Frühjahr. Erste Staatsprüfung für ein Lehramt an öffentlichen Schulen. Prüfungsteilnehmer Prüfungstermin Einzelprüfungsnummer. - Prüfungsaufgaben -

Größe: px
Ab Seite anzeigen:

Download "Frühjahr. Erste Staatsprüfung für ein Lehramt an öffentlichen Schulen. Prüfungsteilnehmer Prüfungstermin Einzelprüfungsnummer. - Prüfungsaufgaben -"

Transkript

1 Prüfungsteilnehmer Prüfungstermin Einzelprüfungsnummer Kennzahl: Kennwort: Arbeitsplatz-Nr.: Frühjahr Erste Staatsprüfung für ein Lehramt an öffentlichen Schulen - Prüfungsaufgaben - Fach: Einzelprüfung: Informatik (nicht vertieft studiert) Algorithmen/Datenstrukt./Progr.-meth. Anzahl der gestellten Themen (Aufgaben): z Anzahl der Druckseiten dieser Vorlage: 5 Bitte wenden!

2 Frtihjahr 2000 Einzelprüfun-esnumm er : 46L 14 Seite: 2 Thema N-r. L Sämtliche Teilaufgaben sind zu bearbeiten! Teilaufgabe 1: Reaiisieren Sie in einer imperativen Sprache trrer Wahl den Typ der gr','s11 Zahlen als 2-Tupel ihres absoiuten Betrages (Typ CARDINAL für INo) und einer BOOLEAN-Komponente, die das Vorzeichen angibt! Geben Sie für die so dargesteilten ganzen Zahlen Prozeduren für die Grundrechenarten Addition, Subtraltion und Multiplikation an, die die entsprechenden Operationen auf CARDINAL verwenden! Teilaufgabe 2: Jemand gibt nachfolgenden Algorithmus vor. Analysieren Sie dessen genaue, teilweise,,unerwartete" Wirkung! 1YPts LrSEe = rutnltj1 lu lte&; Elen = REC0RD obj : CAF,DINAL; nachf : Liste END; PRoCEDURE UBbekamt (1: Liste; a:cardinal); VAR y : Liste; BEGlN IF I = NIL THEN NEIi(y); y.,obj := a; Y-.!.acb.f := NIL; 1 := Y ELSE IF (a<l-.obj) THEN NE!l(y); y-.obj i= ai Y- 'Dachf ;= 1; 1 ;= y END END END Urbeka!-st Teilaufgabe 3: Schreiben Sie ein hogramm in einer imperativen Sprache Ihrer Wahl, das die Inverse einer (einzulesenden) 2x2-Matrtx reeller Zahlen berechnet (und ausgibt), falls die Matrix invertierbar ist und :rnsonsten eine Fehlermeldung ausgibtt Eine Matrix der r"tm ( i! ) ist lnvertiertar, falls ad. - bc +0 und die lnverse lautet O.oo ( '- { ), *otel *lt O = ad'- bc Qeterrruswrte) gilt: \ I n l' o e= *.I=_ti. s=i c h= * -3-

3 Frühjahr 2000 Eirzelprüfungsnufirmer : 461L4 Seite: 3 Thema Nr. 2 Sämtliche Teilaufgaben sind zu bearbeiten! Teilaufgabe 1: Programmiermethodik (1a) Ein typisches Strukturierungsmodell bei der Programmentwicklung ist die schrittweise Verfeinelung. li/as versteht man darunter? (1b) Eine Form, die schrittweise Verfeinerung il der Praxis auszunutzen, besteht in der Verwendung der Struktogramme (Nassi-Shneidermann-Diagramme). Aus welchen Elementen sind diese zusammengesetzt? (1c) Die gängigen Programmiersprachen uqterscheiden drei Tlpen von Schleifen: - die indizierende Schleife: for Var := Exprl to Expr2 do... - die abweisende iterative Schleife: vhile LogExpr do. '. - die nichtabweisende iterative Schleife: repeat... uatil LogExPr Wie unterscheiden sich diese Schleifentypen? (Erläutern Sie die Abarbeitungsweise und geben Sie typische Randbedingungen für den Einsatz der unterschiedlichen Typen an.) (1d) In der Hoare-Semantikann die Wirkung der abweisenden iterativen Schleife durch folgende Formel beschrieben werden: B^P {S} Erläutern Sie diese Formei anschauiich, und entwickeln Sie eine entsprechende Formel für die nichiabweisende iterative Schleife! Teilaufg ab e 2 z Systementwurf Ein aktueiles Thema in der Diskussion um die Strukturierung von Softwaresystemen ist die Objektorientierung. Oa\ Erläutern Sie die Begriffe Klasse, Objekt und Methode unter Zutrilfenatrme des folgen- \ / den (in einer Phantasiesplache formulierten) Beispiels: class konto 1s eroeffne-konio (kr:nde) ; einzahlen (betrag); auszahlen (betrag); kontostand O returns betrag; end konto; (uetrag und kunde seien geeignet definierte Klassen.) Was versteht man unter Instanzenvariabien? Fortsetzung nächste Seite!

