Lösungen zu Übung(11) Erster Teil A E=

Größe: px
Ab Seite anzeigen:

Download "Lösungen zu Übung(11) Erster Teil A E="

Transkript

1 Lösungen zu Übung Erster Teil a Betrachten Sie die Matrix A = Die Eigenwerte sind λ = mit algebraischer Vielfachheitundλ =mitalgebraischervielfachheit,unddiematrix A E= hatrang, alsokerndimensionnur, somitistdereigenraumzuλ =nureindimensional,die Matrix A daher nicht diagonalisierbar j +j b ZurMatrixB= hat man das charakteristische Polynom j j und die Eigenwerte sind daher Wir lösen nur j λ, λ, =j± j λx++jy= undfindendienichttrivialeeinfachstelösungzux=: y= λ j +j, fürλ =j+ ergibtdas undfürλ =j bekommtman y= j +j =, Daher hat man und WirbetrachtendieMatrixA= y= +j = + j D= T = +j +j j a A ist reell und symmetrisch, also diagonalisierbar + j b Das charakteristische Polynom von A ist p A λ = λ λ + λ = λ λ, alsosinddieeigenwerte: λ =,λ, =± c Wirkönnenmitaangeben: D= + Wir berechnen nur die erste Spalte von S Dazu benötigen wir nur einen normierten Eigenvektor zu λ = : Zu lösen isteine nichttriviale Lösung genügt: y = x+z =

2 Wirwählenx=,z=,y=isterzwungen,undhaben alserstespaltevons d DamitkennenwirfolgendeLösungenvon x t=a xt: xα t=e t, α R e Mit x T A x =wirdeineinschaligeshyperboloidbeschrieben a BetrachtenSiedieMatrixB= i Wirhaben und det B= >, = >, det Also ist B negativ definit = det 8 8 = 8 6>, = det ii DamitistderGleichgewichtspunkt beiderdgl x t=b xtasymptotischstabil b BetrachtenSiedieDGL d xt xt+sinyt = dt yt yt xt i Die DGL ist explizit, erster Ordnung, nicht linear ii Wirhabenmit x+siny f x,y = : y x cosy J f x,y = Also J f,= DieEigenwertesind±j,alsoistderGleichgewichtspunkt instabil c DieDGLx t=xt x tistersterordnung,explizitundnichtlinear DieGleichgewichtspunkte sindx=undx=,keineweiteren Mitfx=x x hatmanf x= x,alsof =und f = DaheristderGleichgewichtspunktinstabil,derGleichgewichtspunktistasymptotisch stabil Esseisx,y=x xy+yarctany a Manhat gradsx,y = H s x,y = x y x+arctany+ y, +y y +y +y

3 AlsolautetdieNäherung Ordnungvonsum,: sx,y + = x xy+y x y b DieHessematrixanderStelle,hatdet undesliegtin,einstrengesminimumvor WirbetrachtendieKurve t xt= cosht,t R a EshandeltsichumdenGraphenderFunktioncosh,dersoaussieht: x y =7,alsoistsiemit>positivdefinit, Wir haben mit x t = sinht, x t= x t = +sinh t=cosh t: det sinht cosht κ sign t= +sin t / cosht, = cosht cosh t = cosh t Das ist überall positiv, wie nach dem Bild der Linkskurve auch zu erwarten war Die Krümmung wirdmaximalbeit=dorthatsiedenwert b DieGleichungfürdieEvolutesiehtsoaus: yt = t Die Evolute sieht so aus: = cosht t sinht cosht + cosh t cosht sinht DasVektorfeld x arctany+ysinx f = x y +y +sin hataufdemganzenr x einpotential,weil x x +y +sin x = +y +sinxcosx= +y +sinx, y arctany+ysinx = +y +sinx,

