Kapitel 6. Zusammenfassung der wichtigsten Ergebnisse dieser Arbeit

Größe: px
Ab Seite anzeigen:

Download "Kapitel 6. Zusammenfassung der wichtigsten Ergebnisse dieser Arbeit"

Transkript

1 Kapitel 6 Zusammenfassung der wichtigsten Ergebnisse dieser Arbeit 159

2 160 Kapitel 6. Zusammenfassung der Ergebnisse Im Fokus der vorliegenden Arbeit steht die Frage nach der Eignung verschiedener Matchingverfahren für die empirische Evaluationsforschung unter unterschiedlichen Ausgangsbedingungen. Das bedeutet zum einen die besondere Berücksichtigung relativ kleiner Stichproben, zum anderen eine starke Orientierung an der Art der in der Praxis zur Verfügung stehenden Informationen. Solche Informationen liegen in den zur Evaluation eingesetzten Datensätzen in Form unterschiedlich skalierter Variablen vor. Das macht die Anwendung von Distanzoder Ähnlichkeitsindikatoren notwendig, mit deren Hilfe die Berücksichtigung verschieden skalierter Merkmale ohne Informationsverlust möglich ist. Neben den in empirischen Studien häufig angewendeten Balancing Scores werden im zweiten Kapitel dieser Arbeit aggregierte Distanzmaße aus anderen Wissenschaftsbereichen vorgestellt. Es wird erwartet, dass diese Maße in kleinen Stichproben besser in der Lage sind, die Informationen über Ähnlichkeiten und Unterschiede der betrachteten Personen zusammenzufassen als die bisher überwiegend verwendeten Scores. Für die Zuordnung von Partnern auf Grundlage der ermittelten Distanzen bzw. Ähnlichkeiten werden in der Literatur sehr unterschiedliche Verfahren diskutiert und angewendet. Dabei ist kein Verfahren den anderen generell überlegen. Die Algorithmen lassen sich nach verschiedenen Aspekten unterscheiden. So ist die Anzahl der einer Person zugeordneten Partner ein Kriterium, nach dem Nearest Neighbor Matching von Zuordnungen einer festen oder variablen Anzahl von Personen incl. der vollständigen Zuordnung der zur Verfügung stehenden potenziellen Partner zu einem Teilnehmer unterschieden wird. Ein anderes Kriterium ist die Möglichkeit der Mehrfachzuordnung einer Person, nach dem Verfahren mit dieser Möglichkeit (Zuordnung mit Zurücklegen) von solchen ohne Mehrfachnutzung (Zuordnung ohne Zurücklegen) zu trennen sind. Zur erstgenannten Gruppe gehören auch die Verfahren der Local Polynomial Regression. Eine besondere Bedeutung kommt den optimalen Zuordnungsprozessen zu, da mit ihnen die bestmögliche Zuordnung (hinsichtlich eines vorher festgelegten Kriteriums) erreicht werden kann. Die Vorstellung solcher überwiegend aus der linearen Optimierung bzw. der Graphentheorie bekannten Verfahren bildet einen weiteren Schwerpunkt des zweiten Kapitels dieser Arbeit.

3 161 Das dritte Kapitel gibt einen Überblick über den Stand der Forschung zur Entwicklung von Standards bei der Wahl geeigneter Matchingverfahren in verschiedenen Situationen. In diesen Studien wird festgestellt, dass Matchingverfahren besser als andere nichtparametrische und parametrische Verfahren in der Lage sind, das Selektionsproblem zu lösen, wenn umfangreiche Informationen über die betrachteten Personen zur Verfügung stehen. Die Wahl eines geeigneten Algorithmus ist dabei abhängig von den verfügbaren Daten. Unter den diskutierten Distanzmaßen werden der Propensity Score und der Index Score sowie die Mahalanobisdistanz für die empirische Forschung empfohlen. In Bezug auf Zuordnungsprozesse werden Optimal Full Matching, Ridge Matching und die Zuordnung mit Zurücklegen als vorteilhaft gegenüber anderen Verfahren angesehen. Im vierten Kapitel wird eine Simulationsstudie vorgestellt, in der die empfohlenen Distanzmaße und Zuordungsprozesse miteinander verglichen werden. Zusätzlich zu den in der Literatur favorisierten Distanzmaßen werden zwei der vorgestellten aggregierten Distanzmaße, die Mahalanobis-Matching-Distanz und das Ähnlichkeitsmaß von Gower, in die Analyse einbezogen. Neben den in früheren Studien hervorgehobenen Zuordnungsalgorithmen und einem in der empirischen Literatur weit verbreiteten Verfahren, dem Random Matching, werden zwei Algorithmen aus der Gruppe der optimalen Zuordnungsprozesse betrachtet: der Ungarische Algorithmus für optimale 1:1-Zuordungen sowie ein Auktionsalgorithmus für Optimal Full Matching. Als Datenbasis der Simulation dient eine Nachbildung des Mikrozensus Deutschland. Mit dieser engen Orientierung an einem häufig in der Arbeitsmarktforschung eingesetzten Datensatz wird eine realitätsnahe Verteilung der unterschiedlich skalierten Merkmale in den untersuchten Stichproben erreicht. In jedem Schritt der Untersuchung werden verschiedene Teilnehmer- und Nichteilnehmerstichproben miteinander kombiniert, die sich in ihrer Größe insgesamt, dem Zahlenverhältnis von Teilnehmern und Nichtteilnehmern sowie dem Grad der Übereinstimmung der Merkmalsverteilungen in beiden Gruppen unterscheiden. In jedem Schritt werden jeweils 100 Simulationsläufe durchgeführt. Die Ergebnisse werden anhand unterschiedlicher Gütemaße beurteilt. Zur Prüfung der Distanzmaße werden neben der Bias Reduzierung durch Matching nichtpara-