4 Frühjahr 2000 Einzelpruftrngsnummer : 46IL4 Seite: 4 (2b) Das Beispiel werde durch die folgenden Definitionen ersänzt: class girokonto inherits fronr konto setze_dispo_lirnit (betrag); dispo-limit O returns betrag; ^- l +.i +al.^-l a. eiilj 5rr U5.UI1 t/lr, class sparkonto inherits setze_zinssatz (real) ; schreibe_zinsen_gut O ; end sparkonto; from konto Eriäutern Sie den Begriff der Vererbung, und geben Sie die vollständige Liste der Methoden an, die für Objekte der Klassen Girokonto und Sparkonto definiert sindl (2c) Was versteht man unter einer virtuelien Ftrnktion? (Hinweis: In unserem Beispiel könnte man auszahlen als solche auffassen, da sie bei Girokonten zu einem negativen Saldo fiihren darf, bei Sparkonten nicht.) (2d) Erläutern Sie an Hand. der virtuellen F-\-rnktionen, was man unter,,dynamischem Binden" versteht, und dessen Vorteil bei der Systementr,vicklung! Teilaufgabe 3: Ngorithmen und Datenstrukturen Beim Heapsort-Verfahren stellt man sich vor, die in einer Reihung (array) gespeicherten Daten seien als Baum organisiert. Beispielsweise denkt man sich die Reihrrno in der folgenden Form gegeben: 7A,7,9, 5, 6, B, 3,7,2, 4 / \ 2 4 (3.) Wann nennt man einen Baum einen,,heap"? (3b) Beschreiben Sie das Einfügen eines neuen Eiementes in den Heap! (3c) Wie ist der Heap zu reorganisieren, wenn das größte Eiement (d.h. das Element an der Wurzel) entfernt wird? Fortsetzune nächste Seite!

5 Frütrjatr 2000 Einzelprüfungsnufirmer: 461t4 Seite: 5 Teilaufg abe 4: Anwendungen Verwenden Sie die dem Heapsort zugrundeliegende Idee, um eine Liste von einzuhalienden Fristen (Terminen) effi.zient zu verwalten: Der Zugriff auf den ais nächstes zu bearbeitenden Vorgang (d h. die nächste abiaufende Frist) soil in konstanter Zeit mög1ich sein. Das Streichen einer abgeiaufenen (bearbeiteten) Frist und das Neueintragen sollen in logarithmischer Zeit möglich sein, also nicht das Durchsuchen der gesamten Liste erfordern. (ar) Begründen Sie, warum die Heap-Struktur diese Anforderungen erfüilt, wobei als Sortierkriterium das Datum des Fristablaufs verwandt wirdl (4b) Es kann vorkommen, dass sich eine Frist vorzeitig erledigt. Welchen Aufwand erfordert es, eine solche Frist zu streichen? (Beachten Sie, dass Sie sie zuerst suchen müssen, wobei Sie selbstverständlich nur das Aktenzeichen kennen!) (ac) Beschreiben Sie eine andere Datenstruktur, bei der das Suchen und Eintragen von Vorgängen (Sortierkriterium: Aktenzeichen) in logarithmischer Zeir möglich ist! (Es gibt verschiedene Lösr'''oPn )

Herbst. Erste Staatsprüfung für ein Lehramt an öffentlichen Schulen. Prüfungsteilnehmer prüfungstermin Einzelprüfungsnummei. - Prüfungsaufgaben -

Herbst. Erste Staatsprüfung für ein Lehramt an öffentlichen Schulen. Prüfungsteilnehmer prüfungstermin Einzelprüfungsnummei. - Prüfungsaufgaben - Prüfungsteilnehmer prüfungstermin Einzelprüfungsnummei Kennzahl: Kennwort: Arbeitsplatz-Nr.: Herbst 2000 46114 Erste Staatsprüfung für ein Lehramt an öffentlichen Schulen - Prüfungsaufgaben - Fach: Einzelprüfung:

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

66TT2. Herbst. Erste Staatsprüfung für ein Lehramt an öffentlichen Schulen. Prüfungsaufgaben - Prüfungsteilnehmer Prüfungstermin Einzelprüfungsnunrmer

66TT2. Herbst. Erste Staatsprüfung für ein Lehramt an öffentlichen Schulen. Prüfungsaufgaben - Prüfungsteilnehmer Prüfungstermin Einzelprüfungsnunrmer Prüfungsteilnehmer Prüfungstermin Einzelprüfungsnunrmer Kennzahl: Kennwort: Arbeitsplatz-Nr.: Herbst 2002 66TT2 Erste Staatsprüfung für ein Lehramt an öffentlichen Schulen Prüfungsaufgaben - Fach: Einzelprüfung:

Mehr

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

Suchen und Sortieren Sortieren. Heaps

Suchen und Sortieren Sortieren. Heaps Suchen und Heaps (Folie 245, Seite 63 im Skript) 3 7 21 10 17 31 49 28 14 35 24 42 38 Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die

Mehr

VBA-Programmierung: Zusammenfassung

VBA-Programmierung: Zusammenfassung VBA-Programmierung: Zusammenfassung Programmiersprachen (Definition, Einordnung VBA) Softwareentwicklung-Phasen: 1. Spezifikation 2. Entwurf 3. Implementierung Datentypen (einfach, zusammengesetzt) Programmablaufsteuerung