4 also ist die Integrabilitätsbedingung erfüllt Nun hat man x ϕx,y = dy +y +sin x =xarctany+ysin x+hx, xarctany+ysin x+hx = arctany+ysinxcosy+h y x Wir brauchen nun arctany+ysinxcosy+h y = arctany+ysinx, dh DamithabenwirmitjederKonstantenc ReinPotential womit h y =, alsohy=const ϕx,y= xarctany ysin x+c, gradϕx,y= f x,y Zweiter Teil Bei einem Hersteller von Geräten seien tatsächlich % der fabrizierten Geräte defekt Nun gebe es eine Endkontrollejedes Gerät kommt vor Auslieferung hinein, die mit Wahrscheinlichkeit 98 ein defektes Gerät als solches erkennt und mit Wahrscheinlichkeit ein fehlerfreies Gerät als defekt beurteilt a D sei das Ereignis, dass ein fabriziertes Gerät durch die Endkontrolle fällt, Def sei das Ereignis, dass ein solches Gerät defekt ist, dann ist PD = PD DefPDef+P D Def P Def = =68 b MansolltedieFragepräzisesoauffassen,dassP Def D gemeintist,undmanhat P Def D = P Def D P D = P D Def PDef P D = 68 Nun ist die Wahrscheinlichkeit für das Ereignis U := defekt und ausgeliefert unter allen fabrizierten Geräten tatsächlich davon nicht weit: PU = P Def D =P D Def PDef = = Aber man sollte beides unterscheiden, da auch starke Abweichungen bestehen können c WirbezeichnenmitD dasereignis, dasseingerätdurchwenigstenseinederendkontrollenfällt Dass ein defektes Gerät bei beiden Endkontrollen durchkommt, hat die Wahrscheinlichkeit P D Def = =, also PD Def = Dass ein intaktes Gerät bei wenigstens einer der Endkontrollen durchfällt, hat die Wahrscheinlichkeit P D Def = 98 =96 Damit haben wir: PD = PD DefPDef+P D Def P Def = = 876 Es werden also wie zu erwarten mehr Geräte ausgeschlossen, doch nicht viel mehr im Vergleich zu 68 Zur zweiten Frage: P Def D = P D Def 876 = 876 = Es sind also nur noch etwa / der ausgelieferten Geräte defekt Das ist viel weniger als mit nur einer Endkontrolle, nur ein Fünfzigstel

5 SeiX dievariable: AnzahldergezogenenrotenKugeln,dannhatman PX = + + = In einem Büro sind PC ständig in Betrieb Deren Abstürze seien für jeden Einzelnen Poisson-verteilt mitλ= protag DieWahrscheinlichkeitdafür,dasseineinzelnerPC imlaufeeinestageskeinmal abstürzt, ist e =e! Dass alle PC an einem Tag nicht abstürzen, hat also die Wahrscheinlichkeit e FürdreiArbeitstagehatmanfürdeneinzelnenPCdenErwartungswertλ =,alsomitderbezeichnung X fürdieanzahlderabstürzebeieinemeinzelnen PCimLaufevonTagen: PX = e / + =!! e / undentsprechend PX = e / Dass mindestens einer der PC in drei Arbeitstagen wenigstens zwei mal abstürzt, hat also die Wahrscheinlichkeit e / DieZufallsvariablenX,Y seienunabhängig MitµX=,µY=,σX=,σY=hatman dann: µ X =, σ X = σx=, µx+y =, σx+y = + =, µx Y =, σx Y = + =, µxy = wegen der vorausgesetzten Unabhängigkeit! { x Es sei folgende Wahrscheinlichkeitsdichte gegeben: fx = für x sonst a DieVerteilungsfunktiongehtoffenbarimBereich[,]strengmonotonvonnachmitderstreng monotonsteigendensteigung, die durchf gegebenist Hier istdas genaue Bild, das man grobso habensollte:x 6 8 x Man sollte noch ein wenig mehr zeichnen, zu zeigen, dass die Verteilungsfunktion im Bereich x < denwerthatundimbereichx>denwert,unddassdiedichtenullistaußerhalbdesintervalls [,]

6 b Manhatmit a x dx=a für a hiernur: Fa= a fürx< fxdx= x für x fürx> c SeiX einezufallsvariable,diemitderdichtef verteiltdannhatman: i ii ferner also iii Wir lösen die Gleichung P X = µx= µ X = [ x x x dx= = 9 6 ] x x dx=, =, σ X = 9 6 = 8, daher σx = 8 = x = undbekommen MedianX = = / 79 Der Median ist größer als der Erwartungswert, was man mit der Schiefe der Verteilung erklären kann: Der flache Schwanz nach links zieht den Erwartungswert nach unten, während er zum Median viel weniger beiträgt 6 Wirhabenbein=gefunden: x=stunden Fernerseibekannt,dassdieStreuungderFunktionsdauerXhöchstens Stundenbeträgt,alsoσX WirgebeneinIntervallderForm[ ε,+ε] an, so dass der tatsächliche Erwartungswert µx mit einer Wahrscheinlichkeit von wenigstens 9% in diesem Intervall liegt a mitdertschyscheffschenungleichungundbeachten,dassµx=µ X P X µ X ε σ X P X µx <ε ε, also σ X Nun lösen wir die Gleichung ε =9 und finden mit der gesuchten positiven Lösung: ε ε = ε Der unbekannte Mittelwert µx liegt also mit Wahrscheinlichkeit 9 weniger als Stunden vom gefundenen empirischen Mittel x = entfernt b mit der entsprechenden Normalverteilung: Das zweiseitige 9%-Vertrauensintervall symmetrisch um µxfürx istaufjedenfallenthaltenin: µx± 96, also liegt der tatsächliche Mittelwert µx mit wenigstens der Wahrscheinlichkeit 9 weniger als 96 6 vomempirischenmittelentfernt Wirkönnenalsoεals6angebenstattinTeila

