3. Rechnen mit natürlichen Zahlen

Größe: px
Ab Seite anzeigen:

Download "3. Rechnen mit natürlichen Zahlen"

Transkript

1 3. Rechnen mit natürlichen Zahlen 3.1 Inhaltliches Verstehen von Rechenoperationen 3.2 Die Grundaufgaben: Das 1+1 und 1x1 3.3 Lösungsstrategien für mündliches und halbschriftliches Rechnen 3.4 Die schriftlichen Rechenverfahren

2 3.2 Behandlung von Grundaufgaben Behandlung der Grundaufgaben der Addition und Subtraktion Behandlung der Grundaufgaben der Multiplikation und Division

3 3.2.1 Grundaufgaben der Addition und Subtraktion Grundaufgaben der Addition (Einspluseins) Grundaufgaben der Addition sind alle Aufgaben der Form a + b = c mit natürlichen Zahlen a 10 und b 10 Damit gibt es 121 Grundaufgaben der Addition Grundaufgaben der Subtraktion (Einsminuseins) Grundaufgaben der Subtraktion sind alle Umkehraufgaben der Grundaufgaben der Addition

4 Bedeutung der Grundaufgaben Ziel: Gedächtnismäßiges Beherrschen der Grundaufgaben Bedeutung: Jede Aufgabe, die wir mündlich bzw. im Kopf rechnen, besteht aus ein bzw. mehreren Grundaufgaben als Teilrechnungen Aufgaben des schriftlichen Rechnens sind aus Grundaufgaben zusammengesetzt.

5 Lösen von Grundaufgaben Fragen: Welche Strategien können zum Lösen angewendet werden? Welches Material kann dabei benutzt werden? Wie wird erreicht, dass alle Grundaufgaben behandelt werden? Welche typischen Fehler treten beim Lösen von Grundaufgaben auf?

6 Lösungsstrategien für Grundaufgaben der Addition und Subtraktion Zählstrategien Heuristische Strategien Eingeprägte Gleichungen

7 Zählstrategien 1. Vollständiges Auszählen 2. Weiterzählen vom ersten Summanden aus 3. Weiterzählen vom ersten Summanden aus 4. Weiterzählen vom größeren Summanden in größeren Schritten

8 Zählstrategien Vollständiges Auszählen einfachste Strategie meist mit Materialeinsatz verbunden: Steckwürfel, Plättchen Vorgehen bei 3 + 4: Es werden zunächst 3 Plättchen und danach 4 Plättchen hingelegt. Die Summe wird durch vollständiges Auszählen der Gesamtmenge bestimmt. Problem: Bei größeren Anzahlen verlieren die Schüler den Überblick und lassen ein Plättchen aus oder zählen es doppelt Fehler: Eins-Abweichung nach unten oder oben Das Verfahren ist sehr aufwendig.

9 Zählstrategien Weiterzählen vom ersten Summanden aus Weiterentwicklung des vollständigen Auszählens Beim Beispiel wird nicht mehr von 1 bis 7, sondern nur noch 4, 5, 6, 7 gezählt Schüler müssen die Zählbedeutung des ersten Summanden für die Summenbildung zumindest implizit verstanden haben typischer Fehler: Eins-Abweichung nach unten Bei wird gezählt: 3, 4, 5, 6 also: 3+ 4 = 6

10 Zählstrategien Weiterzählen vom größeren Summanden aus Ist der zweite Summand größer als der erste ist es eine Vereinfachung, vom zweiten Summand aus weiterzuzählen Weiterentwicklung des Weiterzählens vom ersten Summanden aus Beim Beispiel wird nicht mehr von 2 aus weitergezählt, sondern von 7 aus Grundlage für den Einsatz dieser Zählstrategie ist das Kommutativgesetz der Addition typischer Fehler: Eins-Abweichung nach unten

11 Zählstrategien Weiterzählen vom größeren Summanden in größeren Schritten Statt einer Aufgabe wie durch achtmaliges Weiterzählen um jeweils 1 zu lösen, kann man sie auch mittels Zählen in Zweier- oder Viererschritten lösen in Zweierschritten: 11, 13, 15, 17 Diese Strategie ist von den Zählstrategien die effektivste

12 Zählstrategien Erste natürliche Strategien Die Anwendung von Zählstrategien ist nicht als lineares Voranschreiten von (1) bis (4) zu verstehen Auch bei Kenntnis effektiverer Zählstrategien greifen die Schüler in bestimmten Situationen auf einfachere Zählstrategien zurück Die Lösung von Grundaufgaben bleibt nicht bei Zählstrategien stehen.

13 Heuristische Strategien Tauschaufgaben Verdopplungsaufgaben - Halbierungsaufgaben Nachbaraufgaben Gleichsinniges oder gegensinniges Verändern Schrittweises Rechnen (Zerlegen einer Zahl) Umkehraufgaben

14 Heuristische Strategien Tauschaufgaben Zum Lösen der Aufgabe wird das Kommutativgesetz der Addition angewendet Statt wird die Aufgabe gelöst Vorteil der Nutzung der Tauschaufgaben: Die Zahl der zu lernenden Aufgaben wird halbiert

15 Heuristische Strategien Verdoppeln - Halbieren Verdopplungs- und Halbierungsaufgaben prägen sich leicht ein

16 Heuristische Strategien Nachbaraufgaben Man kann zu jeder beliebigen Aufgabe durch Vergrößerung bzw. Verkleinerung eines Summanden um 1 Nachbaraufgaben bilden. Beispiel: Beherrschen Schüler die Verdopplungsaufgaben, so können sie durch Rückgriff auf diese Aufgaben oder leicht lösen Fastverdopplungsaufgaben sind spezielle Nachbaraufgaben

17 Heuristische Strategien

18 Heuristische Strategien Gleichsinniges oder gegensinniges Verändern Gegensinniges Verändern: Durch Verkleinerung des ersten Summanden und gleichzeitige Vergrößerung des zweiten Summanden um dieselbe Zahl bleibt eine Summe unverändert wird über gelöst Gleichsinniges Verändern: Eine Differenz bleibt unverändert, wenn wir Minuend und Subtrahend um denselben Betrag vergrößern oder verkleinern 12-9 wird über gelöst

19 Heuristische Strategien Schrittweises Rechnen (Zerlegen einer Zahl) Diese Strategie wird besonders beim so genannten Zehnerübergang genutzt. Die Aufgabe wird in die beiden leichteren Teilaufgaben = 10 (ergänzen zum vollen Zehner) und = 16 gelöst. Dabei wird die Gültigkeit des Assoziativgesetzes implizit vorausgesetzt: = 7 + ( 3 + 6) = (7 + 3) + 6 =

20 Heuristische Strategien Umkehraufgaben Hier wird der Zusammenhang von Addition und Subtraktion genutzt. Die Lösung der Subtraktionsaufgabe 17-9 wird durch Rückgriff auf die Additionsaufgabe = 17 gefunden. Die Anwendung von Umkehraufgaben erspart, dass neben dem Kleinen auch das Kleine 1-1 komplett auswendig beherrscht werden muss.