4 162 Kapitel 6. Zusammenfassung der Ergebnisse metrische skalenspezifische Tests der Übereinstimmung der Mittelwerte bzw. Häufigkeitsverteilungen der einzelnen betrachteten Variablen eingesetzt: für metrisch skalierte Merkmale der Vorzeichen-Rangtest von Wilcoxon, für dichotome der Mc- Nemartest und für polytome Variablen der χ 2 -Homogenitätstest. Diese Tests stellen eine sinnvolle Alternative zu den bisher in der Literatur gebräuchlichen Verfahren der Gütemessung dar. Die Beurteilung der Zuodnunsprozesse erfolgt anhand des mittleren quadratischen Fehlers, des Bias und der empirischen Varianz sowie der Summe der quadrierten Distanzen zwischen Teilnehmern und Nichtteilnehmern. Im ersten Teil der Analyse wird festgestellt, dass die Zusammenfassung unterschiedlich skalierter Merkmale mit den untersuchten Balancing Scores (Index Score und Propensity Score) deutlich schlechter gelingt als mit der Mahalanobisdistanz und den aggregierten Distanzmaßen. Die gewichtete Mahalanobis-Matching-Distanz scheint am besten zur Feststellung von Ähnlichkeiten bzw. Unterschieden der betrachteten Personen geeignet zu sein. Allerdings schwankt die Güte der erzielten Ergebnisse mit dem Skalenniveau der Variablen. Während die Angleichung der Verteilung nominaler (dichotomer und vor allem polytomer) Variablen sehr gut gelingt, treten nach dem Matching relativ häufig noch Unterschiede in der Verteilung der metrischen Variablen auf. Das Gegenteil gilt für das Distanzmaß nach Gower. In einer weiterführenden Analyse wäre zu prüfen, ob mit einer Verbindung beider Distanzmaße die Kombination ihrer jeweiligen Vorteile möglich ist. Dazu müsste der verallgemeinerte Matchingkoeffizient für nominale Variablen mit der normierten absoluten Merkmalsdifferenz metrischer Variablen verknüpft werden. Im zweiten Teil der Analyse ergeben die verschiedenen betrachteten Gütemaße ein sehr heterogenes Bild. Kein Zuordnungsalgorithmus liefert in allen Qualitätskriterien gleichermaßen gute oder schlechte Ergebnisse. Die Rangfolge, die sich beim Vergleich der Prozesse ergibt, ist abhängig vom betrachteten Gütemaß. Wird der mittlere quadratische Fehler betrachtet, gelingt mit Optimal Full Matching die Zuordnung der besten Partner in Stichproben mit unterschiedlich großen Teilnehmer- und Nichtteilnehmerzahlen. Dies ist umso deutlicher, je größer die Nichtteilnehmerstichprobe im Vergleich zur Teilnehmerstichprobe ist. Verwendet man dagegen die Summe der quadrierten Distanzen als Gütekriterium zur Beurteilung der Ähnlichkeit der Merkmalsverteilungen in Teilnehmer- und Kontrollgruppe,

5 163 liefert die Zuordnung mit Zurücklegen die besten Ergebnisse unter den betrachteten Zuordnungsprozessen. Für die beiden 1:1-Zuordnungsprozesse ohne Mehrfachzuordnung werden sehr ähnliche Ergebnisse hinsichtlich aller Gütemaße beobachtet. Es lässt sich kein Vorteil des optimalen Nearest Neighbor Matching gegenüber dem Random Matching nachweisen. Das Ridge Matching wird hinsichtlich aller Kriterien schlechter bewertet als die anderen analysierten Zuordnungsprozesse. Mit der empirischen Untersuchung des fünften Kapitels soll die Frage, ob die Absolventen geförderter Berufsausbildungen in den Neuen Bundesländern beim Berufseinstieg gegenüber Absolventen ungeförderter Ausbildungsgänge benachteiligt sind, beantwortet werden. Hinsichtlich der Förderung wird zwischen außerbetrieblicher und betriebsnaher Ausbildung unterschieden. Die Analyse wird auf Basis des Jugendpanels des Zentrums für Sozialforschung Halle durchgeführt, aus dem Informationen über die Jugendlichen, die eine Berufsausbildung erfolgreich abgeschlossen haben, genutzt werden. Aus der deskriptiven Analyse dieser Stichprobe wird deutlich, dass die Berufseinstiegschancen der geförderten Jugendlichen schlechter sind als die der ungefördert Ausgebildeten. Ebenfalls deutlich wird eine ungleiche Verteilung der Merkmale in den Teilstichproben, woraus sich die ungleichen Chancen auf dem Arbeitsmarkt zum Teil erklären lassen. Ob darüber hinaus der Umstand der Förderung selbst einen Einfluss auf die Beschäftigungschancen der Jugendlichen hat, wird in der Analyse mit Hilfe der Zuordnung mit Zurücklegen ermittelt. Sowohl für die außerbetriebliche als auch die betriebsnahe Berufsausbildung wird ein negativer Effekt der Förderung auf die Berufseinstiegschancen der Jugendlichen festgestellt. Dies trifft sowohl auf den Anteil der Jugendlichen, die eine Beschäftigung aufnehmen, als auch auf qualitative Merkmale der aufgenommenen Berufstätigkeit zu. Der Vergleich beider Arten der Förderung ergibt keinen Hinweis darauf, dass außerbetrieblich geförderte Jugendliche schlechtere Berufseinstiegschancen haben als die Absolventen betriebsnaher Ausbildungen.