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 11 Blatt 2

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 11 Blatt 2 Höhere Mathematik III WS 5/6 Lösungshinweis Aufgabe G 11 Blatt Die zu optimierende Zielfunktion ist der Abstand zum Ursprung. Ein bekannter Trick (Vereinfachung der Rechnung) besteht darin, das Quadrat

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12 Mathematik für Wirtschaftswissenschaftler im WS /3 Lösungen zu den Übungsaufgaben Blatt Aufgabe 5 Welche der folgenden Matrizen sind positiv bzw negativ definit? A 8, B 3 7 7 8 9 3, C 7 4 3 3 8 3 3 π 3

Mehr

, r [0, 2], ϕ [0,π/2], ϑ [0,π/6]. x 3. x 2 2 x 2 1. F(x) = x 2 3

, r [0, 2], ϕ [0,π/2], ϑ [0,π/6]. x 3. x 2 2 x 2 1. F(x) = x 2 3 Prof. Dr. Eck Höhere Mathematik 3 9.3.9 Aufgabe ( Punkte) Gegeben ist der Körper K mit der Parametrisierung x r cos ϕ cos ϑ K : x = Φ(r,ϕ,ϑ) = r sin ϕ cos ϑ, r [, ], ϕ [,π/], ϑ [,π/6]. x 3 r sin ϑ a) Berechnen

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt

Mehr

B. Lösungsskizzen zu den Übungsaufgaben

B. Lösungsskizzen zu den Übungsaufgaben B. Lösungsskizzen zu den Übungsaufgaben B.. Lösungen zum Kapitel B... Tutoraufgaben Lösungsskizze Wir gehen zuerst nach dem Lösungsverfahren vor. Schritt : Bestimmung der Lösung des homogenen DGL-Systems

Mehr

Analysis 2 - Übung 1

Analysis 2 - Übung 1 Analysis - Übung 1 Felix Knorr 8 März 014 4 Gegeben sei die Polynomfunktion f(x, y xy 10x Man bestimme die Gleichungen ihrer Schnittkurven mit den senkrechten Ebenen x x 0 bzw y y 0 sowie die Höhenlinien

Mehr

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen 6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher: Diskrete Zufallsvariablen,

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Differentialgleichungssysteme Marco Boßle Jörg Hörner Mathematik Online Frühjahr 20 PV-Kurs HM 3 DGlSysteme - Zusammenfassung Allgemeine Differentialgleichungssysteme.Ordnung

Mehr

KARLSRUHER INSTITUT FÜR TECHNOLOGIE Institut für Analysis

KARLSRUHER INSTITUT FÜR TECHNOLOGIE Institut für Analysis KARLSRUHER INSTITUT FÜR TECHNOLOGIE Institut für Analysis Höhere Mathematik III für die Fachrichtung Elektro- und Informationstechnik D. A MR Frühjahr 2014 T R, M.S. 06.03.2014 Bachelor-Modulprüfung Aufgabe

Mehr

Lösungen der Übungen zur Klausurvorbereitung

Lösungen der Übungen zur Klausurvorbereitung also sind die Eigenwerte Lösungen der Üungen zur Klausurvorereitung. WieetrachtendieMatrizenB = für R. a Manhat -essolltenaheliegen,nachderzweitenspaltezuentwickeln- p B λ = λ λ λ λ =, = λ λ λ+, λ, = ±

Mehr

Prof. Schneider Höhere Mathematik I/II Musterlösung A = x 1 = 6x 1 + x 3 x 2 = 2x 2 x 3 = x 1 + 6x 3

Prof. Schneider Höhere Mathematik I/II Musterlösung A = x 1 = 6x 1 + x 3 x 2 = 2x 2 x 3 = x 1 + 6x 3 Aufgabe ( Punkte) a) Bestimmen Sie die Eigenwerte und Eigenvektoren der Matrix 6 A = 6 b) Bestimmen Sie die allgemeine Lösung des Differentialgleichungssystems x = 6x + x 3 x = x x 3 = x + 6x 3 c) Bestimmen

Mehr

Probeklausur zu Mathematik 3 für Informatik Lösungshinweise (ohne Garantie auf Fehlefreiheit)

Probeklausur zu Mathematik 3 für Informatik Lösungshinweise (ohne Garantie auf Fehlefreiheit) Gunter Ochs 9. Juni 05 Probeklausur zu Mathematik für Informatik Lösungshinweise ohne Garantie auf Fehlefreiheit. Sei fx x x. a Bestimmen Sie den Grenzwert lim x fx. Da an der Stelle x Zähler Nenner Null

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik WS 03/04 Eppler, Richter, Scherfner, Seiler, Zorn 25.

Technische Universität Berlin Fakultät II Institut für Mathematik WS 03/04 Eppler, Richter, Scherfner, Seiler, Zorn 25. A Technische Universität Berlin Fakultät II Institut für Mathematik WS 3/4 Eppler, Richter, Scherfner, Seiler, Zorn 5. Februar 4 Februar Klausur (Rechenteil) Lösungen: Lineare Algebra für Ingenieure Name:.......................................