Mehr

PIWIN I. Praktische Informatik für Wirtschaftsmathematiker, Ingenieure und Naturwissenschaftler I. Vorlesung 3 SWS WS 2007/2008

PIWIN I. Praktische Informatik für Wirtschaftsmathematiker, Ingenieure und Naturwissenschaftler I. Vorlesung 3 SWS WS 2007/2008 PIWIN I Kap. 7 Objektorientierte Programmierung - Einführung 1 PIWIN I Praktische Informatik für Wirtschaftsmathematiker, Ingenieure und Naturwissenschaftler I Vorlesung 3 SWS WS 2007/2008 FB Informatik

Mehr

Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5

Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5 Robert Elsässer Paderborn, den 15. Mai 2008 u.v.a. Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5 AUFGABE 1 (6 Punkte): Nehmen wir an, Anfang bezeichne in einer normalen

Mehr

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)

Mehr

5 Projekt Bankverwaltung

5 Projekt Bankverwaltung Kapitel 5 Bankverwaltung (Lösung) Seite 1/7 5 Projekt Bankverwaltung 5.1 Festlegen der Schnittstelle Bevor du mit der Programmierung beginnst, musst du dir einige Gedanken über die Schnittstelle zwischen

Mehr

BEISPIELKLAUSUR Softwareentwicklung:

BEISPIELKLAUSUR Softwareentwicklung: Prof. Dr. Andreas Fink Institut für Informatik Fakultät für Wirtschafts- und Sozialwissenschaften Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg BEISPIELKLAUSUR Softwareentwicklung: Objektorientierte

Mehr

Verhindert, dass eine Methode überschrieben wird. public final int holekontostand() {...} public final class Girokonto extends Konto {...

Verhindert, dass eine Methode überschrieben wird. public final int holekontostand() {...} public final class Girokonto extends Konto {... PIWIN I Kap. 8 Objektorientierte Programmierung - Vererbung 31 Schlüsselwort: final Verhindert, dass eine Methode überschrieben wird public final int holekontostand() {... Erben von einer Klasse verbieten:

Mehr

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner Musterlösung Problem : Average-case-Laufzeit vs Worst-case-Laufzeit pt (a) Folgender Algorithmus löst das Problem der

Mehr

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c)

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) 5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) mit V = {1,...,n} und E {(v, w) 1 apple v, w apple n, v 6= w}. c : E!

Mehr

Kurs 1613 Einführung in die imperative Programmierung

Kurs 1613 Einführung in die imperative Programmierung Aufgabe 1 Gegeben sei die Prozedur BubbleSort: procedure BubbleSort(var iofeld:tfeld); { var hilf:integer; i:tindex; j:tindex; vertauscht:boolean; i:=1; repeat vertauscht := false; for j := 1 to N - i

Mehr

Binäre Bäume Darstellung und Traversierung

Binäre Bäume Darstellung und Traversierung Binäre Bäume Darstellung und Traversierung Name Frank Bollwig Matrikel-Nr. 2770085 E-Mail fb641378@inf.tu-dresden.de Datum 15. November 2001 0. Vorbemerkungen... 3 1. Terminologie binärer Bäume... 4 2.

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra Effiziente Algorithmen und Datenstrukturen I Kapitel 10: Lineare Algebra Christian Scheideler WS 2008 19.02.2009 Kapitel 10 1 Überblick Notation Arithmetik auf großen Zahlen (Addition und Multiplikation)

Mehr

Kurs 1575, Musterlösung zur Winter Klausur 2003/04

Kurs 1575, Musterlösung zur Winter Klausur 2003/04 Kurs 1575, Musterlösung zur Klausur im Wintersemester 2003/04 1 Kurs 1575, Musterlösung zur Winter Klausur 2003/04 Aufgabe 1: Römische Zahlen Wer kennt das Problem nicht: Sie stehen vor einer Inschrift,

Mehr

PIWIN I. Praktische Informatik für Wirtschaftsmathematiker, Ingenieure und Naturwissenschaftler I. Vorlesung 3 SWS WS 2008/2009

PIWIN I. Praktische Informatik für Wirtschaftsmathematiker, Ingenieure und Naturwissenschaftler I. Vorlesung 3 SWS WS 2008/2009 PIWIN I Kap. 8 Objektorientierte Programmierung - Vererbung 1 PIWIN I Praktische Informatik für Wirtschaftsmathematiker, Ingenieure und Naturwissenschaftler I Vorlesung 3 SWS WS 2008/2009 FB Informatik

Mehr

Über Arrays und verkettete Listen Listen in Delphi

Über Arrays und verkettete Listen Listen in Delphi Über Arrays und verkettete Listen Listen in Delphi Michael Puff mail@michael-puff.de 2010-03-26 Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 2 Arrays 4 3 Einfach verkettete Listen 7 4 Doppelt verkettete

Mehr

Klausur in Programmieren

Klausur in Programmieren Studiengang Sensorik/Sensorsystemtechnik Note / normierte Punkte Klausur in Programmieren Sommer 2009, 16. Juli 2009 Dauer: 1,5h Hilfsmittel: Keine (Wörterbücher sind auf Nachfrage erlaubt) Name: Matrikelnr.:

Mehr

AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl:

AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: AVL-Bäume Analyse (Folie 85, Seite 39 im Skript) Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: 0 falls n = 0 F n = 1 falls

Mehr

Programmieren ++ Begleitende Übungen zu Veranstaltungen + Umsetzen des Algorithmus in ein lauffähiges Programm

Programmieren ++ Begleitende Übungen zu Veranstaltungen + Umsetzen des Algorithmus in ein lauffähiges Programm Studienanforderungen Studiengang Maschinenbau Programmieren Begleitende Übungen zu Veranstaltungen Umsetzen des Algorithmus in ein lauffähiges Programm Studiengang Bauingenieurwesen Programmieren Begleitende

Mehr

II. Grundlagen der Programmierung. 9. Datenstrukturen. Daten zusammenfassen. In Java (Forts.): In Java:

II. Grundlagen der Programmierung. 9. Datenstrukturen. Daten zusammenfassen. In Java (Forts.): In Java: Technische Informatik für Ingenieure (TIfI) WS 2005/2006, Vorlesung 9 II. Grundlagen der Programmierung Ekkart Kindler Funktionen und Prozeduren Datenstrukturen 9. Datenstrukturen Daten zusammenfassen

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 Bäume robert.legenstein@igi.tugraz.at 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden

Mehr

Kap. 4.2: Binäre Suchbäume

Kap. 4.2: Binäre Suchbäume Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:

Mehr

EINI WiMa/LW. Einführung in die Informatik für Naturwissenschaftler und Ingenieure. Vorlesung 2 SWS WS 11/12

EINI WiMa/LW. Einführung in die Informatik für Naturwissenschaftler und Ingenieure. Vorlesung 2 SWS WS 11/12 EINI WiMa/LW Einführung in die Informatik für Naturwissenschaftler und Ingenieure Vorlesung 2 SWS WS 11/12 Fakultät für Informatik Technische Universität Dortmund lars.hildebrand@udo.edu http://ls1-www.cs.uni-dortmund.de

Mehr

Programmentwicklung I für Hörer anderer Fachrichtungen -Wintersemester 2003/04- Abschlussklausur 20.02.2004

Programmentwicklung I für Hörer anderer Fachrichtungen -Wintersemester 2003/04- Abschlussklausur 20.02.2004 Programmentwicklung I für Hörer anderer Fachrichtungen -Wintersemester 2003/04- Abschlussklausur 20.02.2004 Name : Vorname : Matrikelnummer : Hauptfach : Nebenfach/Fachrichtung Hinweise : 1. Überprüfen

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen:

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen: 6 Partiell geordnete binäre Bäume: Heap (Haufen) Motivation für manchen Anwendungen nur partielle Ordnung der Elemente statt vollständiger nötig, z.b. - Prioritätsschlange: nur das minimale (oder maximale)

Mehr

Sortieren durch Einfügen. Prof. Dr. W. Kowalk Sortieren durch Einfügen 1

Sortieren durch Einfügen. Prof. Dr. W. Kowalk Sortieren durch Einfügen 1 Sortieren durch Einfügen Prof. Dr. W. Kowalk Sortieren durch Einfügen 1 Schon wieder aufräumen Schon wieder Aufräumen, dabei habe ich doch erst neulich man findet alles schneller wieder Bücher auf Regal

Mehr

Übungsklausur Algorithmen I

Übungsklausur Algorithmen I Universität Karlsruhe, Institut für Theoretische Informatik Prof. Dr. P. Sanders 26.5.2010 svorschlag Übungsklausur Algorithmen I Hiermit bestätige ich, dass ich die Klausur selbständig bearbeitet habe:

Mehr

Ansätze zur Erfassung von Faktoren durch Prüfungsaufgaben. (Diskussionen in Dagstuhl sowie mit Prof. Nickolaus, Technikpädagogik, U Stuttgart)

Ansätze zur Erfassung von Faktoren durch Prüfungsaufgaben. (Diskussionen in Dagstuhl sowie mit Prof. Nickolaus, Technikpädagogik, U Stuttgart) Taxonomie + Schwierigkeit Ansätze zur Erfassung von Faktoren durch Prüfungsaufgaben. (Diskussionen in Dagstuhl sowie mit Prof. Nickolaus, Technikpädagogik, U Stuttgart) Beurteilen Synthese Konstruktion

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

Kurs 1613 Einführung in die imperative Programmierung Musterlösung zur Nachklausur am

Kurs 1613 Einführung in die imperative Programmierung Musterlösung zur Nachklausur am 1 Aufgabe 1 Analysiert man das Verfahren anhand des angegebenen Beispiels, ist schnell zu erkennen, dass das erste Element von infeld2 nach outfeld an Index 2 kopiert wird, das zweite den Index 4 bekommt,

Mehr

Arrays Fortgeschrittene Verwendung

Arrays Fortgeschrittene Verwendung Arrays Fortgeschrittene Verwendung Gilbert Beyer und Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik http://www.pst.ifi.lmu.de/lehre/wise-11-12/infoeinf WS11/12 Arrays: Wiederholung

Mehr

KV Software Engineering Übungsaufgaben SS 2005

KV Software Engineering Übungsaufgaben SS 2005 KV Software Engineering Übungsaufgaben SS 2005 Martin Glinz, Silvio Meier, Nancy Merlo-Schett, Katja Gräfenhain Übung 1 Aufgabe 1 (10 Punkte) Lesen Sie das Originalpapier von Dijkstra Go To Statement Considered

Mehr

Übersicht. 4.1 Ausdrücke. 4.2 Funktionale Algorithmen. 4.3 Anweisungen. 4.4 Imperative Algorithmen Variablen und Konstanten. 4.4.

Übersicht. 4.1 Ausdrücke. 4.2 Funktionale Algorithmen. 4.3 Anweisungen. 4.4 Imperative Algorithmen Variablen und Konstanten. 4.4. Übersicht 4.1 Ausdrücke 4.2 Funktionale Algorithmen 4.3 Anweisungen 4.4 Imperative Algorithmen 4.4.1 Variablen und Konstanten 4.4.2 Prozeduren 4.4.3 Verzweigung und Iteration 4.4.4 Globale Größen Einführung

Mehr

Dr. Monika Meiler. Inhalt

Dr. Monika Meiler. Inhalt Inhalt 4 Einführung in die Programmiersprache Java (Teil II)... 4-2 4.4 Strukturierte Programmierung... 4-2 4.4.1 Strukturierung im Kleinen... 4-2 4.4.2 Addierer (do-schleife)... 4-3 4.4.3 Ein- Mal- Eins

Mehr

E-PRIME TUTORIUM Die Programmiersprache BASIC

E-PRIME TUTORIUM Die Programmiersprache BASIC E-PRIME TUTORIUM Die Programmiersprache BASIC BASIC Beginner s All-purpose Symbolic Instruction Code symbolische Allzweck-Programmiersprache für Anfänger Design-Ziel klar: Eine einfache, für Anfänger geeignete

Mehr

2. Lernen von Entscheidungsbäumen

2. Lernen von Entscheidungsbäumen 2. Lernen von Entscheidungsbäumen Entscheidungsbäume 2. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

Grundlagen Programmierung

Grundlagen Programmierung 1. Aufgabe (Spielen mit Objekten) Gegeben sei der auch von der Veranstaltungsseite erhältliche Programmcode auf der rechten Seite, der im Detail zuerst nicht verstanden werden muss. a) Erzeugen Sie sich

Mehr

4.Grundsätzliche Programmentwicklungsmethoden

4.Grundsätzliche Programmentwicklungsmethoden 4.Grundsätzliche Programmentwicklungsmethoden 1.1 Grundlage strukturierter und objektorientierter Programmierung Begriff Software Engineering - umfaßt den gezielten Einsatz von Beschreibungsmitteln, Methoden

Mehr

Brainfuck. 1 Brainfuck. 1.1 Brainfuck Geschichte und Umfeld. 1.2 Esoterische Programmiersprachen

Brainfuck. 1 Brainfuck. 1.1 Brainfuck Geschichte und Umfeld. 1.2 Esoterische Programmiersprachen Brainfuck 1 Brainfuck 1.1 Brainfuck Geschichte und Umfeld Brainfuck ist eine sogenannte esoterische Programmiersprache. Sie wurde 1993 vom Schweizer Urban Müller entworfen mit dem Ziel, eine Sprache mit

Mehr

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4.8-4.11: Andere dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.6 AVL-Bäume 4.8 Rot-Schwarz-Bäume Idee: Verwende Farben, um den Baum vertikal zu

Mehr

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1 3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)

Mehr

1 Vom Problem zum Programm

1 Vom Problem zum Programm Hintergrundinformationen zur Vorlesung GRUNDLAGEN DER INFORMATIK I Studiengang Elektrotechnik WS 02/03 AG Betriebssysteme FB3 Kirsten Berkenkötter 1 Vom Problem zum Programm Aufgabenstellung analysieren

Mehr

Reihungen. Martin Wirsing. in Zusammenarbeit mit Matthias Hölzl und Nora Koch 11/03

Reihungen. Martin Wirsing. in Zusammenarbeit mit Matthias Hölzl und Nora Koch 11/03 Reihungen Martin Wirsing in Zusammenarbeit mit Matthias Hölzl und Nora Koch 11/03 2 Ziele Die Datenstruktur der Reihungen verstehen: mathematisch und im Speicher Grundlegende Algorithmen auf Reihungen

Mehr

Name: Seite 1. Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort.

