Seminararbeit zum Thema: Die Rechenmaschine von Gottfried Wilhelm Leibniz

Größe: px
Ab Seite anzeigen:

Download "Seminararbeit zum Thema: Die Rechenmaschine von Gottfried Wilhelm Leibniz"

Transkript

1 Seminararbeit zum Thema: Die Rechenmaschine von Gottfried Wilhelm Leibniz Vorgelegt bei: Prof. K.D. Graf Veranstaltung: Hauptseminar Didaktik der Informatik Autor : Torsten Brandes Matrikel Nr.: Fächerkombination: Mathematik und Informatik Berlin, den

2 In Mathematics und Mechanics habe ich einige Dinge erfunden, die in praxi vitae von nicht geringer importanz zu achten, und erstlich in Arithmeticis eine Maschine, so ich eine Lebendige Rechenbanck nenne, dieweil dadurch zu wege gebracht wird, dass alle Zahlen sich selbst rechnen, addiren, subtrahiren multipliciren dividieren

3 Einleitung Dem großen deutschen Universalgelehrten Gottfried Wilhelm Leibniz verdanken wir nicht nur die Integral- und Differentialrechnung, das Determinantenkalkül oder die Infinitesimalrechnung, sondern auch die Erfindung der ersten mechanischen Rechenmaschine, die in der Lage war, alle vier Grundrechenarten automatisch auszuführen. Da diese Maschine zu den Vorläufern des modernen Computers zählt, ist es vielleicht auch sinnvoll, in der Schule am Rande auf diese und andere Rechenmaschinen einzugehen. Dabei sollte jedoch meines Erachtens nicht eine bestimmte Maschine in allen Einzelheiten im Vordergrund stehen. Vielmehr sollte die grundsätzliche Funktionsweise eines solchen Gerätes vermittelt werden. Dabei können auch Parallelen zur Funktionsweise moderner Rechenwerke in Computern aufgezeigt werden. 1. Von der Sache und den verwendeten Begriffen Allgemeines zu mechanischen Rechenmaschinen Eine mechanische Rechenmaschine (Addiermaschine) besteht aus einem Zählwerk (auch Resultatwerk genannt) und einem Einstellwerk. Abb.: 1: Schematische Darstellung zweier Stellen eines Zählwerkes Ziffern werden auf so genannte Zählräder abgebildet. Jedes Zählrad repräsentiert dabei eine Ziffer. Durch Drehung in positive Richtung kann addiert, durch Drehung in negative Richtung kann subtrahiert werden. Wird die Kapazität einer Zählstelle über- oder unterschritten, tritt ein Übertrag auf (Zehnerübertrag im Dezimalsystem). Der Übertrag muss an die nächst höhere Stelle weitergegeben werden. Die Grundaufgabe der Rechenmaschinenerfindung ist also die Schaffung einer in beiden Drehrichtungen, d.h. umkehrbar und sicher funktionierenden, automatischen Zehnerübertragung. Dies kann mit Hilfe eines so genannten Einzahnes realisiert werden, der beim Übergang von neun nach null das links gelegene Zählrad um eine Einheit weiter dreht.

4 Abb.: 2: Zehnerübertrag zwischen zwei Stellen Jetzt benötigt man noch einen Mechanismus zum Einstellen des Zählwerkes, das Einstellwerk. Abb.: 3: Zwei Stellen einer Addiermaschine Nun haben wir also die Funktionsweise einer einfachen Addiermaschine nachvollzogen.

5 2. Rechenmaschinen vor und nach Leibniz 1623 entwickelte Wilhelm Schickard eine Rechenmaschine für die vier Grundrechenarten, mit der Berechnungen astronomischer Tafeln und Logarithmen vorgenommen wurden (unter anderem nutzte Kepler das Gerät). Sie war die erste urkundlich erwähnte Rechenmaschine. Multiplikation und Division beruhten auf dem Prinzip der von Napier erfundenen Rechenstäbchen, die auf Zylindern aufgebracht waren. Zwischen den Zylindern und dem Addierwerk bestand keine Verbindung. Man kann also nicht im eigentlichen Sinne von einer Rechenmaschine für die vier Grundrechenarten sprechen. Das Original der Maschine wurde im 30jährigen Krieg zerstört. Mit Hilfe eines Briefes von Schickardt, das eine Skizze enthielt war es jedoch möglich, sie zu rekonstruieren. Abb.4: Nachbau der Rechenuhr von Schickard Von 1641 stammt die von Blaise Pascal gebaute Addiermaschine. Pascals Vater war Steuereintreiber und sollte mit der Maschine bei seinen Berechnungen unterstützt werden. Die Übertragsrechnung war nicht umkehrbar, so dass die Subtraktionen mit Komplementzahlen ausgeführt werden musste. Beispiel: 88 52=36 Rechne: = 135 (maschinell) subtrahiere 100: 35 addiere 1: 36 funktioniert, weil: = 88 + (99 52) 99 =36

6 Abb.: 5: Pascals Rechenmaschine In die Zeit von ist die vier Spezies Rechenmaschine (Spezies lat. Grundrechenart) von Leibniz einzuordnen um die es im nächsten Kapitel gehen wird. Sie funktionierte nur eingeschränkt, ist jedoch wegen ihrer revolutionären Technik (Einsatz der von Leibniz erfundenen Staffelwalze) von Bedeutung gelang es Philipp Matthäus Hahn ( ), einem schwäbischen Pfarrer und Uhrmacher, eine Rechenmaschine zu entwickeln, die erstmals zuverlässig arbeitete. Sie verwendete Leibniz Staffelwalzentechnik, war jedoch sehr viel einfacher konstruiert. Der Preis war beachtlich. Abb.: 6: Rechenmaschine von Hahn