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

ist ein Eigenvektor der Matrix A = Ist λ der Eigenwert zum Eigenvektor x der Matrix A, so gilt dafür A x = λ x, also

ist ein Eigenvektor der Matrix A = Ist λ der Eigenwert zum Eigenvektor x der Matrix A, so gilt dafür A x = λ x, also 5. Juli Lösungshinweise Theorieteil Aufgabe : Der Vektor x = ist ein Eigenvektor der Matrix A = Bestimmen Sie den zum Eigenvektor x zugehörigen Eigenwert. 3 3 3 3 (Hinweis: Es ist nicht erforderlich, das

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 6. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 6. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 2 Höhere Mathematik II für die Fachrichtung Informatik Lösungsvorschläge zum 6. Übungsblatt Aufgabe 2

Mehr

Institut für Analysis SS 2015 PD Dr. Peer Christian Kunstmann Dipl.-Math. Leonid Chaichenets

Institut für Analysis SS 2015 PD Dr. Peer Christian Kunstmann Dipl.-Math. Leonid Chaichenets Institut für Analysis SS 25 PD Dr. Peer Christian Kunstmann 7.9.25 Dipl.-Math. Leonid Chaichenets Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge zur Bachelor-Modulprüfung Aufgabe :

Mehr

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren Aufgabe Gegeben seien die Punkte A(,,, B(,,, C(,,. (a Geben Sie die Hesse-Normalform der Ebene E, welche die drei Punkte A, B und C enthält, an. (b Bestimmen Sie den Abstand des Punktes P (,, 5 zur Ebene

Mehr

Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge. det

Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge. det UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Herbst 9.9.9 Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge Aufgabe

Mehr

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx Seite Aufgabe : a Berechnen Sie das Integral b Berechnen Sie das Integral +x x+x dx. π sin x dx. c Differenzieren Sie die Funktion ft = t e t s ds. Nur Leibniz-Formel a + x x + x dx = d dx lnx + x dx =

Mehr

y hom (x) = C e p(x) dx

y hom (x) = C e p(x) dx Gewöhnliche Differentialgleichungen F (x, y, y,..., y n ) = 0 Gleichung, die die Veränderliche x sowie die Funktion y = y(x) und ihre Ableitungen y,..., y n beinhaltet. Klassifiaktion: implizit F (...)

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Übungsaufgaben zur Linearen Algebra II. 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel.

Übungsaufgaben zur Linearen Algebra II. 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel. Blatt 1 21.4.97 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel. 3x 1 x 2 + 5x 3 = 1 x 1 + 2x 2 + x 3 = 1 2x 1 + 4x 2 + 3x 3 = 1 2.) Zeigen Sie: det 1 1 0 0.......... 0 1

Mehr

1. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13

1. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13 Prof. Dr. L. Schwachhöfer Dr. J. Horst Fakultät Mathematik TU Dortmund. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS /3 Keine Abgabe. Aufgabe Es seien die folgenden Vektorfelder in R 3

Mehr

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010 Aufgaben für die 4. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 4. Bestimmen Sie den Flächeninhalt der dreiblättrigen Kleeblattkurve γ für ein Kleeblatt. Die Polarkoordinaten-

Mehr

Name Vorname Fachrichtg. Matrikelnr. Punkte Klausur Aufgabe max. Punkte Punkte. Bitte beachten!

Name Vorname Fachrichtg. Matrikelnr. Punkte Klausur Aufgabe max. Punkte Punkte. Bitte beachten! Fakultät für Mathematik Institut für Algebra und Geometrie Prof. Dr. Martin Henk, Dr. Michael Höding Modulprüfung Mathematik III Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik,

Mehr

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit A Analysis, Woche 9 Mehrdimensionale Differentialrechnung I A 9. Differenzierbarkeit A3 =. (9.) Definition 9. Sei U R m offen, f : U R n eine Funktion und a R m. Die Funktion f heißt differenzierbar in

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

9. Lineare Gleichungssysteme

9. Lineare Gleichungssysteme 9. Lineare Gleichungssysteme. Aufgabe: estimmen Sie mit Hilfe des Gauß-Algorithmus alle Lösungen ~x = (x ; x ; x 3 ; x 4 ) T des Gleichungssystems 3x x + x 3 + x 4 = 4x + 8x 3 + x 4 = 3 x + x + 6x 3 x

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Gewöhnliche Differentialgleichungen Aufgaben für das Seminar und zum selbständigen Üben 22. Januar 2018 Vorbereitende Übungen Aufgabe 1: Bestimmen Sie die Isoklinen zu den folgenden Differentialgleichungen