21 Behandlung der Grundaufgaben im Unterricht Rahmenplan (S. 153): Ziel: Im 1./2. Schuljahr lernen die Kinder das zunächst handelnd, dann gedächtnismäßig im Zahlenraum bis 100. S. 152: Dabei ist darauf zu achten, daß die Kinder vom (ab)zählenden Rechnen hingeführt werden zum denkenden und anwendungsorientierten Rechnen mit Hilfe von strukturierten Mengenbildern, Nachbar-, Tausch- und Umkehraufgaben, durch Zerlegen in Teilschritte, Erkennen und Anwenden von Analogien. Dies gilt besonders für das Überschreiten der Zehnerzahlen. Dabei sind unterschiedliche Vorgehensweisen möglich und erwünscht.

22 Behandlung der Grundaufgaben im Unterricht Ziel bis Ende des 1. Schuljahres: Die Kinder sollen das kleine Einspluseins und Einsminuseins im Zahlenraum bis 20 auswendig wissen. Prinzipien für die Unterrichtsgestaltung: Aufgaben sowohl operativ als auch systematisch üben Aufgaben allmählich und bewusst einprägen Aufgaben nicht nur in Rechenkästchen, sondern auch in Einkleidungen und Anwendungssituationen anbieten den Kindern nicht zu früh die Möglichkeiten nehmen, die Aufgaben handelnd mit Material oder mit zeichnerischer Unterstützung zu lösen

23 Behandlung der Grundaufgaben im Unterricht Materialien: Unstrukturierte Materialien Wendeplättchen, Muggelsteine, Holzwürfelchen, Steckwürfel Strukturierte und teilstrukturierte Materialien Spielmünzen, Cuisenairestäbe, Rechenrahmen, Rechenketten

24 Behandlung der Grundaufgaben im Unterricht Es gibt zwei grundsätzliche Vorgehensweisen: gestuftes Vorgehen ganzheitliches Vorgehen

25 Behandlung der Grundaufgaben im Unterricht Gestuftes Vorgehen Summe max. 5 (oder 6) meist nur Addition und Zerlegen von Zahlen Tauschaufgaben Summe max. 10 Summe max. 20 a) Summanden beide einstellig (Zehnerübergang) b) ein Summand größer als 10 (diese Aufgaben bezeichnen wir nicht als Grundaufgaben)

26 Behandlung der Grundaufgaben im Unterricht Zehnerübergang: Werden Aufgaben, bei denen die 10 überschritten wird, besonders thematisiert? Welche Strategien werden behandelt?

27 Behandlung der Grundaufgaben im Unterricht

28 Behandlung der Grundaufgaben im Unterricht

29 Behandlung der Grundaufgaben im Unterricht

30 Behandlung der Grundaufgaben im Unterricht ganzheitliches Vorgehen Überblick über alle Aufgaben: Einspluseins-Tafel Operatives Vorgehen beim Lösen: Nutzen von Rechenstrategien

31

32 Behandlung der Grundaufgaben im Unterricht Lösungsstrategien für (Zahlenbuch 1, S. 36):

33 Grundaufgaben der Multiplikation und Division Grundaufgaben der Multiplikation (Einmaleins) Grundaufgaben der Multiplikation sind alle Aufgaben der Form a b = c mit natürlichen Zahlen a 10 und b 10 Damit gibt es 121 Grundaufgaben der Multiplikation Grundaufgaben der Division Grundaufgaben der Division sind alle Umkehraufgaben der Grundaufgaben der Multiplikation Achtung: Division durch 0 ist nicht möglich

34 Lösungsstrategien für Grundaufgaben der Multiplikation und Division Zählstrategien Additions- und Subtraktionsstrategien Heuristische Strategien Eingeprägte Gleichungen

35 Zählstrategien Zählstrategien (mit Material) Vollständiges Auszählen: Jedes Element wird gezählt Rhythmisches Zählen Beim Zählen werden bestimmte Zahlen besonders betont: 1, 2, 3, 4, 5, 6, 7, 8,... Weiterzählen in größeren Schritten

36 Heuristische Strategien Tauschaufgaben Vergrößern oder Verkleinern eines Faktors / Zerlegen a) Nachbaraufgaben b) andere bekannte Aufgaben Verdoppeln oder Halbieren Gleichsinniges und gegensinniges Verändern Umkehraufgaben (bei Division)

37 Heuristische Strategien Tauschaufgaben Zu jeder Grundaufgabe des Einmaleins gibt es eine Tauschaufgabe. Durch Tauschaufgaben kann die Anzahl der einzuprägenden Grundaufgaben fast halbiert werden. Statt 3 9 wird 9 3 gerechnet.

38 Heuristische Strategien Vergrößern oder Verkleinern eines Faktors / Zerlegen a) Nachbaraufgaben Der erste oder der zweite Faktor wird um 1 verändert, damit hat jede Multiplikationsaufgabe vier Nachbaraufgaben. Diese Strategie basiert auf dem Distributivgesetz, wobei ein Summand bzw. Subtrahend 1 ist. Beispiele: 9 7 rechne ich (10-1) 7 = rechne ich (5+1) 8 = b) Zerlegen eines Faktors Nachbaraufgaben sind ein Spezialfall davon. Es kann wiederum der erste oder zweite Faktor zerlegt werden. Beispiele: 7 3 rechne ich (5+2) 3 = :8 könnte ich rechnen 40:8=5, dann ist 48:8=6

39 Heuristische Strategien Verdoppeln oder Halbieren Im Unterschied zur vorherigen Strategie wird hier ein Faktor in ein Produkt zerlegt. Diese Strategie beruht auf dem Assoziativgesetz. Beispiele: Bei 4 7 zerlege ich 4 und rechne statt (2 2) 7 nun 2 (2 7) = 2 14 Bei 48 : 8 könnte ich rechnen 24:8=3; dann ist 48:8=6

40 Heuristische Strategien Gleichsinniges und gegensinniges Verändern Das Produkt bleibt gleich, wenn ein Faktor verdoppelt und der andere halbiert wird. Bei der Division werden beide Zahlen auf die gleiche Weise verändert. Beispiel: 4 5 rechne ich 2 10=20 ( Ich habe 4 halbiert und 5 verdoppelt.) 24:4 könnte ich rechnen 12:2 (Ich habe beide Zahlen durch zwei geteilt.)

41 Heuristische Strategien Umkehraufgaben Divisionsaufgaben werden (häufig) durch Rückgriff auf eine Multiplikationsaufgabe gelöst. Beispiel: 32:8 rechne ich 8 4=32

42 Behandlung der Grundaufgaben im Unterricht Rahmenplan: Im zweiten Schuljahr wird das Multiplizieren und das Dividieren mit den beiden sachbezogenen Formen des Aufteilens und des Verteilens aus konkreten Handlungen heraus entwickelt, in Beziehung gesetzt und abstrahiert und in den Einmaleinsreihen systematisiert. Diese sollen einschließlich der Umkehraufgaben bis zur Mitte des dritten Schuljahres gedächtnismäßig beherrscht werden.