7 3. Die Rechenmaschine von Leibniz Die Pascalsche Maschine ist immerhin ein Probestück des glücklichsten Genies, aber da sie nur Addition und Subtraktion erleichtert, deren Schwierigkeit ohnehin nicht so groß ist, aber die Multiplikation und Division der früheren Rechnung überläßt, so hat sie sich mehr durch ihre Feinheit, bei Neugierigen als durch praktischen Nutzen bei ernst beschäftigten Leuten empfohlen. Leibniz begann etwa 1670 sich mit dem Bau einer Rechenmaschine zu befassen. Sein Ziel war es, auch Multiplikation und Division vollständig zu automatisieren. Dass ihm dies nicht vollständig gelang, ist der mangelnden Fertigkeit der damaligen Handwerker geschuldet. Leibniz ging von der üblichen schriftlichen Berechnung im Dezimalsystem aus. Es gab mehrere (vier?) Maschinen. Eine (die letzte, Beginn ca. 1693) ist im Original und in mehreren Nachbauten erhalten. Die Entstehung des Gerätes ist dabei als Prozess zu betrachten. So stellte Leibniz bereits 1673 ein hölzernes Modell während einer Sitzung der Royal Society vor. Wichtiges Bauteil der Maschine ist die von Leibniz erfundene Staffelwalze, eine Anordnung von achsenparallelen Zahnrippen gestaffelter Länge. Je nach Position des zweiten verschiebbaren Zahnrades wird bei einer Umdrehung der Staffelwalze dieses um null bis neun Zähne weitergedreht. Abb. 7: Staffelwalze

8 Abb. 8: Nachbau der Vier Spezies Rechenmaschine von Leibniz Abb. 9: Original der Vier Spezies Rechenmaschine von Leibniz

9 3.1 Funktionsweise der Rechenmaschine: Abb. 10: schematische Darstellung, Zeichnung: W. Jordan H Handkurbel K Kurbel zur Stellenverschiebung Umdrehungswerk Die Maschine besteht aus einem Einstellwerk, das verschiebbar gelagert ist, einem Resultatwerk und einem Umdrehungszähler, der die für die Multiplikation benötigten Additionen zählt. Durch Drehung der Handkurbel H wird die im Einstellwerk befindliche Zahl in das Resultatwerk hineinaddiert. Das Einstellen einer Zahl a in den nur einstellig ausgeführten Umdrehungszähler bewirkt eine a malige Addition der im Einstellwerk gespeicherten Zahl in das Resultatwerk, also die Multiplikation dieser Zahl mit a. Addition: Die Addition wird in zwei Hauptphasen (Takte) aufgeteilt. 1. Addition ziffernweise, dabei Speicherung der Zehnerüberträge durch Betätigung eines jeder Ziffernstelle zugeordneten Speicherelements (Rädchen) 2. Hinzufügen der gespeicherten Überträge zu den zuvor erhaltenen Zwischensummen Dazu ein Beispiel:

10 SWi = Staffelwalzen, unwirksame Zahnrippen gestrichelt, wirkend sind SW3 = 2, SW2 = 5, SW1 = 4 Sj = Summenrädchen Ai = Ablesestelle Üi = Übertrags(fünfhorn)speicher (im Bild: Ü3 = Ü2 = 0, Ü1 = l) Ei = mit Si verbundene Einzähne, schalten beim Übergang von Si = 9 auf Si = 0 den Übertragsspeicher auf Üi = l AÜi = Antrieb zur Weiterschaltung der Überträge Üi ZWi = Zwischenräder zur Übernahme von Überträgen aus Üi-1 in Si Hi = System gestaffelter Antriebshebel zur aufeinander folgenden Abarbeitung aufgetretener Überträge Zi = Kette von miteinander kämmenden Zahnrädern der Übertragung der Kurbel

11 Zu dem obigen Schaubild schreibt Lehmann: Der Mechanismus wir durch die Kurbel K und die damit gekoppelten Zahnräder Z 1, Z 2,Z 3, bewegt. In der ersten Phase der Addition haben die Staffelwalzen SW 3, SW 2, SW 1, (eingestellt ist 254, nicht wirkende Zahnrippen gestrichelt) die Summenrädchen S 3, S 2, S 1 auf die Zwischensumme 692 weitergedreht. Zur Speicherung der Überträge dienen jeweils sogenannte Fünfhörner Ü 3,Ü 2,Ü 1 ; der Eintrag in Ü i wird beim Übergang der zugehörigen Summenziffer S i von9auf0durch den damit verbundenen Einzahn E i bewirkt. Im Bild stehen 0 = Ü 3 =Ü 2 in der Grundstellung, während Ü 1 = 1 durch E 1 zur Speicherung des Übertrags um 18 bewegt wurde. In der anschließenden zweiten Phase der Addition kommen die mit dem Antrieb K verbundenen Hebel H 1, H 2, H 3 zeitlich nacheinander zur Wirkung. Sofern ein Übertrag Ü i = 1 ist, schaltet H i mittels der Verbindungskette H i -AÜ i =Ü i Zw i+1 = S 1 i+1 das folgende Summenrädchen wegen der gewählten Hebelverhältnisse um eine Einheit weiter. Dabei kann in der damit erreichten Stelle ein neuer (sekundärer) Übertrag auftreten, der bei richtiger Staffelung der Hebel H i im nächsten Takt analog verarbeitet wird. Im Bild wird S 2 = 9 durch Ü 1 = 1 auf 0 gestellt, so dass E 2 den Übertrag Ü 2 = 1 einschaltet, den H 2 danach über H 2 AÜ 2 = Ü 2 ZW 3 = S 3 weiterleitet. Für die Subtraktion musste lediglich die Drehrichtung der Kurbel umgedreht werden. Die Multiplikation wollen wir uns an einem Beispiel veranschaulichen: *75 1. Eingabe der Zahl in das Einstellwerk 2. Eingabe der fünf am Umdrehungszähler 3. Drehung der Handkurbel H. Im Resultatwerk wird die Zahl sichtbar. 4. Drehung der Kurbel K. Das Einstellwerk wird um eine Stelle nach links verschoben. 5. Eingabe der sieben am Umdrehungszähler. 6. Drehung der Handkurbel H. Im Resultatwerk wird die Zahl sichtbar. 1 Ein - kennzeichnet Eingriffe, = eine gemeinsame Achse.