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

Musterlösung Basisprüfung, Gruppe A Analysis I/II ) = 28π 6

Musterlösung Basisprüfung, Gruppe A Analysis I/II ) = 28π 6 Winter 8. Single Choice: 6J (a) Der Flächeninhalt einer Kreisscheibe mit Radius R ist gegeben durch πr. Aus Symmetriegründen ist der Flächeninhalt eines Kreisssektors mit 6 gegeben durch πr 6. Folglich

Mehr

Klausur. Wir wünschen Ihnen viel Erfolg! Klausur Mathematik für Informatiker und Softwaretechniker

Klausur. Wir wünschen Ihnen viel Erfolg! Klausur Mathematik für Informatiker und Softwaretechniker Apl. Prof. Dr. W.-P. Düll Fachbereich Mathematik Universität Stuttgart Klausur für Studierende der Fachrichtungen inf, swt Bitte unbedingt beachten: Bitte beschriften Sie jeden Ihrer Zettel mit Namen und

Mehr

Lineare Algebra II 5. Übungsblatt

Lineare Algebra II 5. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Modulprüfung

Höhere Mathematik II für die Fachrichtung Physik. Modulprüfung Institut für Analysis SS7 PD Dr. Peer Christian Kunstmann 8.9.7 Höhere Mathematik II für die Fachrichtung Physik Modulprüfung Aufgabe [5+5= Punkte] (a) Zeigen Sie, dass die Matrix α A α =, α. genau dann

Mehr

825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170 e 500 e 443 e 608 e. Zeichnen Sie das Box-Plot. Sind in dieser Stichprobe Ausreißer vorhanden?

825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170 e 500 e 443 e 608 e. Zeichnen Sie das Box-Plot. Sind in dieser Stichprobe Ausreißer vorhanden? 1. Aufgabe: Eine Bank will die jährliche Sparleistung eines bestimmten Kundenkreises untersuchen. Eine Stichprobe von 12 Kunden ergab folgende Werte: 825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170

Mehr

Serie 12 - Integrationstechniken

Serie 12 - Integrationstechniken Analysis D-BAUG Dr. Meike Akveld HS 5 Serie - Integrationstechniken. Berechnen Sie folgende Integrale: a e x cos(x dx Wir integrieren zwei Mal partiell, bis wir auf der rechten Seite wieder das Integral

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben. ( Punkte) a) Wir berechnen lim sin(x ) x 3 + 4x L Hôpital = lim x cos(x ) 3x + 8x = 4. b) Wir benutzen L Hôpital lim

Mehr

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R,

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R, B en Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R Berechnen Sie zur Abbildung f : R R, f(x, y) : x sin(xy) das totale Differenzial f df, die Jacobi-Matrix J f (x, y) und den Gradienten ( f)(x,

Mehr

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2)

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2) Prof. Hesse Höhere Mathematik I und II Musterlösung 7. 0. 0, 80min Aufgabe (3 Punkte) Zeigen Sie mit vollständiger Induktion: Für alle n N gilt n k= k k k(k + ) = n+ n +. Induktionsanfang: k= Induktionsschluss

Mehr

Systeme gewöhnlicher Di erentialgleichungen. Ordnung

Systeme gewöhnlicher Di erentialgleichungen. Ordnung Systeme gewöhnlicher Di erentialgleichungen. Ordnung Systeme. Ordnung De nition Für eine gegebene n n-matrix A(x) =(a ij (x)) n i,j=, deren Elemente Funktionen von x sind und einer gegebenen rechten Seite

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 009 Dienstag 3.6 $Id: quadrat.tex,v.4 009/06/3 4:55:47 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6.3 Quadratische Funktionen und die Hauptachsentransformation

Mehr

Kenngrößen von Zufallsvariablen

Kenngrößen von Zufallsvariablen Kenngrößen von Zufallsvariablen Die Wahrscheinlichkeitsverteilung kann durch die sogenannten Kenngrößen beschrieben werden, sie charakterisieren sozusagen die Verteilung. Der Erwartungswert Der Erwartungswert

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 15

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 15 D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 15 1. Der Wert einer Funktion f : R R fällt am schnellsten in die Richtung (a) (b) (c) der minimalen partiellen Ableitung. entgegengesetzt

Mehr

Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung. x = x 2 e x 1.

Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung. x = x 2 e x 1. Name: Matrikel-Nr.: 1 Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung R 3 R 2, x 1 f : x 1 + e x2 2 sin(x3 ) x = x 2 e x 1 (1 + x 2 1 + x, 2x 3 )

Mehr

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem Implizite Funktionen Ist für eine stetig differenzierbare Funktion f : R n R m R n f (x, y ) = (0,..., 0) t, det f x (x, y ) 0, so lässt sich das Gleichungssystem f k (x 1,..., x n, y 1,..., y m ) = 0,

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 15: Eigenwerte und -vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 5. November 2009) Diagonalisierbarkeit