Name: Seite 1. Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort. Name: Seite 1 Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort. Aufgabe 1 (8 Punkte) 1. Wie wird bei der Zusicherungsmethode die Zusicherung genannt, die vor Eintritt

Mehr

Kurs 1612 Konzepte imperativer Programmierung Musterlösung zur Nachklausur am

Kurs 1612 Konzepte imperativer Programmierung Musterlösung zur Nachklausur am 1 Aufgabe 1 a) Da Effizienzbetrachtungen bei der Lösung der Aufgabe keine Rolle spielen, wählen wir einen einfachen, aber ineffizienten Algorithmus mit zwei ineinander verschachtelten for-schleifen. Dadiefor-Schleifen

Mehr

Algorithmen & Datenstrukturen 1. Klausur

Algorithmen & Datenstrukturen 1. Klausur Algorithmen & Datenstrukturen 1. Klausur 7. Juli 2010 Name Matrikelnummer Aufgabe mögliche Punkte erreichte Punkte 1 35 2 30 3 30 4 15 5 40 6 30 Gesamt 180 1 Seite 2 von 14 Aufgabe 1) Programm Analyse

Mehr

Rekursion. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung

Rekursion. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung Rekursion Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-12-13/infoeinf WS12/13 Aufgabe 1: Potenzfunktion Schreiben Sie eine Methode, die

Mehr

Modul 122 VBA Scribt.docx

Modul 122 VBA Scribt.docx Modul 122 VBA-Scribt 1/5 1 Entwicklungsumgebung - ALT + F11 VBA-Entwicklungsumgebung öffnen 2 Prozeduren (Sub-Prozeduren) Eine Prozedur besteht aus folgenden Bestandteilen: [Private Public] Sub subname([byval

Mehr

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume

Mehr

Einführung in die Programmierung

Einführung in die Programmierung Technische Universität München WS 2003/2004 Institut für Informatik Prof. Dr. Christoph Zenger Testklausur Einführung in die Programmierung Probeklausur Java (Lösungsvorschlag) 1 Die Klasse ArrayList In

Mehr

EINI I. Einführung in die Informatik für Naturwissenschaftler und Ingenieure. Vorlesung 2 SWS WS 10/11

EINI I. Einführung in die Informatik für Naturwissenschaftler und Ingenieure. Vorlesung 2 SWS WS 10/11 EINI I Einführung in die Informatik für Naturwissenschaftler und Ingenieure Vorlesung 2 SWS WS 10/11 Fakultät für Informatik Technische Universität Dortmund lars.hildebrand@udo.edu http://ls1-www.cs.uni-dortmund.de

Mehr

Informatik 11 Kapitel 2 - Rekursive Datenstrukturen

Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Fachschaft Informatik Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Michael Steinhuber König-Karlmann-Gymnasium Altötting 15. Januar 2016 Folie 1/77 Inhaltsverzeichnis I 1 Datenstruktur Schlange

Mehr

Einführung in die Informatik 1

Einführung in die Informatik 1 Einführung in die Informatik 1 Datenorganisation und Datenstrukturen Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive

Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive Grammatik G mit L(G) = L(G ). Beweis im Beispiel (2.): G = (V,Σ, P, S) : P = {S asbc, S abc, CB BC, ab ab, bb bb, bc bc, cc cc}. (i) G

Mehr

Objektorientierte Programmierung mit Python Polymorphismus und Vererbung. Eltern

Objektorientierte Programmierung mit Python Polymorphismus und Vererbung. Eltern Objektorientierte Programmierung mit Python Polymorphismus und Vererbung Eltern Kind Kind Kind Kind Prinzipien der objektorientierten Programmierung Vererbung Strukturierung von Klassen. Oberbegriffe beschreiben

Mehr

Komplexe Zahlen (Seite 1)

Komplexe Zahlen (Seite 1) (Seite 1) (i) Motivation: + 5 = 3 hat in N keine Lösung Erweiterung zu Z = 2 3 = 2 hat in Z keine Lösung Erweiterung zu Q = 2 / 3 ² = 2 hat in Q keine Lösung Erweiterung zu R = ± 2 ² + 1 = 0 hat in R keine

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Was ist Logische Programmierung?

Was ist Logische Programmierung? Was ist Logische Programmierung? Die Bedeutung eines Computer-Programms kann durch Logik erklärt werden. Die Idee der logischen Programmierung besteht darin, die Logik eines Programms selber als Programm

Mehr

Kapiteltests zum Leitprogramm Binäre Suchbäume

Kapiteltests zum Leitprogramm Binäre Suchbäume Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm

Mehr

15. Elementare Graphalgorithmen

15. Elementare Graphalgorithmen Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen

Mehr

Counting - Sort [ [ ] [ [ ] 1. SS 2008 Datenstrukturen und Algorithmen Sortieren in linearer Zeit

Counting - Sort [ [ ] [ [ ] 1. SS 2008 Datenstrukturen und Algorithmen Sortieren in linearer Zeit Counting-Sort Counting - Sort ( A,B,k ). for i to k. do C[ i]. for j to length[ A]. do C[ A[ j ] C[ A[ j ] +. > C[ i] enthält Anzahl der Elemente in 6. for i to k. do C[ i] C[ i] + C[ i ]. > C[ i] enthält

Mehr

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum 4. Lernen von Entscheidungsbäumen Klassifikation mit Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch /Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse zugeordnet werden.

Mehr

Was bisher geschah. deklarative Programmierung. funktionale Programmierung (Haskell):

Was bisher geschah. deklarative Programmierung. funktionale Programmierung (Haskell): Was bisher geschah deklarative Programmierung funktional: Programm: Menge von Termgleichungen, Term Auswertung: Pattern matsching, Termumformungen logisch: Programm: Menge von Regeln (Horn-Formeln), Formel

Mehr

Schwerpunkte. Verkettete Listen. Verkettete Listen: 7. Verkettete Strukturen: Listen. Überblick und Grundprinzip. Vergleich: Arrays verkettete Listen

Schwerpunkte. Verkettete Listen. Verkettete Listen: 7. Verkettete Strukturen: Listen. Überblick und Grundprinzip. Vergleich: Arrays verkettete Listen Schwerpunkte 7. Verkettete Strukturen: Listen Java-Beispiele: IntList.java List.java Stack1.java Vergleich: Arrays verkettete Listen Listenarten Implementation: - Pascal (C, C++): über Datenstrukturen

Mehr

DHBW Karlsruhe, Vorlesung Programmieren, Klassen (2)

DHBW Karlsruhe, Vorlesung Programmieren, Klassen (2) DHBW Karlsruhe, Vorlesung Programmieren, Klassen (2) Aufgabe 3 Bankkonto Schreiben Sie eine Klasse, die ein Bankkonto realisiert. Attribute für das Bankkonto sind der Name und Vorname des Kontoinhabers,

Mehr

Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung

Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung Suchbäume Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative

Mehr

Klausur Informatik B April Teil I: Informatik 3

Klausur Informatik B April Teil I: Informatik 3 Informatik 3 Seite 1 von 8 Klausur Informatik B April 1998 Teil I: Informatik 3 Informatik 3 Seite 2 von 8 Aufgabe 1: Fragekatalog (gesamt 5 ) Beantworten Sie folgende Fragen kurz in ein oder zwei Sätzen.

Mehr

Arrays von Objekten. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung

Arrays von Objekten. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-12-13/infoeinf WS12/13 Arrays: Wiederholung Ein Array ist ein Tupel von Elementen gleichen

Mehr

Vererbung und Polymorphismus

Vererbung und Polymorphismus Vererbung und Polymorphismus Benno List OO Get-Together 29.5.06 B. List 29.5.06 Vererbung und Polymorphismus Page 1 Klassen (Wiederholung) Klasse: Datenstruktur mit data members: Variablen: enthalten Informationen

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 reelle Es gibt Mathematik mit Grenzwert (Analysis) und Mathematik ohne Grenzwert (z.b Algebra). Grenzwerte existieren sicher nur dann, wenn der Zahlbereich vollständig ist, also keine Lücken aufweist

Mehr

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2013/14. Prof. Dr. Sándor Fekete

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2013/14. Prof. Dr. Sándor Fekete Kapitel 4.8-4.11: Andere dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2013/14 Prof. Dr. Sándor Fekete 1 4.6 AVL-Bäume 2 4.8 Rot-Schwarz-Bäume Rudolf Bayer Idee: Verwende Farben, um den

Mehr

Lehrstuhl Informatik VI Grundzüge der Informatik * WS 2008/2009 Prof. Dr. Joachim Biskup

Lehrstuhl Informatik VI Grundzüge der Informatik * WS 2008/2009 Prof. Dr. Joachim Biskup Universität Dortmund Lehrstuhl Informatik VI Grundzüge der Informatik * WS 28/29 Prof. Dr. Joachim Biskup Leitung der Übungen: Arno Pasternak Lösungs-Ideen Übungsblatt 6 A: Grammatiken, Syntaxdiagramme

Mehr

Programmierkurs Java

Programmierkurs Java Programmierkurs Java Dr. Dietrich Boles Aufgaben zu UE16-Rekursion (Stand 09.12.2011) Aufgabe 1: Implementieren Sie in Java ein Programm, das solange einzelne Zeichen vom Terminal einliest, bis ein #-Zeichen

Mehr

Softwareentwicklung Schrittweise Verfeinerung, Programmieren üben: Tic-Tac-Toe in Raten

Softwareentwicklung Schrittweise Verfeinerung, Programmieren üben: Tic-Tac-Toe in Raten Mag. iur. Dr. techn. Michael Sonntag Softwareentwicklung Schrittweise Verfeinerung, Programmieren üben: Tic-Tac-Toe in Raten E-Mail: sonntag@fim.uni-linz.ac.at http://www.fim.uni-linz.ac.at/staff/sonntag.htm

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 8. Arrays. Arrays

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 8. Arrays. Arrays 1 Kapitel 8 Ziele 2 Die Datenstruktur der kennenlernen Grundlegende Algorithmen auf in Java implementieren können Mit von Objekten arbeiten können 3 Erweiterungen zur Behandlung von : Überblick Bisher

Mehr

5.6 Vererbung. Vererbung

5.6 Vererbung. Vererbung 5.6 Vererbung Klassen können zueinander in einer "ist ein"- Beziehung stehen Beispiel: Jeder PKW ist ein Kraftfahrzeug, jedes Kraftfahrzeug ist ein Transportmittel aber: auch jeder LKW ist ein Kraftfahrzeug

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

3.4 Struktur von Programmen

3.4 Struktur von Programmen 3.4 Struktur von Programmen Programme sind hierarchisch aus Komponenten aufgebaut. Für jede Komponente geben wir Regeln an, wie sie aus anderen Komponenten zusammengesetzt sein können. program ::= decl*