12 4. Versuch einer dualen Maschine Eine Büchse soll so mit Löchern versehen werden, dass sie geöffnet und geschlossen werden können. Sie sei offen an den Stellen, die 1 entsprechen und bleibe geschlossen an den Stellen, die 0 entsprechen. Durch die offenen Stellen lasse sie kleine Würfel oder Kugeln in kleine Rinnen fallen, durch die anderen nichts (1679) In einem seiner zahlreichen Briefe beschrieb Leibniz den Aufbau einer möglichen dualen Rechenmaschine. Die Idee hatte er jedoch, als er die Entwicklung der dezimalen Maschine schon vorangetrieben hatte. Deshalb wurde die Maschine nie gebaut. Subtraktion und Division hätten nur im Komplement ausgeführt werden können. Das Hauptproblem war natürlich, dass die Menschen an das Dezimalsystem gewöhnt waren.

Die Entwicklung der Rechenmaschinen von den Anfängen bis zur Gegenwart

Die Entwicklung der Rechenmaschinen von den Anfängen bis zur Gegenwart Die Entwicklung der Rechenmaschinen von den Anfängen bis zur Gegenwart erstellt von Ronny Krüger im SS 2003 Die Antike Rechnen (Zahlenrechnen) galt in der Antike als unwürdig und wurde den Sklaven überlassen.

Mehr

Die Geschichte der Taschenrechner

Die Geschichte der Taschenrechner Kevin 19. März 2009 Übersicht Damals Heute Zukunft Anwendung des Taschenrechners in der Schule Inhalt Damals Entwicklung der Zahlensysteme Abakus und Rechenschieber Mechanische Addierer Die Vier-Spezies-Maschine

Mehr

Im Original veränderbare Word-Dateien

Im Original veränderbare Word-Dateien Binärsystem Im Original veränderbare Word-Dateien Prinzipien der Datenverarbeitung Wie du weißt, führen wir normalerweise Berechnungen mit dem Dezimalsystem durch. Das Dezimalsystem verwendet die Grundzahl

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Geschichte und Einteilung der Informatik 01101101 01011001 11010011 10011000 00000011 00011100 01111111 11111111 00110100 00101110 11101110 01110010 10011101 00111010 2 Der

Mehr

Historische Multiplizierhilfen aus 9 Jahrhunderten Notizen für den Vortrag (gekürzt) 16. 7. 2012 Stephan Weiss

Historische Multiplizierhilfen aus 9 Jahrhunderten Notizen für den Vortrag (gekürzt) 16. 7. 2012 Stephan Weiss 1 Historische Multiplizierhilfen aus 9 Jahrhunderten Notizen für den Vortrag (gekürzt) 16. 7. 2012 Stephan Weiss 4 Grundrechenarten für das Multiplizieren wurde die grösste Zahl von Rechenhilfen erfunden

Mehr

GESCHICHTE DER COMPUTERTECHNIK

GESCHICHTE DER COMPUTERTECHNIK GESCHICHTE DER COMPUTERTECHNIK Rebekka Mönch Projekt ://reisefieber WS 2005/06 Bauhaus-Universität Weimar Ich glaube, dass es auf der Welt einen Bedarf von vielleicht fünf Computern geben wird. Künftige

Mehr

Enterprise Computing Einführung in das Betriebssystem z/os. Prof. Dr. Martin Bogdan Prof. Dr.-Ing. Wilhelm G. Spruth WS 2012/13

Enterprise Computing Einführung in das Betriebssystem z/os. Prof. Dr. Martin Bogdan Prof. Dr.-Ing. Wilhelm G. Spruth WS 2012/13 UNIVERSITÄT LEIPZIG Enterprise Computing Einführung in das Betriebssystem z/os Prof. Dr. Martin Bogdan Prof. Dr.-Ing. Wilhelm G. Spruth WS 2012/13 System z Hardware Teil 4 Weiterführende Information el0100

Mehr

Dualzahlen

Dualzahlen Dualzahlen Ein Schüler soll sich eine Zahl zwischen und 6 denken. Nun soll der Schüler seinen Zahl in folgenden Tabellen suchen und die Nummer der Tabelle nennen in welcher sich seine Zahl befindet. 7

Mehr

Black Box erklärt Zahlensysteme.

Black Box erklärt Zahlensysteme. Black Box erklärt Zahlensysteme. Jeder von uns benutzt aktiv mindestens zwei Zahlenssysteme, oftmals aber so selbstverständlich, dass viele aus dem Stegreif keines mit Namen nennen können. Im europäischen

Mehr

Zahlendarstellungen und Rechnerarithmetik*

Zahlendarstellungen und Rechnerarithmetik* Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien

Mehr

Funktionsmodell der mechanischen Multipliziermaschine erste Bauart von Eduard Selling (Deutschland, 1886/87)

Funktionsmodell der mechanischen Multipliziermaschine erste Bauart von Eduard Selling (Deutschland, 1886/87) 1 Stephan Weiss Funktionsmodell der mechanischen Multipliziermaschine erste Bauart von Eduard Selling (Deutschland, 1886/87) Vorbemerkungen zum Modell Das Modell entstand mit der Absicht, Aufbau und Wirkungsweise