6 164 Kapitel 6. Zusammenfassung der Ergebnisse

Inhaltsverzeichnis. Vorwort

Inhaltsverzeichnis. Vorwort V Vorwort XI 1 Zum Gebrauch dieses Buches 1 1.1 Einführung 1 1.2 Der Text in den Kapiteln 1 1.3 Was Sie bei auftretenden Problemen tun sollten 2 1.4 Wichtig zu wissen 3 1.5 Zahlenbeispiele im Text 3 1.6

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen Inferenzstatistik 2 [Übungsaufgaben und Lösungenn - Inferenzstatistik 2] ÜBUNGSAUFGABEN

Mehr

(K)Ein Weg aus der Arbeitslosigkeit? Evaluation von Weiterbildungsmaßnahmen für verschiedene Zielgruppen

(K)Ein Weg aus der Arbeitslosigkeit? Evaluation von Weiterbildungsmaßnahmen für verschiedene Zielgruppen (K)Ein Weg aus der Arbeitslosigkeit? Evaluation von Weiterbildungsmaßnahmen für verschiedene Zielgruppen Die Förderung der beruflichen Weiterbildung ist eines der wichtigsten Instrumente der Arbeitsmarktpolitik

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

Kapitel 6: Zweifaktorielle Varianzanalyse

Kapitel 6: Zweifaktorielle Varianzanalyse Kapitel 6: Zweifaktorielle Varianzanalyse Durchführung einer zweifaktoriellen Varianzanalyse ohne Messwiederholung 1 Effektstärke und empirische Teststärke einer zweifaktoriellen Varianzanalyse ohne Messwiederholung

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Teil: lineare Regression

Teil: lineare Regression Teil: lineare Regression 1 Einführung 2 Prüfung der Regressionsfunktion 3 Die Modellannahmen zur Durchführung einer linearen Regression 4 Dummyvariablen 1 Einführung o Eine statistische Methode um Zusammenhänge

Mehr

Überblick über multivariate Verfahren in der Statistik/Datenanalyse

Überblick über multivariate Verfahren in der Statistik/Datenanalyse Überblick über multivariate Verfahren in der Statistik/Datenanalyse Die Klassifikation multivariater Verfahren ist nach verschiedenen Gesichtspunkten möglich: Klassifikation nach der Zahl der Art (Skalenniveau)

Mehr

Grundlegende Eigenschaften von Punktschätzern

Grundlegende Eigenschaften von Punktschätzern Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur

Mehr

Statistik. Für Sozialwissenschaftler. Dritte, neu bearbeitete Auflage Mit 71 Abbildungen und 224 Tabellen

Statistik. Für Sozialwissenschaftler. Dritte, neu bearbeitete Auflage Mit 71 Abbildungen und 224 Tabellen Jürgen Bortz Statistik Für Sozialwissenschaftler Dritte, neu bearbeitete Auflage Mit 71 Abbildungen und 224 Tabellen Springer-Verlag Berlin Heidelberg Newlfork London Paris Tokyo Inhaltsverzeichnis Einleitung

Mehr

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße Wofür? Lageparameter Modus/ Modalwert Zentrum Median Zentralwert Im Datensatz stehende Informationen auf wenige Kenngrößen verdichten ermöglicht

Mehr

Signalverarbeitung 2. Volker Stahl - 1 -

Signalverarbeitung 2. Volker Stahl - 1 - - 1 - Überblick Bessere Modelle, die nicht nur den Mittelwert von Referenzvektoren sondern auch deren Varianz berücksichtigen Weniger Fehlklassifikationen Mahalanobis Abstand Besseres Abstandsmaß basierend

Mehr

Statistik II: Signifikanztests /1

Statistik II: Signifikanztests /1 Medien Institut : Signifikanztests /1 Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Noch einmal: Grundlagen des Signifikanztests 2. Der chi 2 -Test 3. Der t-test

Mehr

Bei näherer Betrachtung des Diagramms Nr. 3 fällt folgendes auf:

Bei näherer Betrachtung des Diagramms Nr. 3 fällt folgendes auf: 18 3 Ergebnisse In diesem Kapitel werden nun zunächst die Ergebnisse der Korrelationen dargelegt und anschließend die Bedingungen der Gruppenbildung sowie die Ergebnisse der weiteren Analysen. 3.1 Ergebnisse