Mehr

Grundlagen der Programmierung 2. Bäume

Grundlagen der Programmierung 2. Bäume Grundlagen der Programmierung 2 Bäume Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 24. Mai 2006 Graphen Graph: Menge von Knoten undzugehörige (gerichtete oder ungerichtete)

Mehr

Fakultät Wirtschaftswissenschaft

Fakultät Wirtschaftswissenschaft Fakultät Wirtschaftswissenschaft Matrikelnr. Name Vorname KLAUSUR: Entwurf und Implementierung von Informationssystemen (32561) TERMIN: 11.09.2013, 14.00 16.00 Uhr PRÜFER: Univ.-Prof. Dr. Stefan Strecker

Mehr

Arrays von Objekten. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung

Arrays von Objekten. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative student"

Mehr

Frühjahr Erste Staatsprüfung für ein Lehramt an öffentlichen Schulen - Prüfungsaufgaben -

Frühjahr Erste Staatsprüfung für ein Lehramt an öffentlichen Schulen - Prüfungsaufgaben - Prüfungsteilnehmer Prüfungstermin Einzelprüfungsnummer Kennzahl: Kennwort: Arbeitsplatz-Nr.: _ Frühjahr 2012 60020 Erste Staatsprüfung für ein Lehramt an öffentlichen Schulen - Prüfungsaufgaben - Fach:

Mehr

Datentypen. Agenda für heute, 4. März, 2010. Pascal ist eine streng typisierte Programmiersprache

Datentypen. Agenda für heute, 4. März, 2010. Pascal ist eine streng typisierte Programmiersprache Agenda für heute, 4. März, 2010 Zusammengesetzte if-then-else-anweisungen Datentypen Pascal ist eine streng typisierte Programmiersprache Für jeden Speicherplatz muss ein Datentyp t (Datenformat) t) definiert

Mehr

Kurs 1613 Einführung in die imperative Programmierung Musterlösung zur Klausur am

Kurs 1613 Einführung in die imperative Programmierung Musterlösung zur Klausur am Kurs 1613 Einführung in die imperative Programmierung 1 Aufgabe 1 procedure NachVorn( inwert: integer; var iorefanfang: trefelement); {Sucht das erste vorkommende Element mit inwert in der info-komponente

Mehr

Klausur in 12.1 Themen: Zahlsysteme, Grundlagen von Delphi (Bearbeitungszeit: 90 Minuten)

Klausur in 12.1 Themen: Zahlsysteme, Grundlagen von Delphi (Bearbeitungszeit: 90 Minuten) Name: «Vorname» «Name» Klausur in 12.1 Themen: Zahlsysteme, Grundlagen von Delphi (Bearbeitungszeit: 90 Minuten) Informatik 12 2 VP je 2 VP 6 VP 0 Notieren Sie alle Antworten in einer Word-Datei Klausur1_«Name».doc

Mehr

14. Rot-Schwarz-Bäume

14. Rot-Schwarz-Bäume Bislang: Wörterbuchoperationen bei binären Suchbäume effizient durchführbar, falls Höhe des Baums klein. Rot-Schwarz-Bäume spezielle Suchbäume. Rot-Schwarz-Baum mit n Knoten hat Höhe höchstens 2 log(n+1).

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10 Binäre Bäume Bäume gehören zu den wichtigsten Datenstrukturen in der Informatik. Sie repräsentieren z.b. die Struktur eines arithmetischen Terms oder die Struktur eines Buchs. Bäume beschreiben Organisationshierarchien

Mehr

11.1 Grundlagen - Denitionen

11.1 Grundlagen - Denitionen 11 Binärbäume 11.1 Grundlagen - Denitionen Denition: Ein Baum ist eine Menge, die durch eine sog. Nachfolgerrelation strukturiert ist. In einem Baum gilt: (I) (II) 1 Knoten w ohne VATER(w), das ist die

Mehr

Einführung Datentypen Verzweigung Schleifen Funktionen Dynamische Datenstrukturen. Java Crashkurs. Kim-Manuel Klein (kmk@informatik.uni-kiel.

Einführung Datentypen Verzweigung Schleifen Funktionen Dynamische Datenstrukturen. Java Crashkurs. Kim-Manuel Klein (kmk@informatik.uni-kiel. Java Crashkurs Kim-Manuel Klein (kmk@informatik.uni-kiel.de) May 7, 2015 Quellen und Editoren Internet Tutorial: z.b. http://www.java-tutorial.org Editoren Normaler Texteditor (Gedit, Scite oder ähnliche)

Mehr

Aufgabe 1 (Excel) Anwendungssoftware 1 / 11 Semesterschlussprüfung 21.06.2004

Aufgabe 1 (Excel) Anwendungssoftware 1 / 11 Semesterschlussprüfung 21.06.2004 Anwendungssoftware 1 / 11 Dauer der Prüfung: 90 Minuten. Es sind alle fünf Aufgaben mit allen Teilaufgaben zu lösen. Versuchen Sie, Ihre Lösungen soweit wie möglich direkt auf diese Aufgabenblätter zu

Mehr