Mehr

Prof. Steinwart Höhere Mathematik I/II Musterlösung A =

Prof. Steinwart Höhere Mathematik I/II Musterlösung A = Prof. Steinwart Höhere Mathematik I/II Musterlösung 7..7 Aufgabe ( Punkte) (a) Bestimmen Sie die Eigenwerte und Eigenräume der Matrix A mit 3 3 A = 3 Ist die Matrix A diagonalisierbar? (b) Die Matrix A

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

Klausur HM II/III F 2003 HM II/III : 1

Klausur HM II/III F 2003 HM II/III : 1 Klausur HM II/III F 3 HM II/III : Aufgabe : (7 Punkte) Untersuchen Sie die Funktion f : R R gegeben durch x 3 y 3 f(x, y) x + y sin, (x, y) (, ) x + y, (x, y) (, ) auf Stetigkeit und Differenzierbarkeit.

Mehr

Abitur 2009 Mathematik GK Stochastik Aufgabe C1

Abitur 2009 Mathematik GK Stochastik Aufgabe C1 Seite 1 Abiturloesung.de - Abituraufgaben Abitur 009 Mathematik GK Stochastik Aufgabe C1 Auf einem Spielbrett rollt eine Kugel vom Start bis in eines der Fächer F 1 bis F 5. An jeder Verzweigung rollt

Mehr

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 6. Juni 0 Prof. Dr. H. Brenner Mathematik für Anwender II Testklausur mit Lösungen Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Ein Skalarprodukt

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz WS 5/6 8..6 Höhere Mathematik II für die Fachrichtung Physik Bachelor-Modulprüfung Aufgabe

Mehr

Wahrscheinlichkeitstheorie und Statistik für Studierende des Maschinenbaus vom

Wahrscheinlichkeitstheorie und Statistik für Studierende des Maschinenbaus vom Institut für Stochastik WS 009/10 Karlsruher Institut für Technologie (KIT) Dr. B. Klar Klausur Wahrscheinlichkeitstheorie und Statistik für Studierende des Maschinenbaus vom 08.0.010 Musterlösungen Aufgabe

Mehr

Basisprüfung, Gruppe A Analysis I/II

Basisprüfung, Gruppe A Analysis I/II Offene Aufgaben. Jeder der folgenden sieben offenen Aufgaben ist eine einzelne thematisch verwandte Single Choice-Aufgabe vorangestellt. Beantworten Sie die Single Choice Aufgabe auf dem Antwortzettel.

Mehr

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie Institut für Elektrotechnik und Informationstechnik Aufgabensammlung zur Systemtheorie Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Balewski Dipl.-Ing. R. Besrat 05.04.2013 Übungsaufgaben zur Systemtheorie

Mehr

Musterlösungen zur Linearen Algebra II Übungsklausur

Musterlösungen zur Linearen Algebra II Übungsklausur Musterlösungen zur Linearen Algebra II Übungsklausur Aufgabe. Sei A R 3 3. Welche der folgenden Aussagen sind richtig? a Ist det(a =, dann ist A eine orthogonale Matrix. b Ist A eine orthogonale Matrix,

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Lineare Differentialgleichungen n-ter Ordnung

Lineare Differentialgleichungen n-ter Ordnung KAPITEL 5 Lineare Differentialgleichungen n-ter Ordnung 1 Veränderliche Koeffizienten Analog zu den linearen Dierentialgleichungen 2 Ordnung gilt: 75 76 5 LINEARE DIFFERENTIALGLEICHUNGEN n-ter ORDNUNG

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 3.9.5, min Aufgabe (8 Punkte) Gegeben ist der Körper K : {(x, y, z) R 3 x + 4y, z 3}. Berechnen Sie der Ausfluss von g : R 3 R 3 durch den Rand K mit g(x, y, z) (x

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 2 2. (Frühjahr 29, Thema 3, Aufgabe 3) Gegeben sei die reelle 3 3 Matrix 4 2 A = 2 7 2 R 3 3. 2 2 a)

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS /5 G. Bärwol, A. Gündel-vom-Hofe..5 Februar Klausur Analysis II für Ingenieurswissenschaften Lösungsskizze. Aufgabe 6Punkte Bestimmen

Mehr

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0. Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales

Mehr

Lösungen zu Übung(6)

Lösungen zu Übung(6) WirbetrachtendieDGLx t+xtcost Lösungen zu Übung6 a Die DGL ist explizit und linear mit konstanten Koeffizienten Ordnung bei eindimensionalem Konfigurationsraum inhomogen und wegen der von t abhängigen

Mehr

Lineare Algebra II Lösungen der Klausur

Lineare Algebra II Lösungen der Klausur Prof Dr K Doerk 673 Jens Mandavid Christian Sevenheck Lineare Algebra II Lösungen der Klausur (a Diese Aussage ist richtig, sie stimmt nämlich für k = Sei nämlich n N beliebig und bezeichne N die Menge