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen - nominal, ordinal, metrisch In SPSS: - Einfache -> Mittelwerte vergleichen -> Einfaktorielle - Mehrfaktorielle -> Allgemeines lineares Modell -> Univariat In SPSS: -> Nichtparametrische Tests -> K unabhängige

Mehr

TEIL 13: DIE EINFACHE LINEARE REGRESSION

TEIL 13: DIE EINFACHE LINEARE REGRESSION TEIL 13: DIE EINFACHE LINEARE REGRESSION Die einfache lineare Regression Grundlagen Die einfache lineare Regression ist ebenfalls den bivariaten Verfahren für metrische Daten zuzuordnen 1 Sie hat einen

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Empirische Analysen mit dem SOEP

Empirische Analysen mit dem SOEP Empirische Analysen mit dem SOEP Methodisches Lineare Regressionsanalyse & Logit/Probit Modelle Kurs im Wintersemester 2007/08 Dipl.-Volksw. Paul Böhm Dipl.-Volksw. Dominik Hanglberger Dipl.-Volksw. Rafael

Mehr

Statistische Grundlagen I

Statistische Grundlagen I Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.

Mehr

Pilotierung der Unterrichtsbeispiele im Schuljahr 2008/2009 Englisch

Pilotierung der Unterrichtsbeispiele im Schuljahr 2008/2009 Englisch Pilotierung der Unterrichtsbeispiele im Schuljahr 2008/2009 Englisch Im Schuljahr 2008/2009 wurde die Pilotierung der Unterrichtsbeispiele für Englisch durchgeführt. Insgesamt waren für die Pilotierung

Mehr

10 Der statistische Test

10 Der statistische Test 10 Der statistische Test 10.1 Was soll ein statistischer Test? 10.2 Nullhypothese und Alternativen 10.3 Fehler 1. und 2. Art 10.4 Parametrische und nichtparametrische Tests 10.1 Was soll ein statistischer

Mehr

Multivariate Statistische Methoden

Multivariate Statistische Methoden Multivariate Statistische Methoden und ihre Anwendung in den Wirtschafts- und Sozialwissenschaften Von Prof. Dr. Hans Peter Litz Carl von Ossietzky Universität Oldenburg v..v.-'... ':,. -X V R.Oldenbourg

Mehr

Gewichtung und Validierung der Nettostichprobe (Welle 1 des Projekts Lebensziele und Lebensverläufe in Ostdeutschland )

Gewichtung und Validierung der Nettostichprobe (Welle 1 des Projekts Lebensziele und Lebensverläufe in Ostdeutschland ) Gewichtung und Validierung der Nettostichprobe (Welle 1 des Projekts Lebensziele und Lebensverläufe in Ostdeutschland ) Gewichtung Da es sich bei dieser Studie um eine Einwohnermeldeamtsstudie handelt,

Mehr

Datenanalyse mit Excel. Wintersemester 2013/14

Datenanalyse mit Excel. Wintersemester 2013/14 Datenanalyse mit Excel 1 KORRELATIONRECHNUNG 2 Korrelationsrechnung Ziel der Korrelationsrechnung besteht im bivariaten Fall darin, die Stärke des Zusammenhangs zwischen zwei interessierenden statistischen

Mehr

Statistik IV für Studenten mit dem Nebenfach Statistik Lösungen zu Blatt 9 Gerhard Tutz, Jan Ulbricht SS 07

Statistik IV für Studenten mit dem Nebenfach Statistik Lösungen zu Blatt 9 Gerhard Tutz, Jan Ulbricht SS 07 Statistik IV für Studenten mit dem Nebenfach Statistik Lösungen zu Blatt 9 Gerhard Tutz, Jan Ulbricht SS 07 Ziel der Clusteranalyse: Bilde Gruppen (cluster) aus einer Menge multivariater Datenobjekte (stat

Mehr

Kapitel 1 Beschreibende Statistik

Kapitel 1 Beschreibende Statistik Beispiel 1.25: fiktive Aktienkurse Zeitpunkt i 0 1 2 Aktienkurs x i 100 160 100 Frage: Wie hoch ist die durchschnittliche Wachstumsrate? Dr. Karsten Webel 53 Beispiel 1.25: fiktive Aktienkurse (Fortsetzung)

Mehr

Geförderte Berufsausbildung in den Neuen Ländern: Sprungbrett oder Sackgasse?

Geförderte Berufsausbildung in den Neuen Ländern: Sprungbrett oder Sackgasse? Geförderte Berufsausbildung in den Neuen Ländern: Sprungbrett oder Sackgasse? Innerhalb des Berufsausbildungssystems, das traditionell geprägt ist durch die duale und schulische sgänge, haben sich in den

Mehr

Multivariate Statistische Methoden und ihre Anwendung

Multivariate Statistische Methoden und ihre Anwendung Multivariate Statistische Methoden und ihre Anwendung in den Wirtschafts- und Sozialwissenschaften Von Prof. Dr. Hans Peter Litz Carl von Ossietzky Universität Oldenburg R. Oldenbourg Verlag München Wien

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO 4. Dezember 2001 Generalisierung der aus Stichprobendaten berechneten Regressionsgeraden Voraussetzungen für die Generalisierung