Mehr

Der Mensch und seine Maschinen

Der Mensch und seine Maschinen Der Mensch und seine Maschinen von Andreas Dietrich HTWK-Leipzig (WS 05/06) Quelle: www.zib.de/zuse Inhalt 1. Vorwort 2. Chronologie 3. Die Zuse Z1 (Aufbau) 4. Die Zuse Z3 (emulierter Betrieb) 1. Vorwort

Mehr

Vom Kerbholz zur Curta

Vom Kerbholz zur Curta Vom Kerbholz zur Curta Die Geschichte der mechanischen Rechenhilfsmittel Mit Fleiß zusammengetragen und ans Licht gebracht von Jan Meyer. Vom Kerbholz zur Curta DIE ENTWICKLUNG DER ZAHLENSYSTEME 4 Kerbholz

Mehr

bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke

bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke Rechnerarithmetik Rechnerarithmetik 22 Prof. Dr. Rainer Manthey Informatik II Übersicht bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke in diesem

Mehr

1. Übung - Einführung/Rechnerarchitektur

1. Übung - Einführung/Rechnerarchitektur 1. Übung - Einführung/Rechnerarchitektur Informatik I für Verkehrsingenieure Aufgaben inkl. Beispiellösungen 1. Aufgabe: Was ist Hard- bzw. Software? a Computermaus b Betriebssystem c Drucker d Internetbrowser

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN Wir wollen nun die Rechengesetze der natürlichen Zahlen auf die Zahlenmenge der ganzen Zahlen erweitern und zwar so, dass sie zu keinem Widerspruch mit bisher geltenden

Mehr

Daten verarbeiten. Binärzahlen

Daten verarbeiten. Binärzahlen Daten verarbeiten Binärzahlen In Digitalrechnern werden (fast) ausschließlich nur Binärzahlen eingesetzt. Das Binärzahlensystem ist das Stellenwertsystem mit der geringsten Anzahl von Ziffern. Es kennt

Mehr

Fachbegriffe für die mechanischen Kleinbuchungsmaschinen

Fachbegriffe für die mechanischen Kleinbuchungsmaschinen Peter Haertel Fachbegriffe für die mechanischen Kleinbuchungsmaschinen Einführung: Unter Kleinbuchungsmaschinen sind nur solche Maschinen zu verstehen, die durch Weiterentwicklung serienmäßig gefertigter

Mehr

Informatik - Lehrgang 2000/2001 GRUNDLAGEN

Informatik - Lehrgang 2000/2001 GRUNDLAGEN Informatik - Lehrgang 2000/2001 GRUNDLAGEN Ein Überblick! Das Werden der Informatik! Daten! Technische Informatik Der von Neumann Computer Versuch einer Entmystifizierung 2 Grundlagen Micheuz Peter Das

Mehr

Geschichte des Computers. Die Geschichte des Computers

Geschichte des Computers. Die Geschichte des Computers Die Geschichte des Computers Die Entwicklung macht vor niemandem Halt! Woher kommen die Zahlen? Die ersten primitiven Zahlenzeichen entstanden ca. 30 000 Jahre v. Chr. Die ersten bekannten Schriftsysteme

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Grundlagen der Informatik Prof. Dr. Bernhard Schiefer bernhard.schiefer@fh-kl.de http://www.fh-kl.de/~schiefer Wesentliche Inhalte Einführung Rechnergrundlagen Grundlagen der Programmierung Kern imperativer

Mehr

Zahlensysteme. von Christian Bartl

Zahlensysteme. von Christian Bartl von Inhaltsverzeichnis Inhaltsverzeichnis... 2 1. Einleitung... 3 2. Umrechnungen... 3 2.1. Dezimalsystem Binärsystem... 3 2.2. Binärsystem Dezimalsystem... 3 2.3. Binärsystem Hexadezimalsystem... 3 2.4.

Mehr

1. Entwicklung der Datenverarbeitung

1. Entwicklung der Datenverarbeitung 1. Entwicklung der Datenverarbeitung 1.1. Vom Abakus zum Pentium Schon im Altertum war man bestrebt, sich Hilfsmittel zu schaffen, die das Zählen und Rechnen erleichterten. Formulierung mechanischer Abläufe

Mehr

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................

Mehr

= * 281 = : 25 = oder 7x (also 7*x) oder (2x + 3) *9 oder 2a + 7b (also 2*a+ 7*b)

= * 281 = : 25 = oder 7x (also 7*x) oder (2x + 3) *9 oder 2a + 7b (also 2*a+ 7*b) GLEICHUNGEN Gleichungslehre Bisher haben Sie Aufgaben kennen gelernt, bei denen eine Rechenoperation vorgegeben war und Sie das Ergebnis berechnen sollten. Nach dem Gleichheitszeichen war dann das Ergebnis

Mehr

Dr. Monika Meiler. Inhalt

Dr. Monika Meiler. Inhalt Inhalt 1 Vom Abakus bis zum Personal Computer... 1-2 1.1 Einleitung... 1-2 1.2 Geschichte der Informatik... 1-3 1.2.1 Rechenhilfsmittel... 1-3 1.2.2 Mechanische Rechenmaschinen... 1-3 1.2.3 0. Generation

Mehr

Protokoll zum Praktikum des Moduls Technische Informatik an der JLU Gießen

Protokoll zum Praktikum des Moduls Technische Informatik an der JLU Gießen Protokoll zum Praktikum des Moduls Technische Informatik an der JLU Gießen Technische Informatik Versuch 2 Julian Bergmann, Dennis Getzkow 8. Juni 203 Versuch 2 Einführung Im Versuch 2 sollte sich mit

Mehr

Leitung 1 Leitung 2 0 0 0 1 1 0 1 1

Leitung 1 Leitung 2 0 0 0 1 1 0 1 1 1 1 Vorbetrachtungen Wie könnte eine Codierung von Zeichen im Computer realisiert werden? Der Computer arbeitet mit elektrischem Strom, d. h. er kann lediglich zwischen den beiden Zuständen Strom an und