43 Behandlung der Grundaufgaben im Unterricht Zwei Vorgehensweisen: Gestuftes Vorgehen: Behandlung der Einmaleinsreihen Ganzheitliches Vorgehen

44 Behandlung der Grundaufgaben im Unterricht Gestuftes Vorgehen: Reihenfolge in der die Einmaleinsreihen behandelt werden (Denken und Rechnen 2): Einmaleins mit 10 und 5 Einmaleins mit 1, 0 Einmaleins mit 2, 4, 8 Einmaleins mit 3, 6, 9 Einmaleins mit 7

45 Gestuftes Vorgehen: Behandlung der Aufgaben innerhalb einer Reihe: Denken und Rechnen 2, S. 80:

46 Ganzheitliche Behandlung der 1 x 1- Aufgaben im Unterricht Literatur: Wittmann / Müller: Handbuch produktiver Rechenübungen Das Zahlenbuch Zugang zum 1 x 1, der von Anfang an auf eine ganzheitliche Sicht aller 1 x 1- Aufgaben gerichtet ist konsequente Hinarbeitung auf Zusammenhänge drei methodische Mittel: Hunderterfeld (mit Fünferteilung) und 1x1- Winkel Einmaleins-Plan Einmaleins-Tafel

47

48

49

50 Systematisches Üben von Grundaufgaben Abwechslungsreiche Übungen einbeziehen; wenn Wettspiele, dann möglichst mit Zufallsgenerator Beziehungen zwischen den Ergebnissen und Gesetzmäßigkeiten in der Plus(Mal)-Tafel bewusst machen. Dort sind auch die Minus(Divisions)aufgaben zu finden. Analyse: Nicht nur quantitativ ( wie viel Fehler), sondern auch qualitativ (wer kann welche Aufgabe nicht); Fehler sind kein Zufall! -Schüler soll immer die Chance haben, die Aufgabe zu rechnen, wenn er das Ergebnis (noch) nicht auswendig weiß: Material bereitstellen; auf Strategien verweisen.

Didaktik der Grundschulmathematik 4.1

Didaktik der Grundschulmathematik 4.1 Didaktik der Grundschulmathematik 4.1 Didaktik der Grundschulmathematik Didaktik der Grundschulmathematik 4.2 Inhaltsverzeichnis Didaktik der Grundschulmathematik 1 Anschauungsmittel 2 Aufbau des Zahlbegriffs

Mehr

Bereich: Zahlen und Operationen. Schwerpunkt: Flexibles Rechnen. Zeit/ Stufe

Bereich: Zahlen und Operationen. Schwerpunkt: Flexibles Rechnen. Zeit/ Stufe Schwerpunkt: Flexibles Rechnen Thema Kompetenz Kenntnisse/ Fertigkeiten/ Voraussetzungen, um die Kompetenz zu erlangen - Flexibles Rechnen (Addition, Subtraktion, Multiplikation, Division) - nutzen aufgabenbezogen

Mehr

Didaktik der Arithmetik Subtraktionsverfahren

Didaktik der Arithmetik Subtraktionsverfahren 7.2) Subtraktion Didaktik der Arithmetik Subtraktionsverfahren Vorlesung: Lernen und Anwenden von Arithmetik Universität Münster Vorkenntnisse von Schulanfängern: Im Vergleich zur Addition sind die Vorkenntnisse

Mehr

Zur Behandlung der Division. Klassifikationstypen und heuristische Strategien

Zur Behandlung der Division. Klassifikationstypen und heuristische Strategien Zur Behandlung der Division Klassifikationstypen und heuristische Strategien Wiederholung: Erkennen der Operation und des Klassifikationstypes Am Inselsberg ist ein neuer Skilift in Betrieb genommen worden.

Mehr

Box. Mathematik 2. Begleitheft mit. 20 Kopiervorlagen zur Lernstandskontrolle. Beschreibung der Übungsschwerpunkte. Beobachtungsbogen.

Box. Mathematik 2. Begleitheft mit. 20 Kopiervorlagen zur Lernstandskontrolle. Beschreibung der Übungsschwerpunkte. Beobachtungsbogen. Box Mathematik 2 Begleitheft mit 20 Kopiervorlagen zur Lernstandskontrolle Beschreibung der Übungsschwerpunkte Beobachtungsbogen Lernbegleiter -Box Mathematik 2 Inhalt des Begleitheftes Zur Konzeption

Mehr

M ATHEMATIK Klasse 3. Stoffverteilungsplan Sachsen. Der Zahlenraum bis 1000 (S. 14 25)

M ATHEMATIK Klasse 3. Stoffverteilungsplan Sachsen. Der Zahlenraum bis 1000 (S. 14 25) M ATHEMATIK Klasse 3 Stoffverteilungsplan Sachsen Duden Mathematik 3 Lehrplan: Lernziele / Inhalte Der (S. 14 25) Entwickeln von Zahlvorstellungen/Orientieren im Schätzen und zählen, Zählstrategien, Anzahl

Mehr

Zur Behandlung der Multiplikation. Konzept der Kernaufgaben bei der Multiplikation

Zur Behandlung der Multiplikation. Konzept der Kernaufgaben bei der Multiplikation Zur Behandlung der Multiplikation Konzept der Kernaufgaben bei der Multiplikation Wiederholung: Schriftliche Subtraktion Dana spart für ein neues Fahrrad, das 237 kostet. Sie hat schon 119. Dana rechnet

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse Seite 1

Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse Seite 1 Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse Seite 1 1. Zählen, Mengen erfassen und Zahlen schreiben 1. Mengen erfassen 1 2. Mengen erfassen 2 3. Zähle die Kästchen 4. Zähle die Gegenstände 5. Zähle

Mehr

Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den

Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Anfangsunterricht V3 02./03.05. Natürliche Zahlen im Anfangsunterricht

Mehr

Didaktik der Grundschulmathematik 3.1

Didaktik der Grundschulmathematik 3.1 Didaktik der Grundschulmathematik 3.1 Didaktik der Grundschulmathematik Didaktik der Grundschulmathematik 3.2 Inhaltsverzeichnis Didaktik der Grundschulmathematik 1 Anschauungsmittel 2 Aufbau des Zahlbegriffs

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Inhalt Lehrplan Mathematik für die Grundschule des Landes NRW Arithmetische Vorkenntnisse am Schulanfang Zahlaspekte, Zählen, Zahlzeichen

Mehr

Mit Flex und Flo durch das 1. Schuljahr 1

Mit Flex und Flo durch das 1. Schuljahr 1 Mit Flex und Flo durch das 1. Schuljahr 1 Erhebung der Lernausgangslage* Eingangsdiagnostik (ca. 1 Woche) o Vergleichen und ergänzen, Farben und Formen kennen o Vergleichen o Figur-Grund-Wahrnehmung o

Mehr

Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem

Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem Negative Zahlen Negative Zahlen Ordne in einen Zahlenstrahl ein! 7;5; 3; 6 Das Dezimalsystem Zerlege in Stufen! Einer, Zehner, usw. a) 3.185.629 b) 24.045.376 c) 3.010.500.700 Das Dezimalsystem a) 3M 1HT

Mehr

-Förderbox Mathematik Zahlenraum bis 10 / bis 20

-Förderbox Mathematik Zahlenraum bis 10 / bis 20 -Förderbox Mathematik Zahlenraum bis / bis 0. Lernstandskontrollen. Lernstandskontrollen mit Lösungen. Kompetenzübersicht. Lerner-Mini. Faltanleitung zum Lerner-Mini LOGICO-Förderbox Mathematik Zahlenraum

