WS 2014/15 Mo, Uhr, CIV Differenzieren und Fördern im Mathematikunterricht Rechenschwäche/Rechenstörung/Dyskalkulie

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "WS 2014/15 Mo, Uhr, CIV Differenzieren und Fördern im Mathematikunterricht Rechenschwäche/Rechenstörung/Dyskalkulie"

Transkript

1 WS 2014/15 Mo, Uhr, CIV Differenzieren und Fördern im Mathematikunterricht Rechenschwäche/Rechenstörung/Dyskalkulie V 1 (27.10.) Klärung von Begriffen; Diskussion von Ursachen V 2 (03.11.) Erklärungsansätze für die Entwicklung von Rechenschwäche V 3 (10.11.) Symptome V (17.11.) ausnahmsweise 16 Uhr: Begabtenförderung mit Prof. Dr. Fritzlar (Teilnahme nach Liste) V 4 (24.11.) V 5 (01.12.) V 6 (08.12.) V 7 (15.12.) V 8 (12.01.) V 9 (19.01.) V10 (26.01.) Freitag, Diagnostik Interview; Fehleranalyse Diagnostik - Testverfahren Fördern in Vorschule und Anfangsunterricht Fördern beim weiteren Rechnen Förderkonzepte Fallbeispiele Zusammenfassung Klausur Uhr, HS1 1

2 V9 Fallbeispiele 1 Förderansatz nach Gerster 2 Systematisierung der Förderansätze 3 Fallbeispiele Zuordnung von Förderkonzepten

3 1 Förderansatz nach Hans-Dieter Gerster Quelle: Gerster in Handbuch Rechenschwäche 2009 Abb.: Zusammensetzung der 7 aus Teilportionen - Das Verständnis von Zahlen als Zusammensetzung aus anderen Zahlen (Teil-Ganzes-Konzept) 3

4 Gut strukturierte Veranschaulichung für Zahlen und das Rechnen mit ihnen: -Fünfer- und Zehnerportionen sowie -Verdopplungen und Halbierungen. Kennkarten der Zahlen bis 10 mit ihren Beziehungen zu 5 und 10 Kennkarten der Zahlen bis 10 mit ihren Beziehungen zu Verdopplungen 4

5 Fördern nicht zählender Strategien -Addieren als Zusammenfassen bekannter Teilportionen und -Subtrahieren als Abgrenzen einer bekannten Teilportion von einem bekannten Ganzen Abb.: Darstellen der Summen 7+6, 7+7, 5+8 auf Zehnerfeldern 5

6 Abb.: Symbolische Darstellung der Summen 7+6, 7+7, 5+8 auf Zehnerfeldern (vorige Folie) Die traditionelle Zehnerergänzung wird mit diesem Vorgehen (immer erst 5 und 5) umgangen. 6

7 Abb.: Nichtzählstrategien -Verdoppeln - Verdoppeln plus 1 -Verdoppeln plus 2 - Kraft der Fünf 7

8 Abb.: Neuner-Vorteil und Achter-Vorteil Nur beim Rechnen mit 9 und 8 wird auf die Zehnerergänzung hingewiesen. 8

9 Subtraktion! 9

10 Abb.: Halbierungen und Nachbaraufgaben Bei den Halbierungsaufgaben des Kleinen Einsminuseins denken wir uns das Ganze aus zwei gleichen Teilen zusammengesetzt. Der wegzunehmende Teil (der Subtrahend) ist halb so groß wie das Ganze (der Minuend). Das Ergebnis ist dann die andere Hälfte. An diese 11 Aufgaben (vom Typ 8-4 oder 14-7) lassen sich 22 Nachbaraufgaben ankoppeln. (ebenda, S. 266) 10

11 Abb.: Subtrahieren der Fünf Beim Rechnen mit Fünferportionen nutzen wir die Beziehungen zu Fünfen und Doppelfünfen. Auch hierbei ergeben sich einprägsame bildhafte, nicht zählende Vorstellungen von den Rechenoperationen, die den Zusammenhang der drei beteiligten Zahlen (Tripel 2, 5, 7 und 8, 5, 13) verdeutlichen. (ebenda, S. 266) 11

12 Abb.: Subtrahieren der 10, 9 oder 8 Auch das Subtrahieren mit der 10, der 9 oder der 8 sollten Kinder keinesfalls zählend rechnen müssen. Abziehen der 10 ist sehr einfach, wenn die Kinder sich den Minuenden vorstellen als Zusammensetzung aus 10 und dem Rest. Wenn man statt 10 nur 9 abzieht, bleibt eins mehr übrig. (ebenda, S. 266) 12

13 Abb.: Darstellung der Aufgabe 6 x 4 bzw. 24 : 4 Vorteile des Rechnens mit Teilportionen zeigen sich noch deutlicher beim Multiplizieren und Dividieren. Multiplizieren ist dabei ein Zusammenfassen gleich großer Teilportionen zu einem Ganzen und Dividieren ein Aufteilen eines Ganzen in gleich große Teilportionen. Die Aufgabe 6 x 4 kann man darstellen als 6 Viererportionen aus Plättchen auf Zehnerfelder. Die Viererportionen werden etwas näher zusammengeschoben. Man sieht dabei unmittelbar 24 Plättchen in Viererportionen aufgeteilt ergeben sechs Viererportionen, also 24: 4 = 6. Hätten wir doppelt so große Achterportionen, hätte es nur halb so viele Portionen gegeben, nämlich 3. Bilden wir dagegen nur halb so große Zweierportionen, so gibt es doppelt so viele Portionen, nämlich 12. Somit ist 24 : 2 = 12. (ebenda, S. 267) 13

14 Ausschnitte aus der Masterarbeit zum Konzept von H.-D. Gerster von Dèsirèe Oppermann, Januar

15 15

16 Ihr Fazit

17 2 Systematisierung der Förderansätze 17

18 Material Zahlen, Zahlvorstellung Zehnerübergang Nichtzählende Strategien Gerster Kennkarten, Plättchen, Beinchen zur Zahlzerlegung -5 und 5, dann die restlichen Zahlen -Verdoppeln, Halbieren -erst die Fünfer, dann den Rest -über das Verdoppeln, Halbieren -Klassischer Zehnerübergang nur bei +/- 9, 8 Rechnen über das Zusammenfassen und Herausnehmen von Teilportionen Schipper Fingerbilder, Rechenrahmen, Hunderterfeld, Mehrsystemblöcke -Einstellen der Zahlen am kleinen u. großen Rechenrahmen -mit verbundenen Augen sich die Einstellung vorstellen, zuerst Fingerbilder klassischer Zehnerübergang am Rechenrahmen Strategie am Rechenrahmen erlernen, - handelnd u. sprachlich begleiten, -nur noch sprachlich begleiten, - mit verbundenden Augen herleiten Kalkulie (Fritz, Ricken et al.) Rechenschiffchen Fünfer-, Zehnerstruktur, Verdoppeln/Halbieren Klassischer Zehnerübergang am Zwanzigerfeld Nutzen von Strukturen unseres Zahlsystems (Fünfer- /Zehner) Kutzer Kutzerzug Zehner rotes, Einer grünes Material Klassischer Zehnerübergang, Wagen be- und entladen Einprägen der Handlung am Zug

19 Schulz, Andrea Gaidoschik Material Fingerbilder, Würfelbilder, Mehrsystemblöcke Fingerbilder,Mehrsystemblöcke Zahlen, Zahlvorstellung Darstellen kleiner u. großer Zahlen mit Material (große Zahlen - Pappmodelle) Fingerbilder, Rechenschiffchen Mehrsystemblöcke Stellenraster; Hilfszahl Matinko Mehrsystemblöcke Mengen legen, fühlen, zeichnen, schnell erkennen Rosenkranz Kieler Zahlenbilder Zahlen im Zahlenhaus sehen, tippen, reimen Zehnerübergang Klassischer Zehnerübergang; Autos be- und entladen; Stift als Grenze; Würfelbilder klassischer Zehnerübergang, erst, wenn andere Aufgaben im Zwanziger- und Zehnerraum sitzen klassischer Zehnerübergang, Mehrsystemblöcke Klassischer Zehnerübergang, Zahlenhaus Nichtzählende Strategien Vom tatsächlichen Tun bis zum Rechnen mit verbundenen Augen; Einprägestrategien Vom tatsächlichen Tun bis zum Rechnen mit verbundenen Augen Mengen verändern, Mengen in der Vorstellung verändern Zählen wird durch das Tun mit Material unterbunden Kommt das Rechnen in den Kopf? Strauß-Ehret Würfelhäuser zwei Fünferwürfelbilder übereinander: Einer grün, klein; Zehner Zahlen ins Würfelhaus legen, wenn 10 eingezogen sind, muss die Klassischer Zehnerübergang am Würfelhaus (Geschichte zum Zählen wird durch das Tun mit Material unterbunden Kommt das Rechnen

20 3 Fallbeispiele Zuordnung von Förderkonzepten Fallbeispiel 1: Luis, Klasse 2 Fallbeispiel 2: Marie, Klasse 3 Fallbeispiel 3: Sarah, Klasse 4

21 Fallbeispiel 1: Luis, Kl. 2 Die Rechenschwäche wird im Verlauf der 1. Klasse von der Mutter diagnostiziert. Sie organisiert frühzeitig für Luis eine außerschulische Förderung an einem privaten Institut.

22 Zahlvorstellungen Fallbeispiel Luis, Kl. 2 (November) I: Weißt du, wie viel das sind hier auf der Platte (100er-Platte)? L: 20? 100. I: Und woher weißt du, dass es 100 sind? L: (antwortet nicht, legt eine Zehnerstange an die Platte) Jetzt sind s 200, nee 101. I: 101 wäre das. (legt einen Einerwürfel zur Hunderter-Platte dazu) L: Ja, stimmt. (legt einen Zehnerstab dazu) einhundertzwei. I: Einhundertzwei wäre das (ändert die Darstellung). L: (Legt zu einhundertzwei eine Zehnerstange dazu) Das wäre I: Nein, 1000, da müsste ich dir so einen ganz dicken Würfel geben, der so groß ist. 110 hattest du gelegt, Luis. 22

23 I: So, jetzt mit zweistelligen Zahlen. Lege 42. L: (wiederholt die Zahl, legt erst zwei Steinchen und dann vier, die er eng zusammenrückt) I: Jetzt hast du 6 gelegt. Zähl s mal nach. L: zählt bis 6 und sagt: Muss ich zwei wegnehmen. I: Jetzt hast du 4 gelegt. Nehmen wir mal die kleinen weg (schiebt die Würfelchen zur Seite), nehmen wir mal nur die großen (schiebt die Zehnerstangen zu Luis). L: Geht das mit denen? I: Wie viel Steinchen sind denn in den Stangen? L: 10. I: Weißt du s doch. L: Ja. I: Und wenn du Zehner brauchst, dann darfst du nicht die Kleinen nehmen, das sind nur Einer (zeigt auf das Material). Dann lege mal 40. (Luis legt 4 Zehnerstangen) Und jetzt noch die 2 (die 2 links daneben). Und da man immer erst die Zehner nimmt (die großen) und dann die Kleinen, nimmt man immer erst die Zehner und dann die Einer (legt die Einer auf die andere Seite). L: (gähnt, bestätigt) I: Und jetzt schreibst du die Zahl mal auf, die wir gelegt haben. L: (schreibt erst die 2 und die 4 rechts daneben 24, zögert beim Aufschreiben). I: Lies mal vor. L: (scheint in dem Moment zu wissen, dass es falsch wird): Upps, 24. I: Und da kannst du dir jetzt merken, Luis, so, wie du es legst, so kannst du es auch aufschreiben. Immer erst die großen (nimmt die Stäbe in die Hand), die kommen immer zuerst und dann die kleinen. 23

24 1) Benennen Sie die Defizite. 2) Ordnen Sie ein passendes Förderkonzept zu. 3) Begründen Sie.

25 Fallbeispiel 2: Marie, Kl. 3 In Klasse 3 wird festgestellt: zählende Rechnerin bei den Grundaufgaben beim halbschriftlichen Rechnen keine sicheren Strategien 25

26 Halbschriftliches Addieren ? 3+4 ist 7, 4+7 ist 11, 711? Kannst du es auch anders? Rechnet Stellenwerte extra (30+40 ist 70+7 ist (zählt) ist ist gleich 13, 1 gemerkt, 2+2 ist 4, 4+2= 6, ist 643. Kannst du es auch anders? Rechnet Stellenwerte extra. 26

27 Halbschriftliches Subtrahieren ist 40, 40-5 (zählt) ist 35 und 35-2 ist ist 60 minus 6 ist 54, 54-1=53 27

28 1) Benennen Sie die Defizite. 2) Ordnen Sie ein passendes Förderkonzept zu. 3) Begründen Sie.

29 Fallbeispiel 3: Sarah, Kl. 4 Die Rechenschwäche begleitet Sarah schon während der ganzen Grundschulzeit. Vor allem das Elternhaus engagiert sich.

30 Sarah, Kl. 4

31

32

33 1) Benennen Sie die Defizite. 2) Ordnen Sie ein passendes Förderkonzept zu. 3) Begründen Sie.

34 Fazit

8.3 Differenzieren und Fördern im Mathematikunterricht Rechenschwäche/Rechenstörung/Dyskalkulie

8.3 Differenzieren und Fördern im Mathematikunterricht Rechenschwäche/Rechenstörung/Dyskalkulie Sommersemester 2016 8.3 Differenzieren und Fördern im Mathematikunterricht Rechenschwäche/Rechenstörung/Dyskalkulie Mi, 08-10 Uhr, Audimax V 1 (13.04.) Klärung von Begriffen; Diskussion von Ursachen V

Mehr

Arithmetik in der Grundschule Di Uhr HS 1. Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind

Arithmetik in der Grundschule Di Uhr HS 1. Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind Sommersemester 2016 Arithmetik in der Grundschule Di 08-10 Uhr HS 1 V 1 12.04. V 2 19.04 Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind V 3 26.04. Zahlenraum

Mehr

Vorlesungsübersicht WS 2015/16

Vorlesungsübersicht WS 2015/16 Vorlesungsübersicht WS 2015/16 Di 10-12 Audimax Einführen in mathematische Grundvorstellungen 27.10. V1 Mathematik in der Grundschule 03.11. V2 Kinder mit Lernschwierigkeiten 10.11. V3 Mathematisch begabte

Mehr

8.3 Differenzieren und Fördern im Mathematikunterricht Rechenschwäche/Rechenstörung/Dyskalkulie

8.3 Differenzieren und Fördern im Mathematikunterricht Rechenschwäche/Rechenstörung/Dyskalkulie Sommersemester 2016 8.3 Differenzieren und Fördern im Mathematikunterricht Rechenschwäche/Rechenstörung/Dyskalkulie Mi, 08-10 Uhr, Audimax V 1 (13.04.) Klärung von Begriffen; Diskussion von Ursachen V

Mehr

Vorlesung zur Arithmetik V1 18./ Arithmetik in der Grundschule V2 -./ Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den

Vorlesung zur Arithmetik V1 18./ Arithmetik in der Grundschule V2 -./ Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Anfangsunterricht V3 02./03.05. Natürliche Zahlen im Anfangsunterricht

Mehr

8.3 Differenzieren und Fördern im Mathematikunterricht Rechenschwäche/Rechenstörung/Dyskalkulie. Klärung von Begriffen; Diskussion von Ursachen

8.3 Differenzieren und Fördern im Mathematikunterricht Rechenschwäche/Rechenstörung/Dyskalkulie. Klärung von Begriffen; Diskussion von Ursachen Sommersemester 2016 Mi, 08-10 Uhr, Audimax 8.3 Differenzieren und Fördern im Mathematikunterricht Rechenschwäche/Rechenstörung/Dyskalkulie V 1 (13.04.) V 2 (20.04.) V 3 (27.04.) V 4 (04.05.) V 5 (11.05.)

Mehr

Übergang vom Zwanzigerfeld zu den Mehrsystemblöcken und zum leeren Zahlenstrahl

Übergang vom Zwanzigerfeld zu den Mehrsystemblöcken und zum leeren Zahlenstrahl Übergang vom Zwanzigerfeld zu den Mehrsystemblöcken und zum leeren Zahlenstrahl Im mathematischen Anfangsunterricht sollten nicht zu viele Materialien verwendet werden. In der Förderung am Institut für

Mehr

Rechenproblemen vorbeugen

Rechenproblemen vorbeugen Diagnoseleitfaden Vorwärtszählen Vorwärtszählen ab einer Zahl Zähle, bis ich stopp sage. Zähle ab 54 weiter. Kann das Kind sicher zählen, wendet es die Zählprinzipien an? Zählt das Kind flüssig über Zehnerübergänge

Mehr

Kompetenzorientiert unterrichten: -Argumentieren -Kommunizieren -Problemlösen -Modellieren -Darstellen

Kompetenzorientiert unterrichten: -Argumentieren -Kommunizieren -Problemlösen -Modellieren -Darstellen Sommersemester 2016 Didaktik der Grundschulmathematik Di, 12-14 Uhr, HS 1 I Zahlen und Operationen V 1 12.04. Arithmetik in der Grundschule V 2 19.04. Die Entwicklung mathematischer Kompetenzen V 3 26.04.

Mehr

Didaktik der Grundschulmathematik 1.1

Didaktik der Grundschulmathematik 1.1 Didaktik der Grundschulmathematik 1.1 Didaktik der Grundschulmathematik Didaktik der Grundschulmathematik 1.2 Inhaltsverzeichnis Didaktik der Grundschulmathematik 1 Anschauungsmittel 2 Zahlbegriff 3 Addition

Mehr

Kriterien zur Beurteilung von Arbeitsmitteln (nach Radatz et al., 1996) (1)

Kriterien zur Beurteilung von Arbeitsmitteln (nach Radatz et al., 1996) (1) Kriterien zur Beurteilung von Arbeitsmitteln (nach Radatz et al., 1996) (1) Didaktische Kriterien: (D1) Erlaubt das Material simultane Zahlauffassung und -darstellung bis 4? (D2) Erlaubt das Material quasi-simultane

Mehr

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Inhalt Lehrplan Mathematik für die Grundschule des Landes NRW Arithmetische Vorkenntnisse am Schulanfang Zahlaspekte, Zählen, Zahlzeichen

Mehr

Selbsteinschätzung. Strategien aufgabenbezogen bewerten. Kenntnis der Rechenwege auch bei schriftlichen Rechenverfahren

Selbsteinschätzung. Strategien aufgabenbezogen bewerten. Kenntnis der Rechenwege auch bei schriftlichen Rechenverfahren Schwerpunkt: Flexibles Rechnen - Klasse 3/4 Flexibles Rechnen Die Schülerinnen und Schüler: - nutzen aufgabenbezogen oder nach eigenen Präferenzen eine Strategie des Zahlenrechnens, ein schriftliches Normalverfahren

Mehr

Arithmetik in der Grundschule Di Uhr HS 1. Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind

Arithmetik in der Grundschule Di Uhr HS 1. Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind Sommersemester 2016 Arithmetik in der Grundschule Di 08-10 Uhr HS 1 V 1 12.04. V 2 19.04 Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind V 3 26.04. Zahlenraum

Mehr

Wir subtrahieren halbschriftlich und schriftlich!

Wir subtrahieren halbschriftlich und schriftlich! Wir subtrahieren halbschriftlich und schriftlich! Vergleiche die Rechenwege! Was fällt dir auf? Lea rechnet so: Lea subtrahiert halbschriftlich mit dem Eintausch-Trick. Sie subtrahiert mit Einerwürfeln,

Mehr

Mathematik. Kinder-Sprechstunde. Wer war dabei? Darüber haben wir gesprochen: Das haben wir verabredet:

Mathematik. Kinder-Sprechstunde. Wer war dabei? Darüber haben wir gesprochen: Das haben wir verabredet: Mathematik Kinder-Sprechstunde am Wer war dabei? Darüber haben wir gesprochen: Das haben wir verabredet: Unterschrift Kind Unterschrift Eltern Unterschrift Lehrer(in) Mathematik Kinder-Sprechstunde am

Mehr

Konrad-Agahd-Grundschule

Konrad-Agahd-Grundschule Konrad-Agahd-Grundschule Schulinternes Curriculum Mathematik Klasse 1 1. Entwicklung des Zahlbegriffs Form und Zahlen unter den verschiedenen Zahlaspekten darstellen Muster vor- und rückwärts zählen Zahlen

Mehr

Fingerterme. Welche. passen?

Fingerterme. Welche. passen? Zahlenkarten, Heft Welche 28 Fingerterme passen? Zwischen Marisa und Felix liegen Zahlenkarten. Felix zeigt Marisa eine Karte. Felix weiß nicht, welche Zahl auf der Karte steht. Marisa zeigt Felix mit

Mehr

Zahlen sehen. Anschauungsmittel zum Aufbau von Zahlvorstellungen nutzen. Uta Häsel-Weide

Zahlen sehen. Anschauungsmittel zum Aufbau von Zahlvorstellungen nutzen. Uta Häsel-Weide Zahlen sehen Anschauungsmittel zum Aufbau von Zahlvorstellungen nutzen Uta Häsel-Weide Aufbau von Zahlvorstellungen Zahlen erscheinen in unterschiedlichen Aspekten 5 1, 2, 3, 4, 5... Emil-Figge-Str. 50

Mehr

Erarbeitung der Operation Subtraktion. Mündliches und halbschriftliches Rechnen

Erarbeitung der Operation Subtraktion. Mündliches und halbschriftliches Rechnen Erarbeitung der Operation Subtraktion Mündliches und halbschriftliches Rechnen Übung / Wiederholung Lösen Sie folgende Aufgaben. Veranschaulichen Sie den Rechenweg, indem Sie Plättchen in einem Abakus

Mehr

3. Rechnen mit natürlichen Zahlen

3. Rechnen mit natürlichen Zahlen 3. Rechnen mit natürlichen Zahlen 3.1 Inhaltliches Verstehen von Rechenoperationen 3.2 Die Grundaufgaben: Das 1+1 und 1x1 3.3 Lösungsstrategien für mündliches und halbschriftliches Rechnen 3.4 Die schriftlichen

Mehr

Fördern und Diagnose mit dem Blitzrechenkurs 25. Symposium Mathe TU Dortmund

Fördern und Diagnose mit dem Blitzrechenkurs 25. Symposium Mathe TU Dortmund Fördern und Diagnose mit dem Blitzrechenkurs 25. Symposium Mathe 2000+ TU Dortmund 25.04.2015 Referent: Günther Röpert Entwicklungsstand siebenjähriger Kinder 8 7 6 5 4 3 2 1 0 1 2 4 6 4 2 1 5,5 6,0 6,5

Mehr

Pädagogische Hochschule Thurgau. Lehre Weiterbildung Forschung

Pädagogische Hochschule Thurgau. Lehre Weiterbildung Forschung . Lehre Weiterbildung Forschung Projekt AdL Math Monika Schoy-Lutz In Kooperation mit der PHGR Thema Kompetenzen konkret Zahlbereichsentwicklung: Zahlen Woche 1, Lektion 1 Zahl und Variable Operieren und

Mehr

Vertiefende Diagnostik zur Förderung im Fach Mathematik. Aufgaben und Beobachtungsschwerpunkte

Vertiefende Diagnostik zur Förderung im Fach Mathematik. Aufgaben und Beobachtungsschwerpunkte Vertiefende Diagnostik zur Förderung im Fach Mathematik Aufgaben und Beobachtungsschwerpunkte Prozessorientierte Diagnose ist eine Diagnostik, in deren Rahmen Kindern Aufgaben gestellt werden, die geeignet

Mehr

Stoffverteilungsplan Mathematik Klassenstufe 1 (ZR ) Schuljahr: Schule:

Stoffverteilungsplan Mathematik Klassenstufe 1 (ZR ) Schuljahr: Schule: Stoffverteilungsplan Mathematik Klassenstufe 1 (ZR 10-20 - 100) Schuljahr: Schule: ZEIT INHALTE KOMPETENZEN Rechenrakete Bemerkungen Schulwochen 10 1-8 Zahlen 3, 2, 1, 0, 4 und 5 Zahlen bis 5 darstellen,

Mehr

Download. Zahlenraum bis 100 ohne Zehnerübergang. Handlungsanleitungen, Übungen und Arbeitsblätter zur Ablösung des zählenden Rechnens in Klasse 2

Download. Zahlenraum bis 100 ohne Zehnerübergang. Handlungsanleitungen, Übungen und Arbeitsblätter zur Ablösung des zählenden Rechnens in Klasse 2 Download Daniel Sinner Rechnen im Zahlenraum bis 100 ohne Zehnerübergang Handlungsanleitungen, Übungen und Arbeitsblätter zur Ablösung des zählenden Rechnens in Klasse 2 Grundschule Daniel Sinner Downloadauszug

Mehr

Arithmetik in der Grundschule Di Uhr Audimax. Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind

Arithmetik in der Grundschule Di Uhr Audimax. Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind Sommersemester 2015 Arithmetik in der Grundschule Di 08-10 Uhr Audimax V 1 14.04. V 2 21.04 Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind V 3 28.04. Zahlenraum

Mehr

Vorlesung zur Arithmetik V1 18./ Arithmetik in der Grundschule V2 -./ Die Entwicklung des Zahlbegriffs beim Kind V3 02./03.05.

Vorlesung zur Arithmetik V1 18./ Arithmetik in der Grundschule V2 -./ Die Entwicklung des Zahlbegriffs beim Kind V3 02./03.05. Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind V3 02./03.05. Natürliche Zahlen im Anfangsunterricht V4 09./10.05. Die Grundrechenoperationen

Mehr

Inhaltsverzeichnis. Leseprobe Mathetiger 1 - Schülerbuch Bestell-Nr Mildenberger Verlag

Inhaltsverzeichnis. Leseprobe Mathetiger 1 - Schülerbuch Bestell-Nr Mildenberger Verlag Inhaltsverzeichnis Erstes Zählen, Strichlisten, Zahlen darstellen, Formen und Figuren 4 In der Schule Zahlen entdecken 4 Zahlen erkennen 5 Menge, Zahl und Würfelbild 6 Sortieren und Strichlisten erstellen

Mehr

Nussknacker Mein Mathematikbuch

Nussknacker Mein Mathematikbuch Stoffverteilungsplan Nussknacker Mein Mathematikbuch Klasse 1 Ausgabe Sachsen 1 Nussknacker - Mein Mathematikbuch Klasse 1 / Sachsen Monat Schulwoche Lernziel SB September 1. 2. Lernbereich 2: Arithmetik

Mehr

Das schriftliche Verfahren der Subtraktion. Didaktische Positionen

Das schriftliche Verfahren der Subtraktion. Didaktische Positionen Das schriftliche Verfahren der Subtraktion Didaktische Positionen Welchem Klassifikationstyp der Subtraktion ist die jeweilige Aufgabe zuzuordnen? Zur Klasse 3 a gehören 36 Kinder. Heute führen sie ein

Mehr

WELT DER ZAHL Schuljahr 1

WELT DER ZAHL Schuljahr 1 Kapitel 1: Zahlen bis 10 Seiten 4 23 Zahlen bis 10 kennen und schreiben Zahlvorstellung entwickeln Anzahlen mit verschiedenen Sinnen erfassen, Mengen erfassen, Zahlen vergleichen Zahlzerlegung, Kraft der

Mehr

Kompetenzorientiert unterrichten: -Argumentieren -Kommunizieren -Problemlösen -Modellieren -Darstellen

Kompetenzorientiert unterrichten: -Argumentieren -Kommunizieren -Problemlösen -Modellieren -Darstellen Sommersemester 2016 Didaktik der Grundschulmathematik Di, 12-14 Uhr, HS 1 I Zahlen und Operationen V 1 12.04. Arithmetik in der Grundschule V 2 19.04. Die Entwicklung mathematischer Kompetenzen V 3 26.04.

Mehr

1. Grundlagen der Arithmetik

1. Grundlagen der Arithmetik 1. Grundlagen der Arithmetik Die vier Grundrechenarten THEORIE Addition (plus-rechnen, addieren, zusammenzählen): Summand + Summand = Summe Subtraktion (minus-rechnen, subtrahieren, wegzählen): Minuend

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse Seite 1

Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse Seite 1 Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse Seite 1 1. Zählen, Mengen erfassen und Zahlen schreiben 1. Mengen erfassen 1 2. Mengen erfassen 2 3. Zähle die Kästchen 4. Zähle die Gegenstände 5. Zähle

Mehr

Mathematik Jahrgangsstufe 2

Mathematik Jahrgangsstufe 2 Grundschule Bad Münder Stand: 02.11.2016 Schuleigener Arbeitsplan Mathematik Jahrgangsstufe 2 Zeitraum Kompetenzen Verbindliche Sommerferien bis Herbstferien eigene Vorgehensweisen beschreiben Problemlösen

Mehr

Mathematik Jahrgangsstufe 2

Mathematik Jahrgangsstufe 2 Grundschule Bad Münder Stand: 12.03.2014 Schuleigener Arbeitsplan Mathematik Jahrgangsstufe 2 Zeitraum Kompetenzen Verbindliche Sommerferien bis Herbstferien Kommunizieren und eigene Vorgehensweisen beschreiben

Mehr

M ATHEMATIK Klasse 3. Stoffverteilungsplan Berlin Brandenburg Mecklenburg-Vorpommern. Der Zahlenraum bis 1000 (S )

M ATHEMATIK Klasse 3. Stoffverteilungsplan Berlin Brandenburg Mecklenburg-Vorpommern. Der Zahlenraum bis 1000 (S ) M ATHEMATIK Klasse 3 Stoffverteilungsplan Berlin Brandenburg Mecklenburg-Vorpommern Duden Mathematik 3 Lehrplan: Anforderungen / Inhalte Der Zahlenraum bis 1000 (S. 14 25) Entwickeln von Zahlvorstellungen

Mehr

4. Jahrestagung Berlin

4. Jahrestagung Berlin 29. 02./1. 03. 08 SINUS Transfer Grundschule 4. Jahrestagung Berlin Lernumgebungen für Rechenschwache bis Hochbegabte Natürliche Differenzierung im Mathematikunterricht der Grundschule Workshop: Von einfach

Mehr

Darstellen, Ordnen und Vergleichen

Darstellen, Ordnen und Vergleichen Darstellen, Ordnen und Vergleichen negative Zahlen positive Zahlen 1_ 6 < 3,5 3 < +2 +1 2 < +5 Um negative Zahlen darstellen zu können, wird der Zahlenstrahl zu einer Zahlengeraden erweitert. Wenn zwei

Mehr

M ATHEMATIK Klasse 1. Stoffverteilungsplan Thüringen. Der Zahlenraum bis 10 (S. 4 23)

M ATHEMATIK Klasse 1. Stoffverteilungsplan Thüringen. Der Zahlenraum bis 10 (S. 4 23) Der Zahlenraum bis 10 (S. 4 23) Zählen und erzählen: Zählen und Zahlen lesen; Anzahlen bestimmen; verschiedene Zahlaspekte betrachten; Zahlen in der Umwelt thematisieren Bauen und zählen: Geometrische

Mehr

Der Alltag mit Dyskalkulie

Der Alltag mit Dyskalkulie Der Alltag mit Dyskalkulie Dr. Valentina Kiesswetter Psychologin in eigener Praxis, Meran Ein klassischer Nachmittag Hausaufgabe: 20 zweistellige Additionen im Stil von 25+17 = Nicht zählen! Bis zum nächsten

Mehr

WELT DER ZAHL Schuljahr 2

WELT DER ZAHL Schuljahr 2 Kapitel 1: Wiederholung und Vertiefung Seiten 4 13 Übungen mit dem Zahlen- ABC Addieren und Subtrahieren Aufgabe und Umkehraufgabe Gleichungen und Ungleichungen, Variable Sachrechnen; Rechengeschichten

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 1. Klasse

Lerninhalte ALFONS Lernwelt Mathematik 1. Klasse Seite 1 Turmzimmer 1: Zählen, Mengen erfassen und Zahlen schreiben 1. Zählen bis 6 1 7. Zählen bis 20 3 2. Zählen bis 6 2 8. Wie viel fehlt bis 10? 3. Zählen bis 10 1 9. Wie viel fehlt bis 20? 4. Zählen

Mehr

WELT DER ZAHL Schuljahr 1

WELT DER ZAHL Schuljahr 1 Zahlen bis 10 kennen und schreiben Zahlvorstellung entwickeln Anzahlen mit verschiedenen Sinnen erfassen, Mengen erfassen, Zahlen vergleichen Zahlzerlegung, Kraft der Fünf Zerlegungsgeschichten, mit der

Mehr

Begriffe, die auf eine Multiplikation oder Division hinweisen

Begriffe, die auf eine Multiplikation oder Division hinweisen Fachbegriffe der Addition und Subtraktion Bei der Addition werden Zahlen zusammengezählt: 2 + 4 = 6 1. Summand 2. Summand Summe Bei der Subtraktion wird eine Zahl von einer anderen abgezogen. 7 2 = 5 Minuend

Mehr

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Inhalt Lehrplan Mathematik für die Grundschule des Landes NRW Arithmetische Vorkenntnisse am Schulanfang Zahlaspekte, Zählen, Zahlzeichen

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 1. Klasse

Lerninhalte ALFONS Lernwelt Mathematik 1. Klasse Lerninhalte ALFONS Lernwelt Mathematik 1. Klasse 1. Zählen, Mengen erfassen und Zahlen schreiben 1. Zählen bis 6 1/2 2. Zählen bis 6 2/2 3. Zählen bis 10 1/2 4. Zählen bis 10 2/2 5. Zählen bis 20 1/3 6.

Mehr

Helmut Lange. Besser RECHNEN. ohne Taschenrechner. Erstaunliche Rechentricks

Helmut Lange. Besser RECHNEN. ohne Taschenrechner. Erstaunliche Rechentricks Helmut Lange Besser RECHNEN ohne Taschenrechner Erstaunliche Rechentricks Vorwort In der Schule wir das Kopfrechnen kaum noch vermittelt. Werden wir im Alltag mit Rechenaufgaben konfrontiert, sind Smