V8: Wellen in Plasmen

Größe: px
Ab Seite anzeigen:

Download "V8: Wellen in Plasmen"

Transkript

1 V8: Wellen in Plasmen Plasmaoszillationen Langmuirwellen Ionenakustische Wellen Gruppen- und Phasengeschwindigkeit Dispersionsrelation Zusammenhang mit der Debye Länge elektromagnetische Wellen, Ionosphäre Physik VI - V8 - Seite 1

2 Da grosse Temperaturen benötigt werden, um ein Plasma zu erzeugen, bewegen sich die Plasmateilchen mit grossen Geschwindigkeiten. Durch die dabei enstehenden Ladungstrennungen und Ströme entstehen zeitlich veränderliche elektrische und magnetische Felder. Elektrische und magnetische Fluktuationen sind typisch für ein Plasma, auch wenn es in einem stationären Zustand ist. Die thermischen Fluktuationen sorgen für ein Grundrauschen im Plasma. Andererseits reagiert ein Plasma aber auch auf äussere Störungen. Diese Störungen können als Überlagerung von linearen Wellen auf das Plasma betrachtet werden. Die Wellen können sich im Plasma ausbreiten und Energie der Störung übertragen, die Frequenzen dieser Wellen reichen von Milli- bis Megahertz. Nur Wellen, die die Plasmagleichungen erfüllen, können sich ausbreiten, es existieren also nur diskrete Plasmamoden. Physik VI - V8 - Seite 2

3 Eine elektromagnetische Welle erfährt in einem Plasma eine Änderung der Ausbreitungsrichtung, Amplitude und/oder Geschwindigkeit. Aus den beobachteten Änderungen können Rückschlüsse auf Plasmaeigenschaften (Dichte, Temperatur, Driften,... ) gezogen werden. Andererseits kann ein Plasma verwendet werden, um eine Änderung (z. B. der Ausbreitungsrichtung) herbeizuführen. Die Sekundärwelle der schwingenden Elektronen überlagert sich mit der Primärwelle und führt so zu den Änderungen der Welleneigenschaften. Neben der bereits eingeführten Plasma- und Gyrofrequenz gibt es einen Zoo an Wellen, die in Plasmen auftreten können. Man unterscheidet dabei nach Elektrostatischen (keine Magnetfeldoszillation) und Elektromagnetischen Wellen. Die Wellen können ebenfalls nach den oszillierenden Teilchen (Elektronen, Ionen) klassifiziert werden. Eine weitere Einteilung erfolgt nach Wellen in unmagnetisierten Plasmen oder Wellen, die sich parallel, senkrecht, oder unter einem Winkel zum Magnetfeld ausbreiten. Physik VI - V8 - Seite 3

4 waves Physik VI - V8 - Seite 4

5 Jede Störung kann dabei als Kombination von ebenen Wellen betrachtet werden, die Störung kann also ihre Fourier Komponenten zerlegt werden kann. Eine ebene Welle enhält nur eine Fourier Komponente: A( x, t) = A( k, ω) exp(ı k x ıωt) wobei die Amplitude eine Funktion des Wellenvektors und der Frequenz ist. v ph = ω k/k 2 v gr = ω/ k Die Phasengeschwindigkeit ist immer parallel zum Wellenvektor k und gibt die Richtung der Wellenausbreitung an. Die Gruppengeschwindigkeit gibt die Geschwindigkeit und Richtung des Energieflusses an. Physik VI - V8 - Seite 5

6 Plasmaoszillationen In einem unmagnetisiertem Plasma mit der gleichen Anzahl von Elektronen und Ionen können elektromagnetische Wellen propagieren, die jedoch durch die Anwesenheit von Ladungen modifiziert werden. Zusätzlich treten Plasmaoszillationen auf, die im Vakuum nicht exisitieren. Auf kurzen Zeitskalen können die Ionen in einem Plasma als ruhend betrachtet werden. Elektronen, die, relativ zu den Ionen, um eine kleine Strecke δx ausgelenkt werden, spüren ein elektrisches Feld δe und damit eine Kraft eδe, die die Elektronen in Richtung Ion zurückzieht, um die Quasineutralität zu erhalten. Physik VI - V8 - Seite 6

7 Für die Plasmadichte n e kann die zeitabhängige Variation der Dichte n durch die Kontinuitätsgleichung beschrieben werden als räumliche Ableitung der Elektronen Geschwindigkeitsverteilung: δn t = n δv e,x e x Physik VI - V8 - Seite 7

8 Die Störung der Geschwindigkeit ergibt sich aus der Impulserhaltung der Elektronen: δv e,x = e t m δe Das elektrische Feld, welches durch die ausgelenkten Elektronen erzeugt wird, erfüllt die Poisson Gleichung: δe x = e ɛ 0 n Durch Einsetzen erhält man: 2 δn t 2 + n ee 2 m e ɛ 0 n = 0 Physik VI - V8 - Seite 8

9 Diese Gleichung für die Dichtevariation enspricht einem harmonischen Oszillator. Mit dem Ansatz δn exp( ıωt) erhält man die Kreisfrequenz ω = ω pe : ω pe = n e e 2 m e ɛ 0 Die Elektronen oszillieren mit der Elektronenplasmafrequenz um die Position der Ionen. Für die Ionen gilt analog die Ionenplasmafrequenz: ω pi = n i Z 2 e 2 m i ɛ 0 Physik VI - V8 - Seite 9

10 Langmuirwellen Elektronen in einem Plasma befinden sich nicht in Ruhe sondern haben verschiedene Geschwindigkeiten, also reagieren sie unterschiedlich auf Versuche sie aus ihrer momentanen Lage auszulenken. Um diesen Effekt zu berücksichtigen, muss die adiabatische Variation des thermischen Druckes, δp e = γ e k b T e δn e, in der Elektronen Impulserhaltung berücksichtigt werden. Bei konstanter Elektronentemperatur ergibt sich die Bewegungsgleichung: δv e,x t = e δe γ ek b T e δn m e m e n e x Physik VI - V8 - Seite 10

11 Nach Eliminierung von δe und δv e,x erhält man als bessere Näherung für die Dichtevariation: 2 δn t 2 γ ek b T e 2 δn m e x 2 + ω2 peδn = 0 Es ergibt sich die Dispersionrelation für Langmuir Wellen: ω 2 l = ω 2 pe + k 2 γ e v 2 the wobei die thermische Geschwindigkeit der Elektronen als v the = (k b T e /m e ) 1/2 definiert ist. Für kleine Temperaturen und Wellenzahlen geht die Dispersionsrelation gegen die Plasmaoszillationen. Für endliche Temperaturen oder k 0 breiten sich die Oszillationen im Plasma aus und wandeln sich in elektrostatische Wellen: Oszillationen des elektrischen Feldes, die im Plasma propagieren. Langmuiroszillationen sind Langmuirwellen mit sehr grosser Wellenlänge. Physik VI - V8 - Seite 11

12 Ionenakustische Wellen Bei kleinen Frequenzen spielt auch die Bewegung der Ionen eine Rolle, zusätzlich zur Bewegungsgleichung der Elektronen muss auch die Bewegungsgleichung der Ionen betrachtet werden. In einer ersten Näherung kann die Elektronenträgheit vernachlässigt werden, da die Ionenplasmafrequenz ω pi = n i Z 2 e 2 m i ε 0 für Protonen bei Quasineutralität um einen Faktor m e /m i = 43 kleiner als ω pe ist. Bei diesen kleinen Frequenzen reagieren Elektronen ohne Trägheit auf Änderungen im elektrischen Feld. Physik VI - V8 - Seite 12

13 Damit reduziert sich die Elektronendynamik auf das Gleichgewicht zwischen Elektronendruck und Elektrischer Kraft ( n o / x = 0): eδe = γ e k n T e ln n e x mit n e = n 0 + δn e. Mit dem elektrischen Potential δe = δφ/ x wird diese Gleichung zu einer Boltzmanngleichung für die Elektronendichte: ( ) eδφ n e = n 0 exp γ e k b T e Physik VI - V8 - Seite 13

14 Die linearisierte Version dieser Gleichung: δn e n 0 = eδφ γ e k B T e beschreibt die Antwort der Elektronen auf niedrig frequente Potential Oszillationen. Zusammen mit den linearisierten Gleichungen für Ionen: δn i t δv i,x t = n i δv i,x = e m i δe Physik VI - V8 - Seite 14

15 Der Ionendruck wird vernachlässigt, da die Ionentemperatur viel kleiner als die Elektronentemperatur ist. Mit Ladungsneutralität δn e = δn i = δn erhält man: 2 δn t 2 γ ek b T e m i 2 δn x 2 = 0 äquivalent zu den Langmuirwellen für Elektronen. Für ebene Wellen ergibt sich die Lösung: ωia 2 = γ ek b T e k 2 m i Diese Ionenakustischen Wellen haben dieselben Eigenschaften wie Schallwellen in Gasen. Beide Wellen haben eine lineare Dispersion ω k und sind reine Dichtefluktuationen. Die Phasengeschwindigkeit ω/k ist die Ionen-akustische Geschwindigkeit ( ) 1/2 γe k b T e c ia = m i Physik VI - V8 - Seite 15

16 Wegen der linearen Dispersionrelation ist die Gruppengeschwindigkeit gleich der Phasengeschwindigkeit. Bei Berücksichtigung des Ionendrucks muss der Term γ e T e durch die Summe von Elektronen und Ionenbeitrag γ e T e + γ i T i ersetzt werden. Damit wird für grosse Ionentemperaturen die Ionenschallgeschwindigkeit gleich der Ionen-thermischen Geschwindigkeit und der Beitrag der Elektronen zu den Schallwellen kann vernachlässigt werden. Für grosse Frequenzen in der Nähe von ω pi gilt auch die Quasineutralität nicht mehr. Also muss δn e = δn i mit der Poisson Gleichung 2 δφ x 2 = en 0 ɛ 0 ( δne n 0 δn ) i n 0 ersetzt werden, wobei Quasineutralität für den ungestörten Zustand angenommen wird: n e = n i = n 0. Die genauere Dispersionsrelation lautet: ω 2 ia = k 2 c 2 ia 1 + k 2 c 2 ia /ω2 pi Physik VI - V8 - Seite 16

17 ω ist nur für grosse Wellenlängen oder kleine k linear in k. Für Wellenlängen in der Nähe der Debye Länge ist die Welle keine akustische mehr, die Frequenz wird konstant und nähert sich der Ionenplasmafrequenz an. Dispersion von Langmuir- und Ionen-akustischen Wellen (Baumjohann, 1996). Zwischen den beiden Plasmafrequenzen kann sich keine elektrostatische Welle in einem unmagnetisierten Plasma ausbreiten. Physik VI - V8 - Seite 17

18 Zusammenhang mit der Debye Länge Die Debyelänge taucht bei der Dispersionsrelation für Ionenakustische Wellen wieder auf, was vermuten lässt, dass sie von der Ladungstrennung durch die Temperatur bei kleinen Wellenlängen verursacht wird. In einem quasineutralen Plasma erzeugt ein ruhendes Ion ein elektrisches Feld, das Elektronen anzieht, um die Landung des Ions auszugleichen. Durch die hohe Mobilität der Elektronen werden sie in Richtung Ion beschleunigt, so dass im Mittel sich in der Nähe des Ions mehr Elektronen aufhalten, als weit entfernt. Die Ladungsneutralität ist hier verletzt, also entsteht ein elektrisches Potential φ(r), welches die Poisson Gleichung erfüllt: 2 φ = e ɛ 0 (n i n e ) Physik VI - V8 - Seite 18

19 Die Ionendichte entspricht der quasineutralen Plasmadichte, aber die Elektronendichte ist durch das Ion gestört. Für ein Gleichgewicht zwischen thermischer Bewegung und elektrischem Feld sind die Elektronen Maxwell verteilt, und ihre Dichte gehorcht der Boltzmann Verteilung: [ ] eφ(r) n e (r) = n 0 exp k b T e Für kleine Potentiale eφ << k b T e kann der Ausdruck Taylor entwickelt und in die Poisson Gleichung eingesetzt werden: 2 φ = e2 n 0 φ ɛ 0 k B T e Physik VI - V8 - Seite 19

20 Das Problem ist radialsymmetrisch um die Position des Ions und das Potential divergiert mit 1/r für r 0. Die Dimension der linken Seite der Gleichung entspricht dem elektrostatischen Potential geteilt durch eine Länge zum Quadrat. Ein Vergleich ergibt für diese Länge die Debye Länge: λ D = ( ) 1/2 ɛ0 k b T e n 0 e 2 Die Debye Länge ist also die typische Abschirmdistanz für das elektrostatische Feld eines Ions in einem quasineutralem Plasma mit Elektronen bei der Temperatur T e. Jedes Ion ist mit einer Wolke zusätzlicher Elektronen umgeben, die das Feld des Ions abschirmen. Eine Kugel mit dem Radius λ D ist die Debye Kugel, die Anzahl der Teilchen in dieser Kugel ist die Debye Zahl und entspricht in etwa dem Plasma Parameter. Innerhalb der Debye Kugel ist das Potential nicht abgeschirmt, also die Quasineutralität verletzt. Physik VI - V8 - Seite 20

21 Wenn man auch die Abschirmung der Elektronen durch die Ionen berücksichtigt (meistens ein kleiner Effekt), erhält man die effektive Debye Länge λ 2 D,eff = λ 2 D + λ 2 Di mit λ Di = ( ) 1/2 ɛ0 k b T i n 0 e 2 In einem isothermen Plasma mit ähnlichen Elektronen und Ionentemperaturen tragen beide Deybe Längen gleich zur effektiven Deybe Länge bei. Die Deybe Länge kann als das Verhältnis von thermischer Geschwindigkeit der Elektronen zur Elektronenplasmafrequenz geschrieben werden λ D = v the /ω pe. Damit wird die Dispersionsrelation der Langmuir Wellen: ω 2 l = ω 2 pe(1 + γ e k 2 λ 2 D) Physik VI - V8 - Seite 21

22 elektromagnetische Wellen (ordinary-waves) Sich bewegende Ladungen führen zu oszillierenden Strömen im Plasma, welche Quellen für elektromagnetischen Wellen sind. In einem magnetisierten Plasma kann eine vielzahl solcher Moden propagieren. Die einfachste e-m Welle tritt in unmagnetisierten Plasmen auf: die Vakuum e-m Welle. Eine e-m Welle mit der Frequenz ω versetzt die Elektronen im Plasma in Bewegung und erzeugt damit einen Elektronenstrom δ j em = ßen 0 δ v e Nur die Störung der Elektronengeschwindigkeit trägt zum Strom bei, da das Plasma ursprünglich in Ruhe war. Physik VI - V8 - Seite 22

23 Diese Störung kann aus der Bewegungsgleichung der Elektronen berechnet werden, die sich im e-m Feld δe der ebenen Welle bewegen: δ v e = ie ωm e δ E Durch Einsetzen in die Gleichung für den Strom, findet man, dass der induzierte Strom δ j rmem = σ em E proportional zum elektrischen Feld der Welle ist (Ohm sches Gesetz). Die Proportionalitätkonstante ist die Leitfähigkeit σ em = iɛ 0ω 2 pe ω Sie hängt von der Frequenz der Welle und der Elektronen Plasmafrequenz ab und ist imaginär. Sie verschwindet für sehr grosse Frequenzen und wenn kein Plasma Physik VI - V8 - Seite 23

24 vorhanden ist. In beiden Fällen wird die e-m Welle eine gewöhnliche Vakuum Welle. Die Dispersionsrelation der Vakuum Welle ist N 2 = k2 c 2 ω 2 N ist dabei der Brechungsindex und im Vakuum gilt N 2 = 1. In einem unmagnetisierten Plasma kann man ihn durch die Dielektrizitätsfunktion ɛ(ω, k) ersetzen und erhält die Dispersionsrelation der e-m Welle k 2 c 2 ω 2 = ɛ(ω, k) Physik VI - V8 - Seite 24

25 Es gibt einen Zusammenhang zwischen ɛ(ω, k) und der Leitfähigkeit σ(ω, k) (nächste Vorlesung). In diesem Fall gilt: ɛ(ω) = 1 + iσ em(ω) ɛ 0 ω = 1 ω2 pe ω 2 Damit wird die Dispersionsrelation der Vakuum e-m Welle ω 2 om = ω 2 pe + c 2 k 2 Diese Welle wird ordentliche Welle (ordinary mode) genannt, da sie, ohne Plasma, dieselbe Dispersionsrelation hat wie die Vakuum Welle. Dre wesentliche Unterschied zur Vakuum Welle ist, dass es für Frequenzen unterhalb der Plasmafrequenz keine reelle Lösung gibt und die Welle hört auf zu existieren (cut-off). Beim cut-off wird die Wellenzahl Null und die Welle wird reflektiert (Brechungsindex = 0). Physik VI - V8 - Seite 25

26 Ionosphäre Radiowellen (Langwellen) unterhalb der Plasmafrequenz können nicht durch die Ionosphäre dringen, sie werden zwischen Ionosphäre und Erdboden reflektiert und können sich so (besonders Nachts: Reflektion in grosser Höhe) über grosse Distanzen ausbreiten. Andererseits können niederfrequente Wellen aus der Aurora nicht bis zum Erdboden gelangen. Der verschwindende Brechungsindex wird zb für die Untersuchung der Ionosphäre mit Hilfe von Ionosonden angewendet. Durch Variation der Sendefrequenz kann, mit Hilfe der Laufzeit der Impulse, ein Dichteprofil der Unterseite der Ionosphäre gemessen werden (virtuelle Höhe). Sender auf Satelliten messen das Dichteprofil der Oberseite (top-side sounder). Physik VI - V8 - Seite 26

27 Frequenzen oberhalb der Plasmafrequenz erfahren lediglich eine Verlangsamung der Ausbreitungsgeschwindigkeit und eine Phasenverschiebung. Durch Verwendung von zwei oder mehr Frequenzen kann damit das Integral der Elektronendichte (TEC: total electron content) bestimmt werden (GPS Satellit bis zum Erdboden). Auf Raketen eingesetzt (Faraday rotation) kann damit entlang der Flugbahn das Dichteprofil rekonstruiert werden. Satelliten, die zb den Mars umkreisen, messen so aus dem Orbit das Ionosphärenprofil des Mars (limb sounder: Phasenverschiebung des Signals zwischen Erde und Satellit). Physik VI - V8 - Seite 27

28 Moderne Ionosonde von digisonde.com Physik VI - V8 - Seite 28

Physik VI Plasmaphysik

Physik VI Plasmaphysik Physik VI Plasmaphysik Physik VI Plasmaphysik Inhaltsübersicht 1. Charakteristik des Plasmazustandes 2. Experimentelle Grundlagen der Plasmaphysik 3. Thermodynamische Gleichgewichtsplasmen 4. Plasmen im

Mehr

Gültigkeit Magnetohydrodynamik sonstige abhängig vom Typ der Welle, z.b. welche Teilchensorte kann sich bewegen, ist das Plasma kalt oder warm?

Gültigkeit Magnetohydrodynamik sonstige abhängig vom Typ der Welle, z.b. welche Teilchensorte kann sich bewegen, ist das Plasma kalt oder warm? MHD Wellen Übersicht: Linearisierung der Gleichungen und Fourier-Transformation Magnetohydrodynamische Wellen Elektrostatische Wellen in nicht-magnetisierten Plasmen elektrostatische Wellen in magnetisierten

Mehr

V9: Wellen in Plasmen II

V9: Wellen in Plasmen II V9: Wellen in Plasmen II Allgemeine Wellengleichung Allgemeine Dispersionsgleichung Dieelektrizitätskonstante, -funktion Energie in Wellen MHD-Wellen: Alfven- und magnetosonische Wellen Physik VI - V9

Mehr

Elektrodynamik eines Plasmas

Elektrodynamik eines Plasmas Elektrodynamik eines Plasmas Elektrodynamik eines Plasmas Klassifikation von Plasmen Klassisches Plasma / Quantenplasma nicht-relativistisches / relativistisches Plasma Schwach / stark wechselwirkendes

Mehr

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel 11. Elektrodynamik 11.5.4 Das Amperesche Gesetz 11.5.5 Der Maxwellsche Verschiebungsstrom 11.5.6 Magnetische Induktion 11.5.7 Lenzsche Regel 11.6 Maxwellsche Gleichungen 11.7 Elektromagnetische Wellen

Mehr

6 Elektromagnetische Schwingungen und Wellen. E y. E(z=0) Polarisation Richtung des E-Vektors gibt die Polarisation an.

6 Elektromagnetische Schwingungen und Wellen. E y. E(z=0) Polarisation Richtung des E-Vektors gibt die Polarisation an. 6 Elektromagnetische Schwingungen und Wellen E y E(z=0) E 0 z E y E 0 t Abbildung 6.10: (a) E(z, t = t 1 ): Momentaufnahme für t = t 1. (b) E(z = z 1, t): Zeitabhängigkeit an festem Ort z = z 1. Polarisation

Mehr

Korrekturen 1 zur Elektrodynamik, 5. Auflage, 2008

Korrekturen 1 zur Elektrodynamik, 5. Auflage, 2008 Korrekturen 1 zur Elektrodynamik, 5 Auflage, 2008 Seite 91: Gleichung (1011) wird korrigiert zu q Φ(r, θ) = r r 0 = q r 2 + r0 2 2 rr 0 cos θ (1011) Seite 92: Die Zeile nach (1014) muss lauten: Der Vergleich

Mehr

16 Elektromagnetische Wellen

16 Elektromagnetische Wellen 16 Elektromagnetische Wellen In den folgenden Kapiteln werden wir uns verschiedenen zeitabhängigen Phänomenen zuwenden. Zunächst werden wir uns mit elektromagnetischen Wellen beschäftigen und sehen, dass

Mehr

Das Ampere sche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenz sche Regel

Das Ampere sche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenz sche Regel 10. Elektrodynamik 10.5.4 Das Ampere sche Gesetz 10.5.5 Der Maxwellsche Verschiebungsstrom 10.5.6 Magnetische Induktion 10.5.7 Lenz sche Regel 10.6 Maxwell sche Gleichungen 10.7 Elektromagnetische Wellen

Mehr

7. Elektromagnetische Wellen (im Vakuum)

7. Elektromagnetische Wellen (im Vakuum) 7. Elektromagnetische Wellen (im Vakuum) Wir betrachten das elektromagnetische Feld bei Abwesenheit von Ladungen und Strömen und untersuchen die Lösungen der Maxwellschen Gleichungen. 7.1 Wellengleichungen

Mehr

Elektromagnetische Wellen

Elektromagnetische Wellen Elektromagnetische Wellen Im Gegensatz zu Schallwellen sind elektromagnetische Wellen nicht an ein materielles Medium gebunden -- sie können sich auch in einem perfekten Vakuum ausbreiten. Sie sind auch

Mehr

Theoretische Physik II Elektrodynamik Blatt 9. k (

Theoretische Physik II Elektrodynamik Blatt 9. k ( PDDr. S.Mertens M. Hummel Theoretische Physik II Elektrodynamik Blatt 9 SS 29.6.29. Energie und Impuls elektromagnetischer Wellen. Eine transversale elektromagnetische 4Pkt.) Welle in einem nicht leitenden,

Mehr

X.4 Elektromagnetische Wellen im Vakuum

X.4 Elektromagnetische Wellen im Vakuum X.4 Elektromagnetische Wellen im Vakuum 173 X.4 Elektromagnetische Wellen im Vakuum In Abwesenheit von Quellen, ρ el. = 0 j el. = 0, nehmen die Bewegungsgleichungen (X.9) (X.11) für die elektromagnetischen

Mehr

Dieter Suter - 223 - Physik B3, SS03

Dieter Suter - 223 - Physik B3, SS03 Dieter Suter - 223 - Physik B3, SS03 4.4 Gedämpfte Schwingung 4.4.1 Dämpfung und Reibung Wie bei jeder Bewegung gibt es bei Schwingungen auch dissipative Effekte, d.h. es wird Schwingungsenergie in Wärmeenergie

Mehr

Ferienkurs Experimentalphysik II Elektrodynamik - Übungen

Ferienkurs Experimentalphysik II Elektrodynamik - Übungen Ferienkurs Experimentalphysik II Elektrodynamik - Übungen Lennart Schmidt, Steffen Maurus 07.09.2011 Aufgabe 1: Leiten Sie aus der integralen Formulierung des Induktionsgesetzes, U ind = d dt A B da, (0.1)

Mehr

Zwischenprüfung. Mathematische Grundlagen (35 Pkt.)

Zwischenprüfung. Mathematische Grundlagen (35 Pkt.) Datum: 18.04.2018 Elektromagnetische Felder & Wellen Frühjahrssemester 2018 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Zwischenprüfung I Mathematische Grundlagen (35 Pkt.) 1. (1 Pkt.) Für das

Mehr

v q,m Aufgabensammlung Experimentalphysik für ET

v q,m Aufgabensammlung Experimentalphysik für ET Experimentalphysik für ET Aufgabensammlung 1. E-Felder Auf einen Plattenkondensator mit quadratischen Platten der Kantenlänge a und dem Plattenabstand d werde die Ladung Q aufgebracht, bevor er vom Netz

Mehr

Vorbereitung. (1) bzw. diskreten Wellenzahlen. λ n = 2L n. k n = nπ L

Vorbereitung. (1) bzw. diskreten Wellenzahlen. λ n = 2L n. k n = nπ L Physikalisches Fortgeschrittenenpraktikum Gitterschwingungen Vorbereitung Armin Burgmeier Robert Schittny 1 Theoretische Grundlagen Im Versuch Gitterschwingungen werden die Schwingungen von Atomen in einem

Mehr

1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen.

1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen. Universität Potsdam Institut für Physik und Astronomie Grundpraktikum 10/015 M Schallwellen Am Beispiel von Ultraschallwellen in Wasser werden Eigenschaften von Longitudinalwellen betrachtet. Im ersten

Mehr

Wellenlänge, Wellenzahl, Lichtgeschwindigkeit

Wellenlänge, Wellenzahl, Lichtgeschwindigkeit Das -Feld Wellenlänge, Wellenzahl, Lichtgeschwindigkeit Harmonische Welle: macht harmonische Schwingung sin[ωt + φ( r)] an jedem Punkt im Raum; variiert bei festem t sinusförmig entlang z Wellenfronten

Mehr

Wellen und Dipolstrahlung

Wellen und Dipolstrahlung Wellen und Dipolstrahlung Florian Hrubesch. März 00 Inhaltsverzeichnis Wellen. Wellen im Vakuum............................. Lösung der Wellengleichung................... Energietransport / Impuls - der

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen Name: Vorname: Matrikelnummer: Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12:

Mehr

6.4 Wellen in einem leitenden Medium

6.4 Wellen in einem leitenden Medium 6.4. WELLEN IN EINEM LEITENDEN MEDIUM 227 6.4 Wellen in einem leitenden Medium Unter einem leitenden Medium verstehen wir ein System, in dem wir keine ruhenden Ladungen berücksichtigen, aber Ströme, die

Mehr

KAPITEL VIII. Elektrostatik. VIII.1 Elektrisches Potential. VIII.1.1 Skalarpotential. VIII.1.2 Poisson-Gleichung

KAPITEL VIII. Elektrostatik. VIII.1 Elektrisches Potential. VIII.1.1 Skalarpotential. VIII.1.2 Poisson-Gleichung KAPITEL III Elektrostatik Hier fehlt die obligatorische Einleitung... Im stationären Fall vereinfachen sich die Maxwell Gauß und die Maxwell Faraday-Gleichungen für die elektrische Feldstärke E( r) die

Mehr

13. Elektromagnetische Wellen

13. Elektromagnetische Wellen 13. Elektromagnetische Wellen 13.1 Erzeugung elektromagnetischer Wellen 13.2 Eigenschaften elektromagnetischer Wellen 13.3 Ausbreitung elektromagnetischer Wellen 13.4 Reflexion und Brechung 13.5 Interferenz

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen Name : Matrikelnummer : Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Gesamtpunktzahl:

Mehr

9. Vorlesung Wintersemester

9. Vorlesung Wintersemester 9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen

Mehr

Wellen und Dipolstrahlung

Wellen und Dipolstrahlung Wellen und Dipolstrahlung Florian Hrubesch. März 00 Maxwellgleichungen a) Leiten Sie aus den Maxwellgleichungen im Vakuum die Wellengleichung im Vakuum her. Zeigen Sie, dass E, B und k senkrecht aufeinander

Mehr

Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael

Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael Themen: Unbestimmtheitsrelationen, Materiewellen, Materieteilchen als Welle, Wellenfunktion, Dispersionsrelation, Wellenpaket, Wahrscheinlichkeitsinterpretation, Materie-Quanteninterferenz Martinovsky

Mehr

Aufgaben zu elektrischen und magnetischen Feldern (aus dem WWW) a) Feldstärke E b) magnetische Flussdichte B

Aufgaben zu elektrischen und magnetischen Feldern (aus dem WWW) a) Feldstärke E b) magnetische Flussdichte B Aufgabe 73 (Elektrizitätslehre, Lorentzkraft) Elektronen treten mit der Geschwindigkeit 2,0 10 5 m in ein homogenes elektrisches Feld ein s und durchlaufen es auf einer Strecke von s = 20 cm. Die Polung

Mehr

Elektrodynamik (T3p)

Elektrodynamik (T3p) Zusatzaufgaben zur Vorlesung Elektrodynamik (T3p) SoSe 5 Beachten Sie, dass die nachfolgenden Aufgaben nur als zusätzliche Übung und nicht als potenzielle Klausuraufgaben angesehen werden sollten! Aufgabe

Mehr

Maxwell mit Minkowski. Max Camenzind Uni Würzburg Senioren 2015

Maxwell mit Minkowski. Max Camenzind Uni Würzburg Senioren 2015 Maxwell mit Minkowski Max Camenzind Uni Würzburg Senioren 2015 Vektorfelder in 3 Dimensionen F(t,x) = (F x,f y,f z ) Satz von Gauß Quelle Fluss Die Massenerhaltung Ein Nettomassenfluss M durch die festen

Mehr

Aufgabe 2.1: Wiederholung: komplexer Brechungsindex

Aufgabe 2.1: Wiederholung: komplexer Brechungsindex Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Jens Repp / Eric Parzinger Kontakt: jens.repp@wsi.tum.de / eric.parzinger@wsi.tum.de Blatt 2, Besprechung: 23.04.2014 / 30.04.2014

Mehr

1 Debye-Abschirmung. 1.1 Grundlagen. Φ = q r exp ( r/λ D), λ D =

1 Debye-Abschirmung. 1.1 Grundlagen. Φ = q r exp ( r/λ D), λ D = 1 Debye-Abschirmung Bringt man eine zusätzliche estladung in ein Plasma ein, so wird deren elektrisches Feld durch die Ladungen des Plasmas mit entgegengesetztem Vorzeichen abgeschirmt. Die charakteristische

Mehr

= +1. Rotverschiebung. Unterschiedliche Arten der Rotverschiebung

= +1. Rotverschiebung. Unterschiedliche Arten der Rotverschiebung Rotverschiebung In der Astronomie wird die Rotverschiebung mit dem Buchstaben z bezeichnet. Mit ihrer Hilfe lassen sich z.b. Fluchtgeschwindigkeiten, Entfernungen und Daten aus früheren Epochen des Universum

Mehr

Plasmen: Einzelteilchenbewegungen

Plasmen: Einzelteilchenbewegungen Plasmen: Einzelteilchenbewegungen Übersicht: elektromagnetische Felder, Lorentz-Kraft, Gyration und Führungszentrum, Driften, adiabatische Invarianten. Voraussetzungen: Energiedichte der Teilchen sehr

Mehr

TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern

TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern TP2: Elektrodynamik WS 2017-2018 Arbeitsblatt 10 21/22.12. 2017 Dipole und Multipole in stationären Feldern Die Multipolentwicklung ist eine hilfreiche Näherung zur Lösung der Poisson Gleichung, wenn eine

Mehr

Übungen zu Experimentalphysik 4 - Lösungsvorschläge Prof. S. Paul Sommersemester 005 Dr. Jan Friedrich Nr. 5 16.05.005 Email Jan.Friedrich@ph.tum.de Telefon 089/89-1586 Physik Department E18, Raum 3564

Mehr

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung)

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) 10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) Versuche: Pendel mit zwei Längen Sandpendel ohne/mit Dämpfung erzwungene Schwingung mit ω

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astronomie Auf dem Hügel 71 kbasu@astro.uni-bonn.de Website: www.astro.uni-bonn.de/tp-l

Mehr

Übungen zu Physik 1 für Ingenieure Musterlösung Blatt 6

Übungen zu Physik 1 für Ingenieure Musterlösung Blatt 6 Übungen zu Physik 1 für Ingenieure Musterlösung Blatt 6 Aufgabe 1 Hook sches Gesetz für ein Federpendel Bei einer Feder, für die das Hook sche Gesetz gilt, ist die rücktreibende Kraft F F proportional

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

2. Klausur in K2 am 7.12. 2011

2. Klausur in K2 am 7.12. 2011 Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 7.. 0 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: Schallgeschwindigkeit

Mehr

µw Mikrowellen Inhaltsverzeichnis Moritz Stoll, Marcel Schmittfull (Gruppe 2b) 24. Oktober 2007

µw Mikrowellen Inhaltsverzeichnis Moritz Stoll, Marcel Schmittfull (Gruppe 2b) 24. Oktober 2007 µw Mikrowellen Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis 1 Mikrowellen 2 1.1 Erzeugung durch ein Reflexklystron.......... 2 1.2 Erzeugung durch ein Magnetron............

Mehr

IX.2 Multipolentwicklung

IX.2 Multipolentwicklung IX. Multipolentwicklung 153 IX. Multipolentwicklung Ähnlich der in Abschn. III.3 studierten Entwicklung des elektrostatischen Skalarpotentials Φ( r) einer Ladungsverteilung ρ el. als Summe der Potentiale

Mehr

1 Anregung von Oberflächenwellen (30 Punkte)

1 Anregung von Oberflächenwellen (30 Punkte) 1 Anregung von Oberflächenwellen (30 Punkte) Eine ebene p-polarisierte Welle mit Frequenz ω und Amplitude E 0 trifft aus einem dielektrischen Medium 1 mit Permittivität ε 1 auf eine Grenzfläche, die mit

Mehr

1 Die Fresnel-Formeln

1 Die Fresnel-Formeln 1 Die Fresnel-Formeln Im Folgenden werden die Bezeichnungen aus dem Buch Optik von Eugene Hecht 5. Auflage, Oldenburg verwendet, aus dem auch die Bilder stammen. In der Vorlesung wurden andere Bezeichnungen

Mehr

III. Schwingungen und Wellen

III. Schwingungen und Wellen III. Schwingungen und Wellen III.1 Schwingungen Physik für Mediziner 1 Schwingungen Eine Schwingung ist ein zeitlich periodischer Vorgang Schwingungen finden im allgemeinen um eine stabile Gleichgewichtslage

Mehr

Dämpfung in der Quantenmechanik: Quanten-Langevin-Gleichung Seminar Quantenoptik und nichtlineare Optik Vortrag von Christian Cop

Dämpfung in der Quantenmechanik: Quanten-Langevin-Gleichung Seminar Quantenoptik und nichtlineare Optik Vortrag von Christian Cop Dämpfung in der Quantenmechanik: Quanten-Langevin-Gleichung Seminar Quantenoptik und nichtlineare Optik Vortrag von Christian Cop 2. Februar 2011 Prof. Dr. Halfmann, Prof. Dr. Walser Quantenoptik und nichtlineare

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 25. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 25. 06.

Mehr

Bem. Die mittlere Geschwindigkeit hängt i.a. nicht nur von t, sondern auch von t ab.

Bem. Die mittlere Geschwindigkeit hängt i.a. nicht nur von t, sondern auch von t ab. 40 8. Anwendungen der Differentialrechnung Beispiele aus der Phsik: Momentangeschwindigkeit Die Bewegung eines Massenpunktes wird mathematisch durch die zugrundeliegende Weg- Zeitfunktion beschrieben,

Mehr

Wellenausbreitung inmedien und Brechung

Wellenausbreitung inmedien und Brechung Wellenausbreitung inmedien und Brechung In Kap. 1 haben wir die Ausbreitung von elektromagnetischen Wellen im Vakuum besprochen, unter anderem auch bei Anwesenheit von Hindernissen (Randbedingungen), was

Mehr

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke)

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Freie Universität Berlin WS 6/7 Fachbereich Physik 1.11.6 Statistische Physik - Theorie der Wärme PD Dr. M. Falcke Übungsblatt 5: an-der-waals Gas / Kanonisches Ensemble Aufgabe 1 Punkte Leiten Sie aus

Mehr

Anhang C: Wellen. vorhergesagt 1916 (Albert Einstein) Entdeckung 2016 (LIGO-Kollaboration) Albert Einstein Christian Schwanenberger -

Anhang C: Wellen. vorhergesagt 1916 (Albert Einstein) Entdeckung 2016 (LIGO-Kollaboration) Albert Einstein Christian Schwanenberger - Anhang C: Wellen Computersimulation der von zwei sich umkreisenden Schwarzen Löchern ausgelösten Gravitationswellen in der Raum-Zeit (Illu.) Albert Einstein 1879-19 Physik-II vorhergesagt 1916 (Albert

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

Elektrostatik. Im stationären Fall vereinfachen sich die Maxwell Gauß- und Maxwell Faraday-Gleichungen zu

Elektrostatik. Im stationären Fall vereinfachen sich die Maxwell Gauß- und Maxwell Faraday-Gleichungen zu KAPITEL II Elektrostatik Im stationären Fall vereinfachen sich die Maxwell Gauß- und Maxwell Faraday-Gleichungen zu E( r) = ρ el.( r) E( r) = 0. (II.1a) (II.1b) Dabei hängt die Rotation der jetzt zeitunabhängigen

Mehr

Versuch 213 Messung der Phasen- und Gruppengeschwindigkeit mit Ultraschall

Versuch 213 Messung der Phasen- und Gruppengeschwindigkeit mit Ultraschall Versuch 213 Messung der Phasen- und Gruppengeschwindigkeit mit Ultraschall Praktikum für Fortgeschrittene am Dritten Physikalischen Institut der Universität Göttingen 27. April 2008 Praktikant Johannes

Mehr

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an.

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an. 1. Geschwindigkeiten (8 Punkte) Ein Schwimmer, der sich mit konstanter Geschwindigkeit v s = 1.25 m/s im Wasser vorwärts bewegen kann, möchte einen mit Geschwindigkeit v f = 0.75 m/s fließenden Fluß der

Mehr

III Elektrizität und Magnetismus

III Elektrizität und Magnetismus 20. Vorlesung EP III Elektrizität und Magnetismus 19. Magnetische Felder 20. Induktion Versuche: Diamagnetismus, Supraleiter Induktion Leiterschleife, bewegter Magnet Induktion mit Änderung der Fläche

Mehr

Seminar: Quantenoptik und nichtlineare Optik Quantisierung des elektromagnetischen Strahlungsfeldes und die Dipolnäherung

Seminar: Quantenoptik und nichtlineare Optik Quantisierung des elektromagnetischen Strahlungsfeldes und die Dipolnäherung Seminar: Quantenoptik und nichtlineare Optik Quantisierung des elektromagnetischen Strahlungsfeldes und die Dipolnäherung 10. November 2010 Physik Institut für Angewandte Physik Jörg Hoppe 1 Inhalt Motivation

Mehr

A 1. + r 2 ) 2. Stoßquerschnitt und mittlere freie Weglänge

A 1. + r 2 ) 2. Stoßquerschnitt und mittlere freie Weglänge Stoßquerschnitt und mittlere freie Weglänge Im idealen Gas findet zwischen zwei Teilchen ein Stoß statt, wenn der Abstand der Fluggeraden den beiden Teilchen, der Stoßparameter b, kleiner ist als die Summe

Mehr

6.2.2 Mikrowellen. M.Brennscheidt

6.2.2 Mikrowellen. M.Brennscheidt 6.2.2 Mikrowellen Im vorangegangen Kapitel wurde die Erzeugung von elektromagnetischen Wellen, wie sie im Rundfunk verwendet werden, mit Hilfe eines Hertzschen Dipols erklärt. Da Radiowellen eine relativ

Mehr

Höhere Experimentalphysik 2

Höhere Experimentalphysik 2 Höhere Experimentalphysik 2 Institut für Angewandte Physik Goethe-Universität Frankfurt am Main 13. Vorlesung 28.04.2017 Ankündigung Die erste Übung finden am Montag, den 08.05.16 in im Raum 02.304 statt.