Mehr

Differentialgleichungen für Ingenieure Lösung Klausur Juli

Differentialgleichungen für Ingenieure Lösung Klausur Juli Technische Universität Berlin Fakultät II Institut für Mathematik SS 0 Dozentin Dr Penn-Karras Assistentin Dr C Papenfuß Differentialgleichungen für Ingenieure Lösung Klausur Juli Rechenteil Aufgabe 8

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

Ordnen Sie die Bilder den zugehörigen Funktionen z = f(x, y) zu:

Ordnen Sie die Bilder den zugehörigen Funktionen z = f(x, y) zu: 6. Februar 2012 Lösungshinweise Theorieteil Aufgabe 1: Die folgenden Bilder zeigen drei Niveaumengen N 0 {(x, y) R 2 : f(x, y) 0}: Ordnen Sie die Bilder den zugehörigen Funktionen z f(x, y) zu: (a) z (x

Mehr

Viel Erfolg! a) Wie groß ist die Wahrscheinlichkeit, dass eine beliebig ausgewählte Glühbirne dieser Firma mehr als 1000 Stunden brennt?

Viel Erfolg! a) Wie groß ist die Wahrscheinlichkeit, dass eine beliebig ausgewählte Glühbirne dieser Firma mehr als 1000 Stunden brennt? Hinweis: Auf dieser Klausur können bis zu 8 Punkte erreicht werden. Die Bearbeitungszeit beträgt 2 Minuten. Verlangt und gewertet werden alle Aufgaben. Bearbeitungen mit Bleistift oder Rotstift sind nicht

Mehr

1, 0 < y < x 2 0, sonst f besitzt alle Richtungsableitungen in (0, 0), ist aber unstetig dort

1, 0 < y < x 2 0, sonst f besitzt alle Richtungsableitungen in (0, 0), ist aber unstetig dort ANALYSIS II Lösung der. Klausur vom /7 (von D. Reding Aufgabe (a Richtig sind die Aussagen (iii, (iv und (vii. (b Gegenbeispiel zu (i: f: R R, (x, y x ist stetig, aber nicht partiell differenzierbar nach

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Winter 6 Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT. Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in das entsprechende

Mehr

Lineare Algebra für Ingenieure

Lineare Algebra für Ingenieure TECHNISCHE UNIVERSITÄT BERLIN SS 4 Fakultät II - Mathematik J Liesen/F Lutz/R Seiler Lineare Algebra für Ingenieure Lösungen zur Juli-Klausur Stand: 4 September 4 Rechenteil Aufgabe (8 Punkte Berechnen

Mehr

Lösungsskizzen zur Nachklausur

Lösungsskizzen zur Nachklausur sskizzen zur Nachklausur Mathematik II für die Fachrichtungen Biologie und Chemie Sommersemester 22 Aufgabe Es seien die folgenden Vektoren 2 v = 2, v 2 = und v 3 = 2 im R 3 gegeben. (a) Zeigen Sie, dass

Mehr

Höhere Mathematik III für Physik

Höhere Mathematik III für Physik 8..8 PD Dr. Peer Kunstmann M.Sc. Michael Ullmann Höhere Mathematik III für Physik 5. Übungsblatt - Lösungsvorschläge Aufgabe (Homogene Anfangswertprobleme) Lösen Sie erst die folgenden Differentialgleichungssysteme

Mehr

cos(x)cos(2x)cos(4x) cos(2 n x) = sin(2n+1 x) 2 n+1 sin(x) = sin(2n+2 x) 2 n+2 sin(x).

cos(x)cos(2x)cos(4x) cos(2 n x) = sin(2n+1 x) 2 n+1 sin(x) = sin(2n+2 x) 2 n+2 sin(x). Stroppel/Sändig Musterlösung 8. 3., min Aufgabe 5 Punkte Beweisen Sie für alle x R {zπ z Z} die Formel für n N mit Hilfe der vollständigen Induktion. cosxcosxcosx cos n x = sinn+ x n+ sinx Dabei dürfen

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

MATHEMATIK III für Bauingenieure (Fernstudium und Wiederholer)

MATHEMATIK III für Bauingenieure (Fernstudium und Wiederholer) TU DRESDEN Dresden, 16. Februar 4 Fachrichtung Mathematik / Institut für Analysis Doz.Dr.rer.nat.habil. N. Koksch Prüfungs-Klausur MATHEMATIK III für Bauingenieure (Fernstudium und Wiederholer) Name: Matrikel-Nr.:

Mehr

(a) Wir berechnen diesen Grenzwert durch zweimaliges Anwenden der Regel von l Hospital: Es gilt sowohl lim1 x2. = lim

(a) Wir berechnen diesen Grenzwert durch zweimaliges Anwenden der Regel von l Hospital: Es gilt sowohl lim1 x2. = lim Stroppel Musterlösung 7..7, 8min Aufgabe 4 Punkte) Bestimmen Sie die folgenden Grenzwerte. a) lim b) lim x cosx) xsinx) ) tanx) x a) Wir berechnen diesen Grenzwert durch zweimaliges Anwenden der Regel