Mehr

TEIL 13: DIE LINEARE REGRESSION

TEIL 13: DIE LINEARE REGRESSION TEIL 13: DIE LINEARE REGRESSION Dozent: Dawid Bekalarczyk GLIEDERUNG Dozent: Dawid Bekalarczyk Lineare Regression Grundlagen Prognosen / Schätzungen Verbindung zwischen Prognose und Zusammenhang zwischen

Mehr

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08 Computergestützte Methoden Master of Science Prof. Dr. G. H. Franke WS 07/08 1 Seminarübersicht 1. Einführung 2. Recherchen mit Datenbanken 3. Erstellung eines Datenfeldes 4. Skalenniveau und Skalierung

Mehr

Teil I: Deskriptive Statistik

Teil I: Deskriptive Statistik Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten

Mehr

Kontingenzkoeffizient (nach Pearson)

Kontingenzkoeffizient (nach Pearson) Assoziationsmaß für zwei nominale Merkmale misst die Unabhängigkeit zweier Merkmale gibt keine Richtung eines Zusammenhanges an 46 o jl beobachtete Häufigkeiten der Kombination von Merkmalsausprägungen

Mehr

Kapitel 7. Crossvalidation

Kapitel 7. Crossvalidation Kapitel 7 Crossvalidation Wie im Kapitel 5 erwähnt wurde, ist die Crossvalidation die beste Technik, womit man die Genauigkeit der verschiedenen Interpolationsmethoden überprüft. In diesem Kapitel wurde

Mehr

Florian Frötscher und Demet Özçetin

Florian Frötscher und Demet Özçetin Statistische Tests in der Mehrsprachigkeitsforschung Aufgaben, Anforderungen, Probleme. Florian Frötscher und Demet Özçetin florian.froetscher@uni-hamburg.de SFB 538 Mehrsprachigkeit Max-Brauer-Allee 60

Mehr

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für

Mehr

5 Selbstkonstruktion und interpersonale Distanz empirische Prüfung

5 Selbstkonstruktion und interpersonale Distanz empirische Prüfung Selbstkonstruktion und interpersonale Distanz U.R. Roeder - 66-5 Selbstkonstruktion und interpersonale Distanz empirische Prüfung 5.1 Die Hypothesen Im Rahmen dieser Arbeit können nur wenige der im theoretischen

Mehr

Nicht-parametrische Statistik Eine kleine Einführung

Nicht-parametrische Statistik Eine kleine Einführung Nicht-parametrische Statistik Eine kleine Einführung Überblick Anwendung nicht-parametrischer Statistik Behandelte Tests Mann-Whitney U Test Kolmogorov-Smirnov Test Wilcoxon Test Binomialtest Chi-squared

Mehr

Grundlagen der Statistik

Grundlagen der Statistik Grundlagen der Statistik Übung 2 2010 FernUniversität in Hagen Alle Rechte vorbehalten Fakultät für Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe

Mehr

ZUSAMMENFASSUNG INTERNATIONALE WIRTSCHAFT

ZUSAMMENFASSUNG INTERNATIONALE WIRTSCHAFT ZUSAMMENFASSUNG INTERNATIONALE WIRTSCHAFT Ergebnisse der empirischen Überprüfung von Unterrichtsbeispielen Birgit Reisenhofer Gerhard Schrangl Jörg Zumbach 1. Einleitung: In der Entwicklung von Bildungsstandards

Mehr

Wie beurteilen Studierende computergestützte Prüfungen? Erste Ergebnisse der Evaluation der E-Examinations an der Freien Universität Berlin

Wie beurteilen Studierende computergestützte Prüfungen? Erste Ergebnisse der Evaluation der E-Examinations an der Freien Universität Berlin Wie beurteilen Studierende computergestützte Prüfungen? Erste Ergebnisse der Evaluation der E-Examinations an der Freien Universität Berlin Dr. Susanne Bergann Arbeitsstelle Lehr- und Studienqualität Fachbereich

Mehr

Seminar zur Energiewirtschaft:

Seminar zur Energiewirtschaft: Seminar zur Energiewirtschaft: Ermittlung der Zahlungsbereitschaft für erneuerbare Energien bzw. bessere Umwelt Vladimir Udalov 1 Modelle mit diskreten abhängigen Variablen 2 - Ausgangssituation Eine Dummy-Variable

Mehr

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden.

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Teil III: Statistik Alle Fragen sind zu beantworten. Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Wird

Mehr

Lehrbuch der Statistik

Lehrbuch der Statistik Jürgen Bortz Lehrbuch der Statistik Für Sozialwissenschaftler Zweite, vollständig neu bearbeitete und erweiterte Auflage Mit 71 Abbildungen und 223 Tabellen Springer-Verlag Berlin Heidelberg New York Tokyo

Mehr

Chi-Quadrat Verfahren

Chi-Quadrat Verfahren Chi-Quadrat Verfahren Chi-Quadrat Verfahren werden bei nominalskalierten Daten verwendet. Die einzige Information, die wir bei Nominalskalenniveau zur Verfügung haben, sind Häufigkeiten. Die Quintessenz

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008 Aufgabe 1 Ihnen liegt

Mehr

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend oder eindeutig, wenn keine alternativen Interpretationsmöglichkeiten