Mehr

Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem

Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem Negative Zahlen Negative Zahlen Ordne in einen Zahlenstrahl ein! 7;5; 3; 6 Das Dezimalsystem Zerlege in Stufen! Einer, Zehner, usw. a) 3.185.629 b) 24.045.376 c) 3.010.500.700 Das Dezimalsystem a) 3M 1HT

Mehr

Im Original veränderbare Word-Dateien

Im Original veränderbare Word-Dateien Das Von-Neumann-Prinzip Prinzipien der Datenverarbeitung Fast alle modernen Computer funktionieren nach dem Von- Neumann-Prinzip. Der Erfinder dieses Konzeptes John von Neumann (1903-1957) war ein in den

Mehr

Werkstatt Multiplikation Posten: 8-Bit Multiplikation. Informationsblatt für die Lehrkraft. 8-Bit Multiplikation

Werkstatt Multiplikation Posten: 8-Bit Multiplikation. Informationsblatt für die Lehrkraft. 8-Bit Multiplikation Informationsblatt für die Lehrkraft 8-Bit Multiplikation Informationsblatt für die Lehrkraft Thema: Schultyp: Vorkenntnisse: Bearbeitungsdauer: 8-Bit Multiplikation (im Binärsystem) Mittelschule, technische

Mehr

Binär- und Hexadezimal-Zahl Arithmetik.

Binär- und Hexadezimal-Zahl Arithmetik. Binär- und Hexadezimal-Zahl Arithmetik. Prof. Dr. Dörte Haftendorn, MuPAD 4, http://haftendorn.uni-lueneburg.de Aug.06 Automatische Übersetzung aus MuPAD 3.11, 24.04.02 Version vom 12.10.05 Web: http://haftendorn.uni-lueneburg.de

Mehr

1. Digitale Medien. 2. Webtechnologien. 3. Web 2.0, Semantic Web. 4. Wissensmanagement. 1. Methoden des Wissensmanagements 2.

1. Digitale Medien. 2. Webtechnologien. 3. Web 2.0, Semantic Web. 4. Wissensmanagement. 1. Methoden des Wissensmanagements 2. Überblick GRUNDKURS INFORMATIK 1 EINFÜHRUNG 1. Informatik Grundlagen: Informationsdarstellung, Information und Daten, Algorithmen, Problemlösung. 1. Digitale Medien 2. Webtechnologien 3. Web 2.0, Semantic

Mehr

Die Erfindung der ersten Computer und Vergleich der Intentionen der Erfinder

Die Erfindung der ersten Computer und Vergleich der Intentionen der Erfinder Die Erfindung der ersten Computer und Vergleich der Intentionen der Erfinder Konrad Zuse John Atanasoff John Mauchly Inwiefern ist Konrad Zuse der Erfinder des Computers? von Ivo Adrian Knabe 20. März

Mehr

5. bis 10. Klasse. Textaufgaben. Alle Themen Typische Aufgaben

5. bis 10. Klasse. Textaufgaben. Alle Themen Typische Aufgaben Mathematik 5. bis 10. Klasse 150 Textaufgaben Alle Themen Typische Aufgaben 5. bis 10. Klasse 1.3 Rechnen mit ganzen Zahlen 1 25 Erstelle zu den folgenden Zahlenrätseln zunächst einen Rechenausdruck und

Mehr

6. KLASSE MATHEMATIK GRUNDWISSEN

6. KLASSE MATHEMATIK GRUNDWISSEN 6. KLASSE MATHEMATIK GRUNDWISSEN Thema BRÜCHE Bruchteil - Man teilt das Ganze durch den Nenner und multipliziert das Ergebnis mit dem Zähler von 24 kg = (24 kg : 4) 2 = 6 kg 2 = 12 kg h = von 1 h = (1

Mehr

D a t e n. Der Begriff Daten bezeichnet automatisch bzw. elektronisch verarbeitbare Informationen (Einzahl: Datum, lat. dare..geben).

D a t e n. Der Begriff Daten bezeichnet automatisch bzw. elektronisch verarbeitbare Informationen (Einzahl: Datum, lat. dare..geben). D a t e n Der Begriff Daten bezeichnet automatisch bzw. elektronisch verarbeitbare Informationen (Einzahl: Datum, lat. dare..geben). Maschinell verarbeitbare Daten werden durch eine eindeutige Zeichenfolge

Mehr

Theoretische Informatik SS 04 Übung 1

Theoretische Informatik SS 04 Übung 1 Theoretische Informatik SS 04 Übung 1 Aufgabe 1 Es gibt verschiedene Möglichkeiten, eine natürliche Zahl n zu codieren. In der unären Codierung hat man nur ein Alphabet mit einem Zeichen - sagen wir die

Mehr

DEUTSCHE BUNDESBANK Seite 1 Z 10-8. Prüfzifferberechnungsmethoden zur Prüfung von Kontonummern auf ihre Richtigkeit (Stand: September 2015)

DEUTSCHE BUNDESBANK Seite 1 Z 10-8. Prüfzifferberechnungsmethoden zur Prüfung von Kontonummern auf ihre Richtigkeit (Stand: September 2015) DEUTSCHE BUNDESBANK Seite 1 Z 10-8 Prüfzifferberechnungsmethoden zur Prüfung von Kontonummern auf ihre Richtigkeit (Stand: September 2015) 00 Modulus 10, Gewichtung 2, 1, 2, 1, 2, 1, 2, 1, 2 Die Stellen

Mehr

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen:

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen: Zahlensysteme. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis darstellen: n n n n z a a... a a a Dabei sind die Koeffizienten a, a, a,... aus der

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Grundlagen der Informatik Teil I Definition, Geschichte und Teilgebiete der Informatik Seite 1 Wer steht da? M. Eng. Robert Maaßen ich@robertmaassen.de www.robertmaassen.de Studium: Informatik Vertiefungsrichtung

Mehr

Multiplikationstafeln

Multiplikationstafeln Multiplikationstafeln Rechenintensive Arbeiten in der Landesvermessung und Astronomie, sowie im Handel, machten es in früheren Jahrhunderten wünschenswert, höhere Rechenarten auf niedrigere zurück zu führen.