Mehr

Einmaleins-Tabelle ausfüllen

Einmaleins-Tabelle ausfüllen Einmaleins-Tabelle ausfüllen M0124 FRAGE Kannst du in die leere Einmaleins-Tabelle alle Ergebnisse eintragen? ZIEL über das Einmaleins geläufig verfügen MATERIAL Einmaleins-Tabelle (leer), Schreibzeug,

Mehr

Schuleigener Arbeitsplan der Grundschule Barienrode zum Kerncurriculum Mathematik

Schuleigener Arbeitsplan der Grundschule Barienrode zum Kerncurriculum Mathematik Schuleigener Arbeitsplan der Grundschule Barienrode zum Kerncurriculum Mathematik 1 Erwartete Kompetenzen am Ende des 1. Schuljahrgangs Erwartete prozessbezogene Kompetenzen am Ende des 1. Schuljahrganges

Mehr

Erarbeitung nicht-zählender Rechenstrategien

Erarbeitung nicht-zählender Rechenstrategien Erarbeitung nicht-zählender Rechenstrategien Entspricht das Ihren Erfahrungen? "Wird zählendes Rechnen verfestigt, stellt es eine Sackgasse dar, aus der die Schüler im 2. oder im 3. Schuljahr kaum mehr

Mehr

1/2. Matherad. Kopiervorlagen. Nina Fiedel-Gellenbeck Alma Tamborini

1/2. Matherad. Kopiervorlagen. Nina Fiedel-Gellenbeck Alma Tamborini 1/2 Matherad Kopiervorlagen Nina Fiedel-Gellenbeck Alma Tamborini 1. Auflage 1 5 4 3 2 1 17 16 15 14 13 Alle Drucke dieser Auflage sind unverändert und können im Unterricht nebeneinander verwendet werden.

Mehr

Pae Psy. Bamberg. Materialien zur Diagnose und Förderung von Rechenfertigkeiten. Diagnostik. Fördermaterial numerische und arithmetische Fertigkeiten

Pae Psy. Bamberg. Materialien zur Diagnose und Förderung von Rechenfertigkeiten. Diagnostik. Fördermaterial numerische und arithmetische Fertigkeiten Pae Psy Bamberg Materialien zur Diagnose und Förderung von Rechenfertigkeiten Diagnostik Fördermaterial numerische und arithmetische Fertigkeiten Lernspiele Förderhefte Fördermaterialien Gezeigt werden

Mehr

Themenkreise der Klasse 5

Themenkreise der Klasse 5 Mathematik Lernzielkatalog bzw. Inhalte in der MITTELSTUFE Am Ende der Mittelstufe sollten die Schüler - alle schriftlichen Rechenverfahren beherrschen. - Maßeinheiten umformen und mit ihnen rechnen können.

Mehr

Algebra in den Jahrgangsstufen 5 bis 8. Lerninhalte Natürliche Zahlen. Lernziele Natürliche Zahlen. Didaktik der Algebra und Gleichungslehre

Algebra in den Jahrgangsstufen 5 bis 8. Lerninhalte Natürliche Zahlen. Lernziele Natürliche Zahlen. Didaktik der Algebra und Gleichungslehre Didaktik der Algebra und Gleichungslehre Algebra in den Jahrgangsstufen 5 bis 8 Dr. Christian Groß Lehrstuhl Didaktik der Mathematik Universität Augsburg Sommersemester 2008 Vollrath: Algebra in der Sekundarstufe

Mehr

Übersicht: Blitzrechnen / Kopfrechentraining 1 6

Übersicht: Blitzrechnen / Kopfrechentraining 1 6 PHBern, Institut für Weiterbildung Weltistrasse 40, CH-3006 Bern T +4 3 309 27, F +4 3 309 27 99 weiterbildung.phbern.ch, info-iwb@phbern.ch Übungsformate Übersicht: Zahlenbuch 6 Übungsformat. 2. 3. 4.

Mehr

Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen

Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen Rationale Zahlen Vergleichen und Ordnen rationaler Zahlen Von zwei rationalen Zahlen ist die die kleinere Zahl, die auf der Zahlengeraden weiter links liegt.. Setze das richtige Zeichen. a) -3 4 b) - -3

Mehr

Automatisieren von Strategien, nicht von Einzelfakten!

Automatisieren von Strategien, nicht von Einzelfakten! Automatisierendes Üben mit "rechenschwachen" Kindern: Automatisieren von Strategien, nicht von Einzelfakten! 20. Symposion mathe 2000 Dortmund, 18. September 2010 Michael Gaidoschik, Wien michael.gaidoschik@chello.at

Mehr

Arithmetik in der Grundschule Di 08-10 Uhr HS 1. Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind

Arithmetik in der Grundschule Di 08-10 Uhr HS 1. Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind Sommersemester 2016 Arithmetik in der Grundschule Di 08-10 Uhr HS 1 V 1 12.04. V 2 19.04 Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind V 3 26.04. Zahlenraum

Mehr

Multiplikation. 1. Lernziele

Multiplikation. 1. Lernziele Multiplikation 1. Lernziele Die Teilnehmer/-innen verstehen die Multiplikation im Sinne einer wiederholten Addition. Die Teilnehmer/-innen haben die Ergebnisse der Kernaufgaben des kleinen Einmaleins gedächtnismäßig

Mehr

Beobachtungsitem oder Kommentar

Beobachtungsitem oder Kommentar Beobachtungsindikatoren zum Schulischen Standortgespräch (BISS) im ICF-CY Lebens- und Erfahrungsbereich: Lernen und Wissensanwendung - Mathematisches Lernen Ein Entwicklungsprojekt des Forschungszentrums

Mehr

Schuleigener Arbeitsplan

Schuleigener Arbeitsplan Schuleigener Arbeitsplan - Mathematik A: Kompetenzen (siehe KC) B: Kenntnisse und Fähigkeiten C: Leistungsbewertung Beschluss der Fachkonferenz Mathematik am 08.12.2006 Mathematikplan 1. Schuljahr Zahlen

Mehr

Klassenübersichten zum Dokumentationsbogen

Klassenübersichten zum Dokumentationsbogen Grundschule am Schloßplatz Offene Ganztagsschule Umweltschule in Europa Schulstraße 1 26316 Varel ( 04451 / 862 999 Fax: 04451 / 960 999 gs-schlossplatz@t-online.de Klassenübersichten zum Dokumentationsbogen

Mehr

Wenn 6 + 6 gleich 12 ergibt, dann gibt 7 + 6 = 13 Aufgabenbeziehungen an der Einspluseinstafel erkennen und nutzen ein langer Weg

Wenn 6 + 6 gleich 12 ergibt, dann gibt 7 + 6 = 13 Aufgabenbeziehungen an der Einspluseinstafel erkennen und nutzen ein langer Weg Haus 3: Umgang mit Rechenschwierigkeiten, Modul 3.1 Wenn 6 + 6 gleich 12 ergibt, dann gibt 7 + 6 = 13 Aufgabenbeziehungen an der Einspluseinstafel erkennen und nutzen ein langer Weg Mit Nachbaraufgaben

Mehr

II* III* IV* Niveau das kann ich das kann er/sie. Mein Bericht, Kommentar (Einsatz, Schwierigkeiten, Fortschritte, Zusammenarbeit) Name:... Datum:...

II* III* IV* Niveau das kann ich das kann er/sie. Mein Bericht, Kommentar (Einsatz, Schwierigkeiten, Fortschritte, Zusammenarbeit) Name:... Datum:... Titel MB 7 LU Nr nhaltliche Allg. Buch Arbeitsheft AB V* Mit Kopf, Hand und Taschenrechner MB 7 LU 3 nhaltliche Allg. Buch Arbeitsheft AB einfache Rechnungen im Kopf lösen und den TR sinnvoll einsetzen

Mehr

Stoffverteilungsplan Mathematik Klassenstufe 3 Schuljahr: Schule:

Stoffverteilungsplan Mathematik Klassenstufe 3 Schuljahr: Schule: Stoffverteilungsplan Mathematik Klassenstufe 3 Schuljahr: Schule: ZEIT INHALTE KOMPETENZEN Rechenrakete Bemerkungen Schulwochen 1000 LEITIDEEN: ZAHLEN UND OPERATIONEN RAUM UND FORM MUSTER UND STRUKTUREN

Mehr

1 Aus dem Weltall. Einheit. Einleitung. Kompetenzen. Einstieg. Stundenschwerpunkt. Rechnungen spielen. Mathematik im Alltag. Text gesucht!

1 Aus dem Weltall. Einheit. Einleitung. Kompetenzen. Einstieg. Stundenschwerpunkt. Rechnungen spielen. Mathematik im Alltag. Text gesucht! Einheit Aus dem Weltall Frage, Rechnung, Antwort insgesamt einmal, zweimal,... Material pro Gruppe Rechnung ohne Ergebnis auf kleinen Blättern Notizblätter pro Gruppe ein Antwortsatz (KV A) und ein Arbeitsblatt

Mehr

1 Urlaubsfotos. Einheit. Einleitung. Kompetenzen. Einstieg. Stundenschwerpunkt. Lösen von Sachaufgaben. Ballspiele. Theater.

1 Urlaubsfotos. Einheit. Einleitung. Kompetenzen. Einstieg. Stundenschwerpunkt. Lösen von Sachaufgaben. Ballspiele. Theater. Einheit 1 Urlaubsfotos Wichtige Begriffe Frage Antwort insgesamt bekommt jeder bleibt übrig Material Ball oder ähnlicher Gegenstand eine Sachaufgabe für jede Gruppe auf einem großen Zettel eine Rechnung

Mehr

GLEICH WEIT WEG. Aufgabe. Das ist ein Ausschnitt aus der Tausenderreihe:

GLEICH WEIT WEG. Aufgabe. Das ist ein Ausschnitt aus der Tausenderreihe: GLEICH WEIT WEG Thema: Sich orientieren und operieren an der Tausenderreihe Klasse: 3. Klasse (Zahlenbuch nach S. 26-27) Dauer: 3-4 Lektionen Material: Tausenderreihe, Arbeitsblatt, evt. Plättchen Bearbeitung:

Mehr

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens 1 Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Inhalt Lehrplan Mathematik für die Grundschule des Landes NRW Arithmetische Vorkenntnisse am Schulanfang Zahlaspekte, Zählen, Zahlzeichen

Mehr

3. Rechnen mit natürlichen Zahlen

3. Rechnen mit natürlichen Zahlen 3. Rechnen mit natürlichen Zahlen 3.1 Inhaltliches Verstehen von Rechenoperationen 3.2 Die Grundaufgaben: Das 1+1 und 1x1 3.3 Lösungsstrategien für mündliches und halbschriftliches Rechnen 3.4 Die schriftlichen

Mehr

Mathematische Grundlagen 2. Termrechnen

Mathematische Grundlagen 2. Termrechnen Inhaltsverzeichnis: 2. Termrechnen... 2 2.1. Bedeutung von Termen... 2 2.2. Terme mit Variablen... 4 2.3. Vereinfachen von Termen... 5 2.3.1. Zusammenfassen von gleichartigen Termen... 5 2.3.2. Vereinfachen

Mehr

Weiterbildung und Zusatzausbildung der PHZ Luzern Interessantes und Spannendes aus der Welt der Mathematik September 2006, Dieter Ortner

Weiterbildung und Zusatzausbildung der PHZ Luzern Interessantes und Spannendes aus der Welt der Mathematik September 2006, Dieter Ortner Weiterbildung und Zusatzausbildung der PHZ Luzern Interessantes und Spannendes aus der Welt der Mathematik September 2006, Dieter Ortner Rechengesetze 1. Rechengesetze für natürliche Zahlen Es geht um

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Tägliches 5-Minuten-Training Kopfrechnen Grundschule: Routine durch Übung

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Tägliches 5-Minuten-Training Kopfrechnen Grundschule: Routine durch Übung Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Tägliches 5-Minuten-Training Kopfrechnen Grundschule: Routine durch Übung Das komplette Material finden Sie hier: School-Scout.de

Mehr

Lernaufgaben Mathematik

Lernaufgaben Mathematik Ministerium für Schule und Weiterbildung des Landes Nordrhein - Westfalen Lernaufgaben Mathematik Grundschule Zahlen und Operationen Entdeckerpäckchen : Beziehungshaltige Plusaufgaben untersuchen I. Übersicht:Mathematik

Mehr

Sowohl die Malstreifen als auch die Neperschen Streifen können auch in anderen Stellenwertsystemen verwendet werden.

Sowohl die Malstreifen als auch die Neperschen Streifen können auch in anderen Stellenwertsystemen verwendet werden. Multiplikation Die schriftliche Multiplikation ist etwas schwieriger als die Addition. Zum einen setzt sie das kleine Einmaleins voraus, zum anderen sind die Überträge, die zu merken sind und häufig in

Mehr

KOMM MIT RECHNE MIT! Band

KOMM MIT RECHNE MIT! Band KOMM MIT RECHNE MIT! Band 5 Ein Förderprogramm für rechenschwache Kinder Stufe 3: Zahlenraum bis 1 000 von Silke Hofmann, Silke Petersen, Andrea Schuberth herausgegeben von Marco Bettner und Erik Dinges

Mehr

Mit Zehnerzahlen malrechnen oder durch Zehnerzahlen teilen. Den Wert einer Zahl 10 mal so gross machen.