Mehr

ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II

ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II 1.1 Durch welche Elemente lässt sich laut der Formel für die multiple Regression der Wert einer Person auf einer bestimmten abhängigen Variable Y vorhersagen? a)

Mehr

Grundgesamtheit und Stichprobe

Grundgesamtheit und Stichprobe Grundgesamtheit und Stichprobe Definition 1 Die Menge der Untersuchungseinheiten {U 1,U 2,...,U N } heißt Grundgesamtheit. Die Anzahl N der Einheiten ist der Umfang der Grundgesamtheit. Jeder Einheit U

Mehr

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5 Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung

Mehr

Aufgaben zu Kapitel 9

Aufgaben zu Kapitel 9 Aufgaben zu Kapitel 9 Aufgabe 1 Für diese Aufgabe benötigen Sie den Datensatz Nominaldaten.sav. a) Sie arbeiten für eine Marktforschungsfirma und sollen überprüfen, ob die in diesem Datensatz untersuchte

Mehr

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.) ue biostatistik: nichtparametrische testverfahren / ergänzung 1/6 h. Lettner / physik Statistische Testverfahren Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Mehr

Überblick über die Verfahren für Ordinaldaten

Überblick über die Verfahren für Ordinaldaten Verfahren zur Analyse ordinalskalierten Daten 1 Überblick über die Verfahren für Ordinaldaten Unterschiede bei unabhängigen Stichproben Test U Test nach Mann & Whitney H Test nach Kruskal & Wallis parametrische

Mehr

Anpassungstests VORGEHENSWEISE

Anpassungstests VORGEHENSWEISE Anpassungstests Anpassungstests prüfen, wie sehr sich ein bestimmter Datensatz einer erwarteten Verteilung anpasst bzw. von dieser abweicht. Nach der Erläuterung der Funktionsweise sind je ein Beispiel

Mehr

Berichte aus der Statistik. Christian Köck. Multivariate Copula-Modelle für Finanzmarktdaten

Berichte aus der Statistik. Christian Köck. Multivariate Copula-Modelle für Finanzmarktdaten Berichte aus der Statistik Christian Köck Multivariate Copula-Modelle für Finanzmarktdaten Eine simulative und empirische Untersuchung D 29 (Diss. Universität Erlangen-Nurnberg) Shaker Verlag Aachen 2008

Mehr

Bivariater Zusammenhang in der Mehrfeldertafel PEΣO

Bivariater Zusammenhang in der Mehrfeldertafel PEΣO Bivariater Zusammenhang in der Mehrfeldertafel PEΣO 9. November 2001 Bivariate Häufigkeitsverteilungen in Mehrfeldertabellen In der Mehrfeldertabelle werden im Gegensatz zur Vierfeldertabelle keine dichotomen

Mehr

Psychische Gesundheit von älteren türkischen Migrantinnen und Migranten. Fidan Sahyazici Dr. Oliver Huxhold

Psychische Gesundheit von älteren türkischen Migrantinnen und Migranten. Fidan Sahyazici Dr. Oliver Huxhold Psychische Gesundheit von älteren türkischen Migrantinnen und Migranten Fidan Sahyazici Dr. Oliver Huxhold Gliederung Bedeutung Theoretischer Hintergrund Fragestellungen Hypothesen Methode Ergebnisse Interpretation/Diskussion

Mehr

Eigene MC-Fragen Grundbegriffe der Statistik (X aus 5)

Eigene MC-Fragen Grundbegriffe der Statistik (X aus 5) Eigene MC-Fragen Grundbegriffe der Statistik (X aus 5) 1. Welche Reihenfolge ist zutreffend auf den Ablauf einer statistischen Untersuchung laut SB? A B C D Aufbereitung Erhebung Planung Auswertung C-D-A-B

Mehr

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG Statistische Methoden In der vorliegenden fiktiven Musterstudie wurden X Patienten mit XY Syndrom (im folgenden: Gruppe XY) mit Y Patienten eines unauffälligem

Mehr

Auswahlverfahren. Schnell, R. Hill, P. B. Esser, E. 1999, Methoden der empirischen Sozialforschung. München: Oldenbourg. Seiten ;

Auswahlverfahren. Schnell, R. Hill, P. B. Esser, E. 1999, Methoden der empirischen Sozialforschung. München: Oldenbourg. Seiten ; Auswahlverfahren Objektbereich & Grundgesamtheit Vollerhebung Volkszählung Teilerhebung angestrebte Grundgesamtheit Auswahlgesamtheit Inferenzpopulation Willkürliche Auswahl Bewußte Auswahl Schnell, R.

Mehr

Statistik. Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz. Der Weg zur Datenanalyse. Springer. Zweite, verbesserte Auflage

Statistik. Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz. Der Weg zur Datenanalyse. Springer. Zweite, verbesserte Auflage Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz Statistik Der Weg zur Datenanalyse Zweite, verbesserte Auflage Mit 165 Abbildungen und 34 Tabellen Springer Inhaltsverzeichnis Vorwort v 1 Einführung

Mehr

8. Statistik Beispiel Noten. Informationsbestände analysieren Statistik

8. Statistik Beispiel Noten. Informationsbestände analysieren Statistik Informationsbestände analysieren Statistik 8. Statistik Nebst der Darstellung von Datenreihen bildet die Statistik eine weitere Domäne für die Auswertung von Datenbestände. Sie ist ein Fachgebiet der Mathematik

Mehr

1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung?

1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung? 86 8. Lageparameter Leitfragen 1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung? 2) Was ist der Unterschied zwischen Parametern der Lage und der Streuung?

Mehr

Grundzüge der Faktorenanalyse

Grundzüge der Faktorenanalyse SEITE Grundzüge der Faktorenanalyse Bei der Faktorenanalyse handelt es sich um ein Verfahren, mehrere Variablen durch möglichst wenige gemeinsame, hinter ihnen stehende Faktoren zu beschreiben. Beispiel:

Mehr

Aufgaben zu Kapitel 5:

Aufgaben zu Kapitel 5: Aufgaben zu Kapitel 5: Aufgabe 1: Ein Wissenschaftler untersucht, in wie weit die Reaktionszeit auf bestimmte Stimuli durch finanzielle Belohnung zu steigern ist. Er möchte vier Bedingungen vergleichen:

Mehr

Lukas Dünser. Institut für Höhere Studien (IHS) Wien

Lukas Dünser. Institut für Höhere Studien (IHS) Wien Lukas Dünser Institut für Höhere Studien (IHS) Wien Interaktion zwischen Wirtschaftsstruktur und beruflicher Bildung Struktureller Einfluss des regionalen Arbeitsmarktes auf das Arbeitslosigkeitsrisiko

Mehr

Statistik für das Psychologiestudium

Statistik für das Psychologiestudium Dieter Rasch / Klaus D. Kubinger Statistik für das Psychologiestudium Mit Softwareunterstützung zur Planung und Auswertung von Untersuchungen sowie zu sequentiellen Verfahren ELSEVIER SPEKTRUM AKADEMISCHER

Mehr

Einfache Varianzanalyse für unabhängige Stichproben

Einfache Varianzanalyse für unabhängige Stichproben Einfache Varianzanalyse für unabhängige Stichproben VARIANZANALYSE Die Varianzanalyse ist das dem t-test entsprechende Mittel zum Vergleich mehrerer (k 2) Stichprobenmittelwerte. Sie wird hier mit VA abgekürzt,

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen

Mehr

Bitte am PC mit Windows anmelden!

Bitte am PC mit Windows anmelden! Einführung in SPSS Plan für heute: Grundlagen/ Vorwissen für SPSS Vergleich der Übungsaufgaben Einführung in SPSS http://weknowmemes.com/generator/uploads/generated/g1374774654830726655.jpg Standardnormalverteilung

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test 1 Der zweidimensionale Chi²-Test 4 Eindimensionaler Chi²-Test Der eindimensionale χ²-test wird dann herangezogen, wenn die Versuchspersonen

Mehr

Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche

Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche Lehrveranstaltung Empirische Forschung und Politikberatung der Universität Bonn, WS 2007/2008 Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche 30. November 2007 Michael

Mehr

Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen Hochschule Esslingen Übungsblatt 2. Statistik

Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen Hochschule Esslingen Übungsblatt 2. Statistik Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen 6.10.2016 Hochschule Esslingen Übungsblatt 2 Statistik Stichworte: arithmetischer Mittelwert, empirische Varianz, empirische Standardabweichung, empirischer

Mehr

Was sind Zusammenhangsmaße?

Was sind Zusammenhangsmaße? Was sind Zusammenhangsmaße? Zusammenhangsmaße beschreiben einen Zusammenhang zwischen zwei Variablen Beispiele für Zusammenhänge: Arbeiter wählen häufiger die SPD als andere Gruppen Hochgebildete vertreten

Mehr

4.Wie gut haben Sie im letzten Jahr(1997) Ihre Ziele bezüglich der Neukundengewinnung erreicht? 1 = gar nicht erreicht 7 = voll erreicht

4.Wie gut haben Sie im letzten Jahr(1997) Ihre Ziele bezüglich der Neukundengewinnung erreicht? 1 = gar nicht erreicht 7 = voll erreicht 2.2.4.1. Antwortprofil Anhand einer siebenstufigen Ratingskala 1 konnten die Unternehmen den Zielerreichungsgrad bezüglich der einzelnen vorgegebenen Ziele ankreuzen. Abbildung 33 zeigt das Antwortprofil

Mehr

Mann-Whitney-U-Test für zwei unabhängige Stichproben

Mann-Whitney-U-Test für zwei unabhängige Stichproben Mann-Whitney-U-Test für zwei unabhängige Stichproben Wir haben bis jetzt einen einzigen Test für unabhängige Stichproben kennen gelernt, nämlich den T-Test. Wie wir bereits wissen, sind an die Berechnung

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik Kapitel 15 Statistische Testverfahren 15.1. Arten statistischer Test Klassifikation von Stichproben-Tests Einstichproben-Test Zweistichproben-Test - nach der Anzahl der Stichproben - in Abhängigkeit von

Mehr

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/19 Skalenniveaus Skalenniveau Relation

Mehr

Grundlagen der Datenanalyse

Grundlagen der Datenanalyse Schematischer Überblick zur Behandlung quantitativer Daten Theorie und Modellbildung Untersuchungsdesign Codierung / Datenübertragung (Erstellung einer Datenmatrix) Datenerhebung Fehlerkontrolle / -behebung

Mehr

Eigene MC-Fragen Kap. 4 Faktorenanalyse, Aggregation, Normierung. 1. Welche Aussage zu den Prinzipien der Faktorenanalyse ist zutreffend?