Mehr

Gedankengeschichte der Analogrechengeräte

Gedankengeschichte der Analogrechengeräte Gedankengeschichte der Informatik Gedankengeschichte der Analogrechengeräte Daniel Blum, Till Bovermann Ausarbeitung des Vortrags vom 11. Mai 2001 1 Begriffsbildung Neben digitalen von-neumann Rechnern

Mehr

Weiterbildung und Zusatzausbildung der PHZ Luzern Interessantes und Spannendes aus der Welt der Mathematik September 2006, Dieter Ortner

Weiterbildung und Zusatzausbildung der PHZ Luzern Interessantes und Spannendes aus der Welt der Mathematik September 2006, Dieter Ortner Weiterbildung und Zusatzausbildung der PHZ Luzern Interessantes und Spannendes aus der Welt der Mathematik September 2006, Dieter Ortner Rechengesetze 1. Rechengesetze für natürliche Zahlen Es geht um

Mehr

Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen

Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen Großübung 1: Zahlensysteme Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen Lehrender: Dr. Klaus Richter, Institut für Informatik; E-Mail: richter@informatik.tu-freiberg.de

Mehr

Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen

Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen Kantonale Fachschaft Mathematik Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen Zusammengestellt von der Fachschaft Mathematik der Kantonsschule Willisau Inhaltsverzeichnis A) Lernziele... 1

Mehr

Eine Logikschaltung zur Addition zweier Zahlen

Eine Logikschaltung zur Addition zweier Zahlen Eine Logikschaltung zur Addition zweier Zahlen Grundlegender Ansatz für die Umsetzung arithmetischer Operationen als elektronische Schaltung ist die Darstellung von Zahlen im Binärsystem. Eine Logikschaltung

Mehr

C:\WINNT\System32 ist der Pfad der zur Datei calc.exe führt. Diese Datei enthält das Rechner - Programm. Klicke jetzt auf Abbrechen.

C:\WINNT\System32 ist der Pfad der zur Datei calc.exe führt. Diese Datei enthält das Rechner - Programm. Klicke jetzt auf Abbrechen. . Das Programm- Icon Auf dem Desktop deines Computers siehst du Symbolbildchen (Icons), z.b. das Icon des Programms Rechner : Klicke mit der rechten Maustaste auf das Icon: Du siehst dann folgendes Bild:

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse Seite 1

Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse Seite 1 Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse Seite 1 1. Zählen, Mengen erfassen und Zahlen schreiben 1. Mengen erfassen 1 2. Mengen erfassen 2 3. Zähle die Kästchen 4. Zähle die Gegenstände 5. Zähle

Mehr

Informatik Mensch Gesellschaft. Historische Entwicklung der Informationstechnik (von Anfang bis Heute)

Informatik Mensch Gesellschaft. Historische Entwicklung der Informationstechnik (von Anfang bis Heute) Informatik Mensch Gesellschaft Historische Entwicklung der Informationstechnik (von Anfang bis Heute) Algorithmen-Automat Schritt-für-Schritt-Anleitung zum Lösen mathematischer Probleme kann immer wieder

Mehr

1 Einführung. 1.1 Was ist technische Informatik?

1 Einführung. 1.1 Was ist technische Informatik? 1 Einführung The first microprocessor only had hundred transistors. We are looking at something a million times that complex in the next generations a billion transistors. What that gives us in the way

Mehr

Ihre Matrikel Nummer: Ihre Unterschrift

Ihre Matrikel Nummer: Ihre Unterschrift Name, Vorname Ihre Matrikel Nummer: Ihre Unterschrift Ihre Klausur Informatik U2 SS 2010 am 30. Juli 2010 Dipl. Inform. (FH) Heidi HannaH Daudistel Bearbeitungszeit: 90 Minuten Die Klausur besteht aus

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Englische Division. ... und allgemeine Hinweise

Englische Division. ... und allgemeine Hinweise Das folgende Verfahren ist rechnerisch identisch mit dem Normalverfahren; es unterscheidet sich nur in der Schreibweise des Rechenschemas Alle Tipps und Anmerkungen, die über die Besonderheiten dieser

Mehr

Beispiellösungen zu Blatt 17

Beispiellösungen zu Blatt 17 aktualisiert4. April 2002 blattnr17 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Aufgabe 1 eispiellösungen zu latt 17 Frau Porta hat in ihren 1 Meter

Mehr

Informatik im Studiengang Allgemeiner Maschinenbau Sommersemester 2014

Informatik im Studiengang Allgemeiner Maschinenbau Sommersemester 2014 Informatik im Studiengang Allgemeiner Maschinenbau Sommersemester 2014 Prof. Dr.-Ing. habil. Peter Sobe Fakultät Informatik / Mathematik Zur Person: Prof. Dr.-Ing. habil. Peter Sobe Fakultät Informatik/Mathematik

Mehr

4.12 Elektromotor und Generator

4.12 Elektromotor und Generator 4.12 Elektromotor und Generator Elektromotoren und Generatoren gehören neben der Erfindung der Dampfmaschine zu den wohl größten Erfindungen der Menschheitsgeschichte. Die heutige elektrifizierte Welt

Mehr

Grundstrukturen: Speicherorganisation und Zahlenmengen

Grundstrukturen: Speicherorganisation und Zahlenmengen Zahlendarstellung Zahlen und ihre Darstellung in Digitalrechnern Grundstrukturen: Speicherorganisation und Zahlenmengen Linear organisierter Speicher zu einer Adresse gehört ein Speicher mit 3 Bit-Zellen