Mehr

Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG

Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG 3 G8_Physik_2011_Ph11_Loe Seite 1 von 7 Ph 11-1 Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG 1) a) b) - - + + + c) In einem Homogenen elektrischen Feld nimmt das Potential in etwa linear. D.h. Es sinkt

Mehr

5.4. Elektromagnetische Wellen

5.4. Elektromagnetische Wellen Dieter Suter - 33 - Physik B 5.4. Elektromagnetische Wellen 5.4.1. Einführung Die Elektrodynamik, d.h. die Lehre von zeitabhängigen elektromagnetischen Phänomenen, welche im Kapitel 3 eingeführt wurde,

Mehr

Klausur Experimentalphysik (1. Termin)

Klausur Experimentalphysik (1. Termin) Helmut-Schmidt-Universität Universität der Bundeswehr Hamburg Fachbereich Elektrotechnik Univ.-Prof. Dr. D. Kip Experimentalphysik und Materialwissenschaften Telefon: 6541 2457 Klausur Experimentalphysik

Mehr

Höhere Experimentalphysik 1

Höhere Experimentalphysik 1 Institut für Angewandte Physik Goethe-Universität Frankfurt am Main 3. Vorlesung 10.11.2017 Zusammenfassung der letzten Vorlesung Ladungen können auch bewegt werden dann aber gilt eine gänzlich andere

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen Physik Schwingungen Zusammenfassung Mechanik Physik Mathe Einheiten Bewegung Bewegung 3d Newtons Gesetze Energie Gravitation Rotation Impuls Ableitung, Integration Vektoren Skalarprodukt Gradient Kreuzprodukt

Mehr

Elektromagnetische Felder (TET 1) Gedächtnisprotokoll

Elektromagnetische Felder (TET 1) Gedächtnisprotokoll Elektromagnetische Felder (TET 1) Gedächtnisprotokoll 8. August 2017 Dies ist ein Gedächtnisprotokoll. Leider konnte ich mich nicht an alle Details jeder Aufgabe erinnern. Für korrigierte Exemplare dieses

Mehr

Theoretischen Physik II SS 2007 Klausur I - Aufgaben und Lösungen

Theoretischen Physik II SS 2007 Klausur I - Aufgaben und Lösungen Theoretischen Physik II SS 7 Klausur I - Aufgaben und Lösungen Aufgabe Elektrostatik Im Mittelpunkt einer leitenden und geerdeten Hohlkugel RadiusR) befindet sich eine kleine Kugel mit homogener Ladungsverteilung

Mehr

6.2 Elektromagnetische Wellen

6.2 Elektromagnetische Wellen 6.2 Elektromagnetische Wellen Im vorigen Kapitel wurde die Erzeugung von elektromagnetischen Schwingungen und deren Eigenschaften untersucht. Mit diesem Wissen ist es nun möglich die Entstehung von elektromagnetischen

Mehr

Aufgabe 1 ( 5 Punkte) Aufgabe 2 ( 6 Punkte) Aufgabe 3 ( 12 Punkte) Lösung. Lösung. Elektromagnetische Felder und Wellen: Lösung zur Klausur

Aufgabe 1 ( 5 Punkte) Aufgabe 2 ( 6 Punkte) Aufgabe 3 ( 12 Punkte) Lösung. Lösung. Elektromagnetische Felder und Wellen: Lösung zur Klausur Elektromagnetische Felder und Wellen: zur Klausur 2015-1 1 Aufgabe 1 ( 5 Punkte) Ein Elektronenstrahl ist entlang der z-achse gerichtet. Bei z = 0 und bei z = L befindet sich jeweils eine Lochblende, welche

Mehr

= n + + Thermodynamik von Elektrolytlösungen. Wdhlg: Chemisches Potential einer Teilchenart: Für Elektrolytlösungen gilt: wobei : und

= n + + Thermodynamik von Elektrolytlösungen. Wdhlg: Chemisches Potential einer Teilchenart: Für Elektrolytlösungen gilt: wobei : und Elektrolyte Teil III Solvatation, elektrische Leitfähigkeit, starke und schwache Elektrolyte, Ionenstärke, Debye Hückeltheorie, Migration, Diffusion, Festelektrolyte Thermodynamik von Elektrolytlösungen

Mehr

IV. Elektrizität und Magnetismus

IV. Elektrizität und Magnetismus IV. Elektrizität und Magnetismus IV.5 Elektromagnetische Wellen Physik für Mediziner 1 Elektromagnetische Wellen Physik für Mediziner 2 Wiederholung: Schwingkreis elektrische Feld im Kondensator wird periodisch

Mehr

1 Drift in gekreuzten elektrischen und magnetischen

1 Drift in gekreuzten elektrischen und magnetischen 1 Drift in gekreuzten elektrischen und magnetischen Feldern In einem Magnetfeld wirkt auf eine bewegte Ladung die Lorentzkraft. Aufgrund der Lorentzkraft unterscheidet sich die Bewegung parallel und senkrecht

Mehr

Kinetische Theorie. Übersicht: Voraussetzungen: Verteilungsfunktionen Grundgleichungen: Kollissionen

Kinetische Theorie. Übersicht: Voraussetzungen: Verteilungsfunktionen Grundgleichungen: Kollissionen Kinetische Theorie Übersicht: Verteilungsfunktionen Grundgleichungen: Boltzmann Vlasov Fokker-Planck Kollissionen neutral trifft neutral neutral trifft geladen geladen trifft geladen Voraussetzungen: keine

Mehr

Sofern der Stromdurchflossene Leiter Senkrecht zu den Feldlinien steht gilt: B ist die magnetische Flussdichte, sie hat die Einheit Tesla

Sofern der Stromdurchflossene Leiter Senkrecht zu den Feldlinien steht gilt: B ist die magnetische Flussdichte, sie hat die Einheit Tesla Magnetfelder und orentz-kraft Magnetfelder & magnetische Flussdichte a. Jeder stromdurchflossene eiter erzeugt ein Magnetfeld, die Richtung dieses Magnetfeldes hängt von der Fließrichtung des Stromes ab.

Mehr

1 Physikalische Grundbegriffe

1 Physikalische Grundbegriffe 1 Physikalische Grundbegriffe Um die Voraussetzungen der physikalischen Kenntnisse in den nächsten Kapiteln zu erfüllen, werden hier die dafür notwendigen Grundbegriffe 1 wie das Atom, das Proton, das

Mehr

Die Sonne ein Stern im Detail (2) Die Photosphäre

Die Sonne ein Stern im Detail (2) Die Photosphäre Die Sonne ein Stern im Detail (2) Die Photosphäre Plasma der Stoff, aus dem die Sonne ist Ab einer Temperatur von 10000 K liegt die Materie vollständig im Plasmazustand vor. Dieser spezielle 4. Aggregatzustand

Mehr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 2 Lösung. 22. September 2015, 12-14 Uhr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 2 Lösung. 22. September 2015, 12-14 Uhr KIT SS 15 Klassische Theoretische Physik II V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch Klausur Lösung. September 15, 1-14 Uhr Aufgabe 1: Kurzfragen (3+4+1+1 Punkte (a Die erhaltenen Größen und evtl.

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum Fachrichtung Physik Physikalisches Grundpraktikum Versuch: RO Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010 Rotation Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Allgemeine Grundlagen 2 2.1

Mehr

5. Wellen. Als Welle bezeichnet man die Ausbreitung einer Störung in einem kontinuierlichen Medium oder einer räumlich periodischen Struktur.

5. Wellen. Als Welle bezeichnet man die Ausbreitung einer Störung in einem kontinuierlichen Medium oder einer räumlich periodischen Struktur. Dieter Suter - 90 - Physik B 5.1. Allgemeines 5. Wellen 5.1.1. Beispiele und Definition Als Welle bezeichnet man die Ausbreitung einer Störung in einem kontinuierlichen Medium oder einer räumlich periodischen

Mehr

Zwischenprüfung. 3. (2 Pkt.) Formulieren Sie beide Lösungen in der Polardarstellung mit Polarwinkel in Einheiten von π im Bereich [ π, π]

Zwischenprüfung. 3. (2 Pkt.) Formulieren Sie beide Lösungen in der Polardarstellung mit Polarwinkel in Einheiten von π im Bereich [ π, π] Datum: 10.04.2019 Elektromagnetische Felder & Wellen Frühjahrssemester 2019 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Zwischenprüfung I Mathematische Grundlagen (35 Pkt.) 1. (1 Pkt.) Wir betrachten

Mehr

5. Wellen. Als Welle bezeichnet man die Ausbreitung einer Störung in einem kontinuierlichen Medium oder einer räumlich periodischen Struktur.

5. Wellen. Als Welle bezeichnet man die Ausbreitung einer Störung in einem kontinuierlichen Medium oder einer räumlich periodischen Struktur. Prof. Dieter Suter Physik B3 SS 03 5.1 Grundlagen 5.1.1 Beispiele und Definition 5. Wellen Als Welle bezeichnet man die Ausbreitung einer Störung in einem kontinuierlichen Medium oder einer räumlich periodischen

Mehr

Beispiele für Ladungstrennung

Beispiele für Ladungstrennung Nennen und erläutern Sie Beispiele für Vorgänge aus Natur, Technik und Alltag, bei denen Ladungstrennung auftritt! Welche Effekte können damit verbunden sein? Beispiele für Ladungstrennung Eine Ladungstrennung

Mehr

7. Periodische Bewegungen Physik für E-Techniker. 7.2 Wellen Harmonische Welle Wellenpakete. Doris Samm FH Aachen

7. Periodische Bewegungen Physik für E-Techniker. 7.2 Wellen Harmonische Welle Wellenpakete. Doris Samm FH Aachen 7. Periodische Bewegungen 7.2 Wellen 7.2.1 Harmonische Welle 7.2.2 Interferenz von Wellen 7.2.3 Wellenpakete 723 7.2.3 Stehende Wellen 7.2 Wellen Störung y breitet sich in Raum x und Zeit t aus. y = f(t)

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung 4 Quantenphänomene Aufgabe 1: Photoeffekt 1 Ein monochromatischer Lichtstrahl trifft auf eine Kalium-Kathode

Mehr

1.4 Gradient, Divergenz und Rotation

1.4 Gradient, Divergenz und Rotation .4 Gradient, Divergenz und Rotation 5.4 Gradient, Divergenz und Rotation Die Begriffe Gradient, Divergenz und Rotation erfordern die partiellen Ableitung aus Abschnitt.. sowie das Konzept des Differentialoperators.

Mehr

Moderne Theoretische Physik IIIa WS 18/19

Moderne Theoretische Physik IIIa WS 18/19 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik IIIa WS 8/9 Prof. Dr. Alexander Mirlin Lösungen zu Blatt 7 Dr. Stefan Rex Besprechung: 9..9.

Mehr

Elektrodynamische Wellen

Elektrodynamische Wellen Elektrodynamische Wellen Hannah Vogel 23.01.2017 Hannah Vogel Elektrodynamische Wellen 23.01.2017 1 / 33 Inhaltsverzeichnis 1 Elektrische und Magnetische Kräfte und Felder 2 Die Maxwell schen Gleichungen

Mehr

[FREIER FALL MIT UND OHNE LUFTWIDERSTAND] 10. Oktober 2010

[FREIER FALL MIT UND OHNE LUFTWIDERSTAND] 10. Oktober 2010 Inhalt Freier Fall ohne Luftwiderstand... 1 Herleitung des Luftwiderstandes... 3 Freier Fall mit Luftwiderstand... 4 Quellen... 9 Lässt man einen Körper aus einer bestimmt Höhe runter fallen, so wird er

Mehr

Maxwell-Gleichungen (1873) Boltzmann: Es war ein Gott der diese Zeichen schrieb?

Maxwell-Gleichungen (1873) Boltzmann: Es war ein Gott der diese Zeichen schrieb? Literatur Feynman: Vorlesungen über Physik, Band II, Oldenbourg H. Vogel: Gerthsen Physik, Springer H.J. Paus: Physik in Experimenten und Beispielen, Hanser P.A. Tipler/R.A. Llewellyn: Moderne Physik,

Mehr

Zwischenprüfung. Mathematische Grundlagen (35 Pkt.)

Zwischenprüfung. Mathematische Grundlagen (35 Pkt.) Datum: 05.04.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Zwischenprüfung I Mathematische Grundlagen (35 Pkt.) 1. (1 Pkt., 97%)

Mehr

11. Vorlesung Wintersemester

11. Vorlesung Wintersemester 11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y

Mehr

Elektromagnetische Felder und Wellen. Klausur Frühjahr Aufgabe 1 (3 Punkte) Aufgabe 2 (5 Punkte) k 21. k 11 H 11

Elektromagnetische Felder und Wellen. Klausur Frühjahr Aufgabe 1 (3 Punkte) Aufgabe 2 (5 Punkte) k 21. k 11 H 11 Elektromagnetische Felder und Wellen: Klausur Frühjahr 2006 1 Elektromagnetische Felder und Wellen Klausur Frühjahr 2006 Aufgabe 1 (3 Punkte) Eine Leiterschleife mit dem Mittelpunkt r L = 2a e z und Radius

Mehr

Kritische Dimensionen

Kritische Dimensionen Kritische Dimensionen Vortrag im Rahmen der Vorlesung Nanostrukturphysik I von Annika Diehl 7. Januar 2012 1 Inhaltsverzeichnis 1. Strukturelle Korrelationen und kooperative Phänomene 2. Ladung und Ladungstransport

Mehr

Höhere Experimentalphysik II

Höhere Experimentalphysik II Höhere Experimentalphysik II Institut für Angewandte Physik Goethe-Universität Frankfurt am Main 2. Teil 6. Vorlesung 18.05.2018 Letzte Woche Plasmaerzeugung mit Hochfrequenz HF-Einkopplung Experimentiersession

Mehr