Eigene MC-Fragen Kap. 4 Faktorenanalyse, Aggregation, Normierung. 1. Welche Aussage zu den Prinzipien der Faktorenanalyse ist zutreffend? Eigene MC-Fragen Kap. 4 Faktorenanalyse, Aggregation, Normierung 1. Welche Aussage zu den Prinzipien der Faktorenanalyse ist zutreffend? a) Die Faktorenanalyse hat ihren Ursprung in der theoretischen Intelligenzforschung.

Mehr

Analytische Statistik II

Analytische Statistik II Analytische Statistik II Institut für Geographie 1 Schätz- und Teststatistik 2 Das Testen von Hypothesen Während die deskriptive Statistik die Stichproben nur mit Hilfe quantitativer Angaben charakterisiert,

Mehr

Entscheidungsbaumverfahren

Entscheidungsbaumverfahren Entscheidungsbaumverfahren Allgemeine Beschreibung Der Entscheidungsbaum ist die Darstellung einer Entscheidungsregel, anhand derer Objekte in Klassen eingeteilt werden. Die Klassifizierung erfolgt durch

Mehr

Übungsserie Nr. 10 mit Lösungen

Übungsserie Nr. 10 mit Lösungen Übungsserie Nr. 10 mit Lösungen 1 Ein Untersuchungsdesign sieht einen multivariaten Vergleich einer Stichprobe von Frauen mit einer Stichprobe von Männern hinsichtlich der Merkmale X1, X2 und X3 vor (Codierung:

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Varianzanalyse Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr. Wolfgang

Mehr

Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC. Referenten: Linda Gräfe & Konstantin Falk

Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC. Referenten: Linda Gräfe & Konstantin Falk Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC Referenten: Linda Gräfe & Konstantin Falk 1 Agenda Schätzverfahren ML REML Beispiel in SPSS Modellbeurteilung Devianz AIC BIC

Mehr

Statistik II Übung 1: Einfache lineare Regression

Statistik II Übung 1: Einfache lineare Regression Statistik II Übung 1: Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (16-24 Jahre alt) und der Anzahl der

Mehr

3. Deskriptive Statistik

3. Deskriptive Statistik 3. Deskriptive Statistik Eindimensionale (univariate) Daten: Pro Objekt wird ein Merkmal durch Messung / Befragung/ Beobachtung erhoben. Resultat ist jeweils ein Wert (Merkmalsausprägung) x i : - Gewicht

Mehr

Statistik, Geostatistik

Statistik, Geostatistik Geostatistik Statistik, Geostatistik Statistik Zusammenfassung von Methoden (Methodik), die sich mit der wahrscheinlichkeitsbezogenen Auswertung empirischer (d.h. beobachteter, gemessener) Daten befassen.

Mehr

Tab. 4.1: Altersverteilung der Gesamtstichprobe BASG SASG BAS SAS UDS SCH AVP Mittelwert Median Standardabweichung 44,36 43,00 11,84

Tab. 4.1: Altersverteilung der Gesamtstichprobe BASG SASG BAS SAS UDS SCH AVP Mittelwert Median Standardabweichung 44,36 43,00 11,84 Im weiteren wird gemäß den allgemeinen statistischen Regeln zufolge bei Vorliegen von p=,5 und

Mehr

Forschungsmethoden in der Sozialen Arbeit

Forschungsmethoden in der Sozialen Arbeit Forschungsmethoden in der Sozialen Arbeit Fachhochschule für Sozialarbeit und Sozialpädagogik Alice- Salomon Hochschule für Soziale arbeit, Gesundheit, Erziehung und Bildung University of Applied Sciences

Mehr

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkommen zur Vorlesung Statistik smaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer

Mehr

Teil II: Einführung in die Statistik

Teil II: Einführung in die Statistik Teil II: Einführung in die Statistik (50 Punkte) Bitte beantworten Sie ALLE Fragen. Es handelt sich um multiple choice Fragen. Sie müssen die exakte Antwortmöglichkeit angeben, um die volle Punktzahl zu

Mehr

5. Clusteranalyse. Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften

5. Clusteranalyse. Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften 5. Clusteranalyse Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften benennen und anwenden können, einen Test auf das Vorhandensein einer Clusterstruktur kennen, verschiedene

Mehr

Grundlagen der Probabilistik

Grundlagen der Probabilistik Grundlagen der Probabilistik Gliederung Einleitung Theoretische Grundlagen der Stochastik Probabilistische Methoden Mögliche Ergebnisse von probabilistischen Untersuchungen Mögliche Fehlerquellen bei probabilistischen

Mehr

Experimentelle und quasiexperimentelle

Experimentelle und quasiexperimentelle Experimentelle und quasiexperimentelle Designs Experimentelle Designs Quasi- experimenttel Designs Ex- post- facto- Desingns Experimentelle Designs 1. Es werden mindestens zwei experimentelle Gruppen gebildet.

Mehr