Mehr

Zahlensysteme Seite -1- Zahlensysteme

Zahlensysteme Seite -1- Zahlensysteme Zahlensysteme Seite -- Zahlensysteme Inhaltsverzeichnis Dezimalsystem... Binärsystem... Umrechnen Bin Dez...2 Umrechnung Dez Bin...2 Rechnen im Binärsystem Addition...3 Die negativen ganzen Zahlen im Binärsystem...4

Mehr

Repräsentation von Daten Binärcodierung ganzer Zahlen

Repräsentation von Daten Binärcodierung ganzer Zahlen Kapitel 3: Repräsentation von Daten Binärcodierung ganzer Zahlen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Repräsentation von Daten im Computer (dieses und nächstes

Mehr

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme Grundlagen der Informatik 2 Grundlagen der Digitaltechnik 1. Zahlensysteme Prof. Dr.-Ing. Jürgen Teich Dr.-Ing. Christian Haubelt Lehrstuhl für Hardware-Software Software-Co-Design Grundlagen der Digitaltechnik

Mehr

Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird.

Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird. Zahlensysteme Definition: Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird. In der Informatik spricht man auch von Stellenwertsystem,

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik

Mehr

Mikro-Controller-Pass 1

Mikro-Controller-Pass 1 MikroControllerPass Lernsysteme MC 805 Seite: (Selbststudium) Inhaltsverzeichnis Vorwort Seite 2 Addition Seite 3 Subtraktion Seite 4 Subtraktion durch Addition der Komplemente Dezimales Zahlensystem:Neunerkomplement

Mehr

4. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1964/1965 Aufgaben und Lösungen

4. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1964/1965 Aufgaben und Lösungen . Mathematik Olympiade Saison 196/1965 Aufgaben und Lösungen 1 OJM. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und grammatikalisch

Mehr

Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik

Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik Helmar Burkhart Departement Informatik Universität Basel Helmar.Burkhart@unibas.ch Helmar Burkhart Werkzeuge der Informatik Lektion 1:

Mehr

Geschichte der Informatik

Geschichte der Informatik Entwicklung von Informationstechnik und Durchdringung des Alltags seit der 2. Hälfte des 20 Jahrhunderts explosionsartig Informationsgesellschaft Zunehmende Bedeutung und Wert von Informationen Schnelle

Mehr

Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung

Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung Kapitel 2 Grundlegende Konzepte 1 2.1 Zahlensysteme Römisches System Grundziffern I 1 erhobener Zeigefinger V 5 Hand mit 5 Fingern X 10 steht für zwei Hände L 50 C 100 Centum heißt Hundert D 500 M 1000

Mehr

Versuch P1-63 Schaltlogik Vorbereitung

Versuch P1-63 Schaltlogik Vorbereitung Versuch P1-63 Schaltlogik Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 16. Januar 2012 1 Inhaltsverzeichnis Einführung 3 1 Grundschaltungen 3 1.1 AND.......................................

Mehr

1 Einführung. 1.1 Analog - Digital Unterscheidung

1 Einführung. 1.1 Analog - Digital Unterscheidung 1 Einführung Was ist eigentlich Digitaltechnik? Wird der Begriff Digitaltechnik getrennt, so ergeben sich die Worte DIGITAL und TECHNIK. Digital kommt von digitus (lat. der Finger) und deutet darauf hin,

Mehr

Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10

Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10 Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754 Berechnung von Gleitkommazahlen aus Dezimalzahlen Die wissenschaftliche Darstellung einer Zahl ist wie folgt definiert: n = f * 10 e. f ist

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 1. Semester ARBEITSBLATT 8 RECHNEN MIT POTENZEN. 1) Potenzen mit negativer Basis

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 1. Semester ARBEITSBLATT 8 RECHNEN MIT POTENZEN. 1) Potenzen mit negativer Basis ARBEITSBLATT 8 RECHNEN MIT POTENZEN ) Potenzen mit negativer Basis Zur Erinnerung: = = 6 Der Eponent gibt also an, wie oft die Basis mit sich selbst multipliziert werden muss. Die Basis muss natürlich

Mehr

Das Rechnermodell von John von Neumann

Das Rechnermodell von John von Neumann Das Rechnermodell von John von Neumann Historisches Die ersten mechanischen Rechenmaschinen wurden im 17. Jahhundert entworfen. Zu den Pionieren dieser Entwichlung zählen Wilhelm Schickard, Blaise Pascal

Mehr

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Berufsbildende Schule 11 der Region Hannover Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Das folgende Material soll Ihnen helfen sich einen Überblick

Mehr

Grundrechnungsarten mit Dezimalzahlen

Grundrechnungsarten mit Dezimalzahlen Grundrechnungsarten mit Dezimalzahlen Vorrangregeln Die Rechnungsarten zweiter Stufe haben Vorrang vor den Rechnungsarten erster Stufe. Man sagt: "Punktrechnung geht vor Strichrechnung" Treten in einer

Mehr

3 Berechnungen und Variablen

3 Berechnungen und Variablen 3 Berechnungen und Variablen Du hast Python installiert und weißt, wie man die Python-Shell startet. Jetzt kannst Du etwas damit machen. Wir fangen mit ein paar einfachen Berechnungen an und wenden uns

Mehr

27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln

27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln 27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln Autor Dirk Bongartz, RWTH Aachen Walter Unger, RWTH Aachen Wer wollte nicht schon mal eine Geheimnachricht übermitteln?