Mit Zehnerzahlen malrechnen oder durch Zehnerzahlen teilen. Den Wert einer Zahl 10 mal so gross machen. F2 Rechnungen verstehen mal durch Verständnisaufbau Mit Zehnerzahlen malrechnen oder durch Zehnerzahlen teilen Den Wert einer Zahl 10 mal so gross machen. Beispiel: Ein Stapel wiegt 1.2kg, 10 solche Stapel

Mehr

Inhalt. 01 Lehrplanübersicht 02 Sequenzkarte Terme Sequenzkarte Gleichungen

Inhalt. 01 Lehrplanübersicht 02 Sequenzkarte Terme Sequenzkarte Gleichungen Inhalt Seminarbuch 37 Wie war das doch gleich wieder? Seminarbuch 38 Wir lösen Gleichungen - Lösungsmodelle 1 Seminarbuch 39 Lösungsmodelle 2 Seminarbuch 40 Lösungsmodelle 3 Seminarbuch 41 Rechenregeln

Mehr

Mathe Verstehen Das kleine Einmaleins: Multiplikation und Division im Zahlenraum bis 100 verstehen und trainieren

Mathe Verstehen Das kleine Einmaleins: Multiplikation und Division im Zahlenraum bis 100 verstehen und trainieren appp media UG Mathe Verstehen Das kleine Einmaleins: Multiplikation und Division im Zahlenraum bis 100 verstehen und trainieren ios universal paid 3,99 (ohne iap) universell (ohne Sprache innerhalb der

Mehr

Eine Lernspur durch den Zahlenraum 10

Eine Lernspur durch den Zahlenraum 10 Eine Lernspur durch den Zahlenraum 10 Eine ausführliche Unterrichtsdokumentation aus einer 1. Schulstufe zur Erarbeitung der Grundaufgaben im Zahlenraum 10 Dipl. Päd. Regina Zeindl-Steiner, MA Mautern

Mehr

Lehrplan Mathematik Klasse 4

Lehrplan Mathematik Klasse 4 Lehrplan Mathematik Klasse 4 Lernziele/ Inhalte Lernziel: Entwickeln von Zahlvorstellungen Orientieren im Zahlenraum bis 1 Million Schätzen und überschlagen Große Zahlen in der Umwelt Bündeln und zählen

Mehr

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Inhalt Lehrplan Mathematik für die Grundschule des Landes NRW Arithmetische Vorkenntnisse am Schulanfang Zahlaspekte, Zählen, Zahlzeichen

Mehr

Apple IOS Apps. Mathematik

Apple IOS Apps. Mathematik Apple IOS Apps Einige der Apps sind gratis, andere wiederum kostenpflichtig. Bei gewissen Apps kann man Pakete für den KG, US usw. zusätzlich erwerben. Mathematik Name Zahl & Menge Herausgeber Appolino,

Mehr

Kernlehrplan. Mathematik. Grundschule

Kernlehrplan. Mathematik. Grundschule Kernlehrplan Mathematik Grundschule 2009 Inhalt Vorwort Kernlehrpläne und Bildungsstandards Entwicklung bildungsstandardbezogener Aufgaben Umsetzung in den Schulen Der Beitrag des Faches Mathematik zur

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Das kleine 1x1 - Umfangreiches Material zur Multiplikation für die Förderschule Das komplette Material finden Sie hier: School-Scout.de

Mehr

Liebe Teilnehmerinnen und Teilnehmer am Telekolleg,

Liebe Teilnehmerinnen und Teilnehmer am Telekolleg, Liebe Teilnehmerinnen und Teilnehmer am Telekolleg, der Vorkurs Mathematik des Telekollegs soll dazu dienen, mathematische Kenntnisse und Fertigkeiten, die im Telekolleg als Voraussetzung benötigt werden,

Mehr

4 Didaktische Prinzipien des Mathematikunterrichts

4 Didaktische Prinzipien des Mathematikunterrichts 4 Didaktische Prinzipien des Mathematikunterrichts Didaktische Prinzipien sind (wie alle Prinzipien) keine starren Handlungsanweisungen oder Rezepte, sie sind Vorschläge, Anregungen und Strukturierungshilfen.

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN Wir wollen nun die Rechengesetze der natürlichen Zahlen auf die Zahlenmenge der ganzen Zahlen erweitern und zwar so, dass sie zu keinem Widerspruch mit bisher geltenden

Mehr

1/2. Matherad. Kopiervorlagen. Nina Fiedel-Gellenbeck Alma Tamborini

1/2. Matherad. Kopiervorlagen. Nina Fiedel-Gellenbeck Alma Tamborini 1/2 Matherad Kopiervorlagen Nina Fiedel-Gellenbeck Alma Tamborini 1. Auflage 1 5 4 3 2 1 17 16 15 14 13 Alle Drucke dieser Auflage sind unverändert und können im Unterricht nebeneinander verwendet werden.

Mehr

Didaktik der Zahlbereiche 4. Die Menge der ganzen Zahlen. Mathematikunterricht in der Jahrgangsstufe 7. Zahlbereichserweiterungen in der Hauptschule

Didaktik der Zahlbereiche 4. Die Menge der ganzen Zahlen. Mathematikunterricht in der Jahrgangsstufe 7. Zahlbereichserweiterungen in der Hauptschule Zahlbereichserweiterungen in der Hauptschule Didaktik der Zahlbereiche 4 Dr. Christian Groß Lehrstuhl Didaktik der Mathematik Universität Augsburg Wintersemester 2006/07 Natürliche Zahlen, : Klasse 5 positive

Mehr

Das unerschöpfliche Übungsangebot des Zahlenbuchs - und wie Kinder es selbständig nutzen können

Das unerschöpfliche Übungsangebot des Zahlenbuchs - und wie Kinder es selbständig nutzen können Das unerschöpfliche Übungsangebot des Zahlenbuchs - und wie Kinder es selbständig nutzen können Erich Ch. Wittmann Gibst du einem Menschen einen Fisch, hat er einmal zu essen. Lehrst du ihn fischen, kann

Mehr

Rechenstörungen: Ein Versuch der Begriffsklärung... 5. Mögliche Ursachen und tatsächliche Risikofaktoren... 6

Rechenstörungen: Ein Versuch der Begriffsklärung... 5. Mögliche Ursachen und tatsächliche Risikofaktoren... 6 Inhalt Rechenstörungen: Ein Versuch der Begriffsklärung... 5 Mögliche Ursachen und tatsächliche Risikofaktoren... 6 Verfestigtes zählendes Rechnen als Symptom von Rechenstörungen... 8 Kennzeichen verfestigten

Mehr

6. KLASSE MATHEMATIK GRUNDWISSEN

6. KLASSE MATHEMATIK GRUNDWISSEN 6. KLASSE MATHEMATIK GRUNDWISSEN Thema BRÜCHE Bruchteil - Man teilt das Ganze durch den Nenner und multipliziert das Ergebnis mit dem Zähler von 24 kg = (24 kg : 4) 2 = 6 kg 2 = 12 kg h = von 1 h = (1

Mehr

Rationale Zahlen. Weniger als Nichts? Ist Null nichts?

Rationale Zahlen. Weniger als Nichts? Ist Null nichts? Rationale Zahlen Weniger als Nichts? Ist Null nichts? Oft kann es sinnvoll sein, Werte anzugeben die kleiner sind als Null. Solche Werte werden mit negativen Zahlen beschrieben, die durch ein Minus als

Mehr

Kartei. Halbschriftliche Multiplikation und Division. Überlege aus welchen Reihen die Ausschnitte. gehören und setze die Reihe nach beiden Seiten

Kartei. Halbschriftliche Multiplikation und Division. Überlege aus welchen Reihen die Ausschnitte. gehören und setze die Reihe nach beiden Seiten Halbschriftliche Multiplikation und Division / Karte 00 Kartei Halbschriftliche Multiplikation und Division Halbschriftliche Multiplikation und Division / Karte 01 Schriftliche Multiplikation und Division

Mehr

Teilbarkeit von natürlichen Zahlen

Teilbarkeit von natürlichen Zahlen Teilbarkeit von natürlichen Zahlen Teilbarkeitsregeln: Die Teilbarkeitsregeln beruhen alle darauf, dass man von einer Zahl einen grossen Teil wegschneiden kann, von dem man weiss, dass er sicher durch

Mehr

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Inhalt Lehrplan Mathematik für die Grundschule des Landes NRW Arithmetische Vorkenntnisse am Schulanfang Zahlaspekte, Zählen, Zahlzeichen

Mehr

Kerncurriculum. Mildenberger Verlag

Kerncurriculum. Mildenberger Verlag Jahresplan und Synopse Kerncurriculum Niedersachsen Mathetiger Die Synopse können Sie auch als Word-Datei von unserer Website downloaden. Bestell-Nr. 1822 03 / 2008 Inhalt: Vorwort: Seite 2 Der Mathetiger

Mehr

Zahlen und Operationen (Klasse 3)

Zahlen und Operationen (Klasse 3) Zahlen und (Klasse 3) LZ überwiegend Zahldarstellungen, Zahlbeziehungen, Zahlvorstellungen verstehen beherrschen In Kontexten rechnen LZ voll Du orientierst Dich sicher im Zahlenraum bis 1000 und kannst

Mehr

Primo.Das passt! Primo.Mathematik und das Kerncurriculum für Niedersachsen. 4. Schuljahr 3. Schuljahr 2. Schuljahr. 1. Schuljahr 931.

Primo.Das passt! Primo.Mathematik und das Kerncurriculum für Niedersachsen. 4. Schuljahr 3. Schuljahr 2. Schuljahr. 1. Schuljahr 931. Primo.Das passt! Primo.Mathematik und das Kerncurriculum für Niedersachsen 4. Schuljahr 3. Schuljahr 2. Schuljahr 931.221 1. Schuljahr Vorwort Primo.Mathematik und das Kerncurriculum für Niedersachsen

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer

Mehr

Mathematik-Dossier. Die lineare Funktion

Mathematik-Dossier. Die lineare Funktion Name: Mathematik-Dossier Die lineare Funktion Inhalt: Lineare Funktion Lösen von Gleichungssystemen und schneiden von Geraden Verwendung: Dieses Dossier dient der Repetition und Festigung innerhalb der

Mehr

Die negativen Zahlen eine Aufgabensammlung

Die negativen Zahlen eine Aufgabensammlung Stephan Sigler Die negativen Zahlen eine Aufgabensammlung Didaktischer Kommentar mit Lösungen edition waldorf GESTALTEN + ENTDECKEN Mathematik Pädagogische Forschungsstelle Kassel Die negativen Zahlen

Mehr

5. bis 10. Klasse. Textaufgaben. Alle Themen Typische Aufgaben

5. bis 10. Klasse. Textaufgaben. Alle Themen Typische Aufgaben Mathematik 5. bis 10. Klasse 150 Textaufgaben Alle Themen Typische Aufgaben 5. bis 10. Klasse 1.3 Rechnen mit ganzen Zahlen 1 25 Erstelle zu den folgenden Zahlenrätseln zunächst einen Rechenausdruck und

Mehr

Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den

Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Anfangsunterricht V3 02./03.05. Natürliche Zahlen im Anfangsunterricht

Mehr

Probleme beim Arbeiten mit Variablen, Termen und Gleichungen

Probleme beim Arbeiten mit Variablen, Termen und Gleichungen Probleme beim Arbeiten mit Variablen, Termen und Gleichungen Tage des Unterrichts in Mathematik, Naturwissenschaften und Technik Rostock 2010 Prof. Dr. Hans-Dieter Sill, Universität Rostock, http://www.math.uni-rostock.de/~sill/

Mehr

Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Hochschule Luzern Wirtschaft

Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Hochschule Luzern Wirtschaft Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Bei Studienbeginn am 19. September 2016 wird im Fach Mathematik die Beherrschung des Stoffes der kaufmännischen Berufsmatura vorausgesetzt.

Mehr

Wie lässt sich die Multiplikation von Bruchzahlen im Operatorenmodell und wie im Größenmodell einführen?

Wie lässt sich die Multiplikation von Bruchzahlen im Operatorenmodell und wie im Größenmodell einführen? Modulabschlussprüfung ALGEBRA / GEOMETRIE Lösungsvorschläge zu den Klausuraufgaben Aufgabe 1: Wie lässt sich die Multiplikation von Bruchzahlen im Operatorenmodell und wie im Größenmodell einführen? Im

Mehr

15ab 21bc 9b = 3b 5a 7c 3

15ab 21bc 9b = 3b 5a 7c 3 4 4.1 Einführung Haben alle Summanden einer algebraischen Summe einen gemeinsamen Faktor, so kann man diesen gemeinsamen Faktor ausklammern. Die Summe wird dadurch in ein Produkt umgewandelt. Tipp: Kontrolle

Mehr

Rechenbausteine. Training. Herausgegeben von Stephan Hußmann Susanne Prediger Bärbel Barzel Timo Leuders

Rechenbausteine. Training. Herausgegeben von Stephan Hußmann Susanne Prediger Bärbel Barzel Timo Leuders Rechenbausteine Training Herausgegeben von Stephan Hußmann Susanne Prediger Bärbel Barzel Timo Leuders 2 A B C D E F G H I J K L M N O Inhaltsverzeichnis THEMA 1 Zahlen und Rechnungen lesen und darstellen

Mehr

MatheBlatt (Version 2)

MatheBlatt (Version 2) MatheBlatt (Version 2) Bilder und Formvorlagen für Mathe-Arbeitsblätter / Inhaltsverzeichnis Copyright Hans Zybura Software, 2008. Alle Rechte vorbehalten. Formatvorlagen aus Word-Zeichnen Elementen und

Mehr

Weiter im Einmaleins. 100 nur das Schaf schaut noch verwundert. bellt der Dackel Heinz. pfeift das Murmeltier. Panda kann sich freu'n.