Mehr

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Sommer 4 Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT. [ Punkte] Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in

Mehr

BASISPRÜFUNG MATHEMATIK I UND II

BASISPRÜFUNG MATHEMATIK I UND II ETH Zürich Sommer 015 Dr. Ana Cannas BASISPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften 1. Sei a) Ist das System lösbar? b) Lösen Sie das System

Mehr

Probeklausur zu Mathematik 3 für Informatik

Probeklausur zu Mathematik 3 für Informatik Gunter Ochs Juli 0 Probeklausur zu Mathematik für Informatik Lösungshinweise wie immel ohne Galantie auf Fehreleiheit Sei f ln a Berechnen Sie die und die Ableitung f und f Mit der Produktregel erhält

Mehr

1. Aufgabe 11 Punkte. Musterlösung DGL f. Ing., 10. April Aus

1. Aufgabe 11 Punkte. Musterlösung DGL f. Ing., 10. April Aus Musterlösung DGL f. Ing., 0. April 204. Aufgabe Punkte Aus 2 λ 0 λ 0 = 0 2 λ = 0 = (2 λ)( λ) 2 ( λ)( ) = (2 λ)λ 2 λ = λ((2 λ)λ ) = λ(2λ λ 2 ) = λ( 2λ+λ 2 +) = λ(λ ) 2 ergeben sich der der einfache Eigenwert

Mehr

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte Universität München 22. Juli 29 Topologie und Differentialrechnung mehrerer Veränderlicher, SS 29 Modulprüfung/Abschlussklausur Name: Aufgabe 2 3 4 Punkte Gesamtpunktzahl: Gesamturteil: Schreiben Sie unbedingt

Mehr

Fachhochschule München Fachbereich 03 FA WS 2006/07. Diplomvorprüfung in Mathematik I (Lineare Algebra) Fahrzeugtechnik

Fachhochschule München Fachbereich 03 FA WS 2006/07. Diplomvorprüfung in Mathematik I (Lineare Algebra) Fahrzeugtechnik 1 Fachhochschule München Fachbereich 03 FA WS 006/07 Diplomvorprüfung in Mathematik I (Lineare Algebra) Fahrzeugtechnik Arbeitszeit: Hilfsmittel: Aufgabensteller: 90 Minuten Formelsammlung, Skripten, Bücher,

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. D. Castrigiano Dr. M. Prähofer Zentralübung 63. Die multinomische Formel TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Man zeige für x R n, k N 0 Mathematik 3 für Physik (Analysis http://www-hm.ma.tum.de/ss0/ph/

Mehr

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min Aufgabe (9 Punkte) Es sei die Fläche S R 3 gegeben durch S : { } (x, y, z) R 3 : 4z x + y 4, z. (a) ( Punkte) Geben Sie eine Parametrisierung für S an. (b) (4 Punkte) Berechnen Sie den Flächeninhalt von

Mehr

Übungsklausur 2 Lineare Algebra 2

Übungsklausur 2 Lineare Algebra 2 GRUPPE A: Übungsklausur Lineare Algebra 8. Juni 4 MUSTERLÖSUNGEN Aufgabe Lösen Sie das folgende System linearer Differentialgleichungen f 5 8 f x) = 7 f f x) f x) 4 6 f x) mit Anfangsbedingungen f ) f

Mehr

Prof. Steinwart Höhere Mathematik I/II Musterlösung A =

Prof. Steinwart Höhere Mathematik I/II Musterlösung A = Prof. Steinwart Höhere Mathematik I/II Musterlösung 9.8.6 Aufgabe Punkte a Berechnen Sie die Eigenwerte der folgenden Matrix: A 3 b Es sei 4 A. 8 5 Bestimmen Sie P, P M, und eine Diagonalmatrix D M, so,

Mehr

Lineare Algebra II 9. Übungsblatt

Lineare Algebra II 9. Übungsblatt Lineare Algebra II 9. Übungsblatt Fachbereich Mathematik SS Prof. Dr. Kollross 5./6. Juni Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Minitest: ohne Benutzung des Skripts und innerhalb von Minuten!)

Mehr

+ 2 F2 (u) X 1 F1 (u)) Der Koeffizient der unteren Tail-Abhängigkeit von (X 1,X 2 ) T wird folgendermaßen definiert:

+ 2 F2 (u) X 1 F1 (u)) Der Koeffizient der unteren Tail-Abhängigkeit von (X 1,X 2 ) T wird folgendermaßen definiert: Tail Abhängigkeit Definition 12 Sei (X 1,X 2 ) T ein Zufallsvektor mit Randverteilungen F 1 und F 2. Der Koeffizient der oberen Tail-Abhängigkeit von (X 1,X 2 ) T wird folgendermaßen definiert: λ U (X

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr