einführung: Was ist Statistik 0 Einführung: Was ist Statistik 1 Datenerhebung und Messung Die Messung Skalenniveaus 2 Univariate deskriptive Statistik 3 Multivariate Statistik 4 Regression 5 Ergänzungen Grundbegriffe Statistische Einheit,

Mehr

ISMS Teil 3 Der Startschuss

ISMS Teil 3 Der Startschuss ISMS Teil 3 Der Startschuss Nachdem das TOP-Managenment die grundsätzliche Entscheidung getroffen hat ein ISMS einzuführen, kann es nun endlich losgehen. Zu Beginn sollte Sie noch die Grundlagen des ISMS

Mehr

5.6 Vererbung. Vererbung

5.6 Vererbung. Vererbung 5.6 Vererbung Klassen können zueinander in einer "ist ein"- Beziehung stehen Beispiel: Jeder PKW ist ein Kraftfahrzeug, jedes Kraftfahrzeug ist ein Transportmittel aber: auch jeder LKW ist ein Kraftfahrzeug

Mehr

Multi-Kanal-Steuerung im Privatkundengeschäft der Landesbank Baden-Württemberg. Ermittlung onlinebanking-affiner Kunden

Multi-Kanal-Steuerung im Privatkundengeschäft der Landesbank Baden-Württemberg. Ermittlung onlinebanking-affiner Kunden Multi-Kanal-Steuerung im Privatkundengeschäft der Ermittlung onlinebanking-affiner Kunden 7. KSFE in Potsdam Freitag, 21. Februar 2003 Elke Kasper, LBBW Gliederung 1 Multi-Kanal-Steuerung der (LBBW) 2

Mehr

Verhindert, dass eine Methode überschrieben wird. public final int holekontostand() {...} public final class Girokonto extends Konto {...

Verhindert, dass eine Methode überschrieben wird. public final int holekontostand() {...} public final class Girokonto extends Konto {... PIWIN I Kap. 8 Objektorientierte Programmierung - Vererbung 31 Schlüsselwort: final Verhindert, dass eine Methode überschrieben wird public final int holekontostand() {... Erben von einer Klasse verbieten:

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining Klassifikation Ulf Leser Wissensmanagement in der Bioinformatik Inhalt dieser Vorlesung Einführung Problemstellung Evaluation Overfitting knn Klassifikator Naive-Bayes

Mehr

Christian FG Schendera. Regressionsanalyse. mit SPSS. 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG

Christian FG Schendera. Regressionsanalyse. mit SPSS. 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG Christian FG Schendera Regressionsanalyse mit SPSS 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG Inhalt Vorworte V 1 Korrelation 1 1.1 Einführung 1 1.2 Erste Voraussetzung: Das Skalenniveau

Mehr

Katholische Universität Eichstätt-Ingolstadt. Wirtschaftswissenschaftliche Fakultät

Katholische Universität Eichstätt-Ingolstadt. Wirtschaftswissenschaftliche Fakultät Katholische Universität Eichstätt-Ingolstadt Wirtschaftswissenschaftliche Fakultät Der Nutzen betrieblicher Weiterbildung für Großunternehmen. Eine empirische Analyse unter bildungsökonomischen Aspekten

Mehr

Tutorial: Homogenitätstest

Tutorial: Homogenitätstest Tutorial: Homogenitätstest Eine Bank möchte die Kreditwürdigkeit potenzieller Kreditnehmer abschätzen. Einerseits lebt die Bank ja von der Vergabe von Krediten, andererseits verursachen Problemkredite

Mehr

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen 4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form

Mehr

Vorlesung 3 MINIMALE SPANNBÄUME

Vorlesung 3 MINIMALE SPANNBÄUME Vorlesung 3 MINIMALE SPANNBÄUME 72 Aufgabe! Szenario: Sie arbeiten für eine Firma, die ein Neubaugebiet ans Netz (Wasser, Strom oder Kabel oder...) anschließt! Ziel: Alle Haushalte ans Netz bringen, dabei

Mehr

IBM SPSS Decision Trees

IBM SPSS Decision Trees Einfaches Ermitteln von Gruppen und Vorhersage von Ergebnissen Highlights Visuell aussagekräftiges Ermitteln von Gruppen, Segmenten und Mustern mithilfe von Klassifikationsstrukturen Auswahl zwischen den

Mehr

Fragebogen bei einem Fondsbeitritt:

Fragebogen bei einem Fondsbeitritt: Fragebogen bei einem Fondsbeitritt: Name(n):...... Adresse:...... Telefon / Fax:... Email / Internet:... Geburtsdatum:... Anzahl der Kinder:... Beruf/e:... Fondsname:... Nominaleinlage:... Bitte füllen

Mehr

Conjoint Analyse. Ordnen Sie bitte die Objekte Ihren Präferenzen entsprechend in eine Rangreihe.

Conjoint Analyse. Ordnen Sie bitte die Objekte Ihren Präferenzen entsprechend in eine Rangreihe. Conjoint Analyse CONsidered JOINTly Conjoint Analyse Ordnen Sie bitte die Objekte Ihren Präferenzen entsprechend in eine Rangreihe. traditionelle auswahlbasierte Wählen Sie bitte aus den Alternativen,

Mehr

Inhaltsübersicht INHALTSVERZEICHNIS...III ABBILDUNGSVERZEICHNIS... X TABELLENVERZEICHNIS... XII ABKÜRZUNGSVERZEICHNIS...XIII 1 EINLEITUNG...

Inhaltsübersicht INHALTSVERZEICHNIS...III ABBILDUNGSVERZEICHNIS... X TABELLENVERZEICHNIS... XII ABKÜRZUNGSVERZEICHNIS...XIII 1 EINLEITUNG... Inhaltsübersicht Inhaltsübersicht I INHALTSVERZEICHNIS...III ABBILDUNGSVERZEICHNIS... X TABELLENVERZEICHNIS... XII ABKÜRZUNGSVERZEICHNIS...XIII 1 EINLEITUNG... 1 1.1 Zielsetzung und Motivation... 1 1.2

Mehr

Beispiel (Schule) Grundlegende Begriffe. Beispiel (Universität) Beispiel (Lotto) Untersuchungseinheiten und ihre Merkmale

Beispiel (Schule) Grundlegende Begriffe. Beispiel (Universität) Beispiel (Lotto) Untersuchungseinheiten und ihre Merkmale Grundlegende Begriffe Untersuchungseinheiten und ihre Merkmale Untersuchungseinheiten Merkmale Merkmalsausprägungen Beispiel (Schule) Untersuchungseinheiten: Schulkinder Merkmale: Körpergröße, Körpergewicht

Mehr

1.3 Zusammenfassung und Ausblick 26. 2 Medizinische Grundlagen des Diabetes mellitus 27

1.3 Zusammenfassung und Ausblick 26. 2 Medizinische Grundlagen des Diabetes mellitus 27 Inhaltsverzeichnis Inhaltsverzeichnis I Abbildungsverzeichnis VIII Tabellenverzeichnis IX Abkürzungsverzeichnis XI Zusammenfassung 1 Abstract 3 Einleitung 5 I. Stand der Forschung 9 1 Depressive Störungen

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

für die Stadt Wunsiedel

für die Stadt Wunsiedel für die Stadt Wunsiedel 17.07.2013 Inhalt I. Kennzahlenspiegel II. Verschuldungsstruktur im Zeitablauf III. Szenarioanalysen zukünftiger Zinszahlungen IV. Optimierungsvorschlag V. Annahmen VI. Übersicht

Mehr

firmenkredit Finanzierungen auf unkomplizierte, transparente Art

firmenkredit Finanzierungen auf unkomplizierte, transparente Art firmenkredit Finanzierungen auf unkomplizierte, transparente Art klarheit und transparenz Sie planen eine Investition? Oder Sie möchten sich ganz grundsätzlich über die Möglichkeiten unterhalten, die Ihnen

Mehr

Entwicklung und Kalibrierung von Scoring- und Ratingsystemen. Markus J. Rieder riskperform software gmbh

Entwicklung und Kalibrierung von Scoring- und Ratingsystemen. Markus J. Rieder riskperform software gmbh Entwicklung und Kalibrierung von Scoring- und Ratingsystemen Markus J. Rieder riskperform software gmbh AGENDA Warum? Was? Womit? Wie? Wie gut? Wofür? 2 PRINZIP EINES RATING-MODELLS Warum? W? W? W? W?

Mehr

Einsatzbereiche des APICONNECT Data Masters bei Schwan-STABILO Cosmetics GmbH & Co. KG. Referentin: Susanne Palm Inhouse-Consultant

Einsatzbereiche des APICONNECT Data Masters bei Schwan-STABILO Cosmetics GmbH & Co. KG. Referentin: Susanne Palm Inhouse-Consultant Einsatzbereiche des APICONNECT Data Masters bei Schwan-STABILO Cosmetics GmbH & Co. KG Referentin: Susanne Palm Inhouse-Consultant Agenda 1. Vorstellung des Unternehmens 2. Einsatzbereiche des APICONNECT

Mehr

Multivariate Analyse: Einführung in das COX-Modell

Multivariate Analyse: Einführung in das COX-Modell Auswertung Multivariate Analyse: Einführung in das COX-Modell Deskriptive Statistik Häufigkeiten, Univariate Statistiken, Explorative Datenanalyse, Kreuztabellen) Induktive Statistik, Vergleich von Mittelwerten

Mehr

Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining

Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining Ausgangssituation Kaizen Data Mining ISO 9001 Wenn andere Methoden an ihre Grenzen stoßen Es gibt unzählige Methoden, die Abläufe

Mehr

Michael Trübestein. Real Estate Asset Management für institutionelle Investoren

Michael Trübestein. Real Estate Asset Management für institutionelle Investoren 770 Michael Trübestein Real Estate Asset Management für institutionelle Investoren Eine theoretische Konzeption und empirische Untersuchung aus Sicht institutioneller Investoren in Deutschland A261444

Mehr

Analyse bivariater Kontingenztafeln

Analyse bivariater Kontingenztafeln Analyse bivariater Kontingenztafeln Werden zwei kategoriale Merkmale mit nicht zu vielen möglichen Ausprägungen gemeinsam analysiert, so kommen zur Beschreibung der gemeinsamen Verteilung im allgemeinen

Mehr

Kapitel 3: Interpretationen

Kapitel 3: Interpretationen Kapitel 3: 1. Interpretation von Outputs allgemein... 1 2. Interpretation von Signifikanzen... 1 2.1. Signifikanztests / Punktschätzer... 1 2.2. Konfidenzintervalle... 2 3. Interpretation von Parametern...

Mehr