Mehr

3 Rechnen und Schaltnetze

3 Rechnen und Schaltnetze 3 Rechnen und Schaltnetze Arithmetik, Logik, Register Taschenrechner rste Prozessoren (z.b. Intel 4004) waren für reine Rechenaufgaben ausgelegt 4 4-Bit Register 4-Bit Datenbus 4 Kbyte Speicher 60000 Befehle/s

Mehr

2 Rechnen auf einem Computer

2 Rechnen auf einem Computer 2 Rechnen auf einem Computer 2.1 Binär, Dezimal und Hexadezimaldarstellung reeller Zahlen Jede positive reelle Zahl r besitzt eine Darstellung der Gestalt r = r n r n 1... r 1 r 0. r 1 r 2... (1) := (

Mehr

Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Bsp.: Ganzes: 20 Kästchen

Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Bsp.: Ganzes: 20 Kästchen Grundwissen Mathematik G8 6. Klasse Zahlen. Brüche.. Bruchteile und Bruchzahlen Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Ganzes: 0 Kästchen 6 6 graue Kästchen, also: 0

Mehr

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer?

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer? Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 26.11.2013

R. Brinkmann http://brinkmann-du.de Seite 1 26.11.2013 R. Brinkmann http://brinkmann-du.de Seite 1 26.11.2013 Was ist Technik? Technik ist ein Hilfsmittel für den Menschen zur Erleichterung der täglichen Arbeit. Das Zeitalter der Technik begann genau genommen

Mehr

Grundzüge der Informatik Zahlendarstellungen (7)

Grundzüge der Informatik Zahlendarstellungen (7) Grundzüge der Informatik Zahlendarstellungen (7) Sylvia Swoboda e0225646@student.tuwien.ac.at Überblick Konvertierung von ganzen Zahlen Konvertierung von Festkommazahlen Darstellung negativer Zahlen 1

Mehr

Versuch Nr. 8c Digitale Elektronik I

Versuch Nr. 8c Digitale Elektronik I Institut für ernphysik der Universität zu öln Praktikum M Versuch Nr. 8c Digitale Elektronik I Stand 14. Oktober 2010 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Einführung 2 1.1 Motivation....................................

Mehr

Herzlichen Glückwunsch!... 9

Herzlichen Glückwunsch!... 9 Inhalt Einführung Herzlichen Glückwunsch!...................... 9 Teil I Darwins Algorithmus 1. Geradewegs ins Chaos....................... 17 2. Was Darwin nicht wusste..................... 36 3. Die

Mehr

Mathematik-Dossier. Die lineare Funktion

Mathematik-Dossier. Die lineare Funktion Name: Mathematik-Dossier Die lineare Funktion Inhalt: Lineare Funktion Lösen von Gleichungssystemen und schneiden von Geraden Verwendung: Dieses Dossier dient der Repetition und Festigung innerhalb der

Mehr

Einführung in die Programmierung

Einführung in die Programmierung Technische Universität Carolo Wilhelmina zu Brauschweig Institut für rechnergestützte Modellierung im Bauingenierwesen Prof. Dr.-Ing. habil. Manfred Krafczyk Pockelsstraße 3, 38106 Braunschweig http://www.irmb.tu-bs.de

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 4. Klasse

Lerninhalte ALFONS Lernwelt Mathematik 4. Klasse Seite 1 Turmzimmer 1: Zahlenstrahl 1. Zehnerschritte bis 1000: Wie heißen die Zahlen? 7. Hunderterschritte bis 10000: Wo ist die Zahl? 2. Zehnerschritte bis 1000: Von wo bis wo? 8. Hunderterschritte bis

Mehr

Daten, Informationen, Kodierung. Binärkodierung

Daten, Informationen, Kodierung. Binärkodierung Binärkodierung Besondere Bedeutung der Binärkodierung in der Informatik Abbildung auf Alphabet mit zwei Zeichen, in der Regel B = {0, 1} Entspricht den zwei möglichen Schaltzuständen in der Elektronik:

Mehr

Zahlensysteme: Oktal- und Hexadezimalsystem

Zahlensysteme: Oktal- und Hexadezimalsystem 20 Brückenkurs Die gebräuchlichste Bitfolge umfasst 8 Bits, sie deckt also 2 8 =256 Möglichkeiten ab, und wird ein Byte genannt. Zwei Bytes, also 16 Bits, bilden ein Wort, und 4 Bytes, also 32 Bits, formen

Mehr

Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen

Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen Rationale Zahlen Vergleichen und Ordnen rationaler Zahlen Von zwei rationalen Zahlen ist die die kleinere Zahl, die auf der Zahlengeraden weiter links liegt.. Setze das richtige Zeichen. a) -3 4 b) - -3

Mehr

2 Darstellung von Zahlen und Zeichen

2 Darstellung von Zahlen und Zeichen 2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f

Mehr

Modul 114. Zahlensysteme

Modul 114. Zahlensysteme Modul 114 Modulbezeichnung: Modul 114 Kompetenzfeld: Codierungs-, Kompressions- und Verschlüsselungsverfahren einsetzen 1. Codierungen von Daten situationsbezogen auswählen und einsetzen. Aufzeigen, welche

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer

Mehr

Grundwissen Mathematik 6. Dieser Grundwissenskatalog gehört: Name: Klasse:

Grundwissen Mathematik 6. Dieser Grundwissenskatalog gehört: Name: Klasse: Grundwissen Mathematik 6 Dieser Grundwissenskatalog gehört: Name: Klasse: Inhaltsverzeichnis Zahlen 1. Brüche 1.1 Bruchteile 1.2 Brüche als Werte von Quotienten 1.3 Bruchzahlen 1.4 Anordnung der Bruchzahlen

Mehr

Teilbarkeit von natürlichen Zahlen

Teilbarkeit von natürlichen Zahlen Teilbarkeit von natürlichen Zahlen Teilbarkeitsregeln: Die Teilbarkeitsregeln beruhen alle darauf, dass man von einer Zahl einen grossen Teil wegschneiden kann, von dem man weiss, dass er sicher durch

Mehr