Weiter im Einmaleins. 100 nur das Schaf schaut noch verwundert. bellt der Dackel Heinz. pfeift das Murmeltier. Panda kann sich freu'n. Weiter im Einmaleins bellt der Dackel Heinz. pfeift das Murmeltier. Panda kann sich freu'n. Grabi kann das Jumbo frisst sie Biene Maja schlecht seh'n. und entspannt sich. rechnet fleißig. das Huhn meint

Mehr

Lehrkraft: Wochenstundenzahl:

Lehrkraft: Wochenstundenzahl: Schuljahr 20 / Schule: Lehrkraft: Wochenstundenzahl: Hinweis: Sachrechnen ist im amtlichen Lehrplan als eigener Lernbereich aufgeführt. In der unterrichtlichen Behandlung werden Ziele und Inhalte dieses

Mehr

MATHEMATIK 3. KL. Inhaltsverzeichnis Mathematik 3. bis 6. Klasse. www.schultraining.ch. Bearbeitungsstand

MATHEMATIK 3. KL. Inhaltsverzeichnis Mathematik 3. bis 6. Klasse. www.schultraining.ch. Bearbeitungsstand MATHEMATIK 3. KL. ID Typ Pool Zahlenbereich Zahlen ordnen bis 1000 (ID 1067-3) 1067 Übung 34 Zahlwörter - Zahlen (ID 1056-3) 1056 Übung 42 Zahlennachbarn (ID 1058-3) 1058 Übung 31 Zahlen ordnen (ID 1061-3)

Mehr

Curriculum Mathematik. Bereich Schulabschluss

Curriculum Mathematik. Bereich Schulabschluss Curriculum Mathematik Bereich Schulabschluss Im Folgenden finden Sie eine Übersicht über alle Lerneinheiten im Fach Mathematik. Das Fach Mathematik ist in Lernstufen, Kapitel, Lerneinheiten und Übungen

Mehr

4 Rechnen mit rationalen Zahlen

4 Rechnen mit rationalen Zahlen Rechnen mit rationalen Zahlen 31 4 Rechnen mit rationalen Zahlen 4.1 Ausgewählte Probleme Zur Bildung des Begriffs der rationalen Zahlen Die Schüler haben negative Zahlen in verschiedenen Erfahrungsbereichen,

Mehr

Vorgehensweisen bei der halbschriftlichen Subtraktion

Vorgehensweisen bei der halbschriftlichen Subtraktion Vorgehensweisen bei der halbschriftlichen Subtraktion Auf dieser Seite erhalten Sie die Möglichkeit, sich mit Vorgehensweisen von Grundschülern bei Aufgaben zur halbschriftlichen Subtraktion auseinanderzusetzen.

Mehr

Modulare Förderung. Starterkit Mathematik GRUNDRECHENARTEN. Jgst. 5

Modulare Förderung. Starterkit Mathematik GRUNDRECHENARTEN. Jgst. 5 Modulare Förderung Starterkit Mathematik GRUNDRECHENARTEN Jgst. 5 Überarbeitung 2014 Erarbeitet im Auftrag des Bayerischen Staatsministeriums für Bildung und Kultus, Wissenschaft und Kunst Verantwortliche

Mehr

Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den

Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Anfangsunterricht V3 02./03.05. Natürliche Zahlen im Anfangsunterricht

Mehr

Niedersächsisches Kultusministerium. Kerncurriculum für die Grundschule Schuljahrgänge 1-4. Mathematik. Niedersachsen

Niedersächsisches Kultusministerium. Kerncurriculum für die Grundschule Schuljahrgänge 1-4. Mathematik. Niedersachsen Niedersächsisches Kultusministerium Kerncurriculum für die Grundschule Schuljahrgänge 1-4 Mathematik Niedersachsen An der Erarbeitung des Kerncurriculums für das Unterrichtsfach Mathematik in den Schuljahrgängen

Mehr

Dr. Monika Meiler. Inhalt

Dr. Monika Meiler. Inhalt Inhalt 4 Einführung in die Programmiersprache Java (Teil II)... 4-2 4.4 Strukturierte Programmierung... 4-2 4.4.1 Strukturierung im Kleinen... 4-2 4.4.2 Addierer (do-schleife)... 4-3 4.4.3 Ein- Mal- Eins

Mehr

Vorlesung zur Arithmetik 2011 V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den

Vorlesung zur Arithmetik 2011 V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Vorlesung zur Arithmetik 2011 V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Anfangsunterricht V3 02./03.05. Natürliche Zahlen im Anfangsunterricht

Mehr

Lehrersoftware für den Mathematikunterricht

Lehrersoftware für den Mathematikunterricht Lehrersoftware für den Mathematikunterricht Bestell-Nr. 1964 Diese Software gibt Ihnen die Möglichkeit, auch ohne große Computerkenntnisse, ansprechende Lernkontrollen und Arbeitsblätter zu erstellen:

Mehr

Beobachtung des Lösungsweges. beim Rechnen in der Grundschule HANDREICHUNG. Behörde für Bildung und Sport der Freien und Hansestadt Hamburg

Beobachtung des Lösungsweges. beim Rechnen in der Grundschule HANDREICHUNG. Behörde für Bildung und Sport der Freien und Hansestadt Hamburg Beobachtung des Lösungsweges beim Rechnen in der Grundschule HANDREICHUNG Behörde für Bildung und Sport der Freien und Hansestadt Hamburg Sehr geehrte Kolleginnen und Kollegen, das Fachreferat Mathematik

Mehr

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten!

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten! Mathefritz 5 Terme und Gleichungen Meine Mathe-Seite im Internet kostenlose Matheaufgaben, Skripte, Mathebücher Lernspiele, Lerntipps, Quiz und noch viel mehr http:// www.mathefritz.de Seite 1 Copyright

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopfrechentrainer - Ideenkiste fürs tägliche Üben

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopfrechentrainer - Ideenkiste fürs tägliche Üben Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: - Ideenkiste fürs tägliche Üben Das komplette Material finden Sie hier: Download bei School-Scout.de Inhalt Seite Vorwort 5-7 1 2

Mehr

Bildungsstandards Grundschule MATHEMATIK. Skriptum

Bildungsstandards Grundschule MATHEMATIK. Skriptum Bildungsstandards Grundschule MATHEMATIK Skriptum erstellt auf Basis der vom Bildungsministerium zur Verfügung gestellten Fassung Bildungsstandards für Mathematik 4. Schulstufe Version 2.2. von den Mitgliedern

Mehr

Fördermaterialienordner Mathematik 5/6

Fördermaterialienordner Mathematik 5/6 Fördermaterialienordner 5/6 Inhaltsverzeichnis 1 Zahl und Zahlbereiche 1.1 Natürliche Zahlen 1.2 Rechnen mit natürlichen Zahlen 1.3 Rechnen mit Größen 1.4 Brüche 1.5 Teilbarkeit 1.6 Rechnen mit Brüchen

Mehr

Dr. Monika Meiler. Inhalt

Dr. Monika Meiler. Inhalt Inhalt 4 Anweisungen... 4-2 4.1 Strukturierte Programmierung... 4-2 4.1.1 Geschichte... 4-2 4.1.2 Strukturierung im Kleinen... 4-2 4.2 Einige Beispielanwendungen... 4-4 4.2.1 Addierer (do-schleife)...

Mehr

Die quadratische Gleichung und die quadratische Funktion

Die quadratische Gleichung und die quadratische Funktion Die quadratische Gleichung und die quadratische Funktion 1. Lösen einer quadratischen Gleichung Quadratische Gleichungen heißen alle Gleichungen der Form a x x c = 0, woei a,, c als Parameter elieige reelle

Mehr

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen?

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? BITte ein BIT Vom Bit zum Binärsystem A Bit Of Magic 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? 3. Gegeben ist der Bitstrom: 10010110 Was repräsentiert

Mehr

Repetitionsaufgaben: Lineare Gleichungen

Repetitionsaufgaben: Lineare Gleichungen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Gleichungen Zusammengestellt von Hannes Ernst, KSR Lernziele: - Lineare Gleichungen von Hand auflösen können. - Lineare Gleichungen mit Parametern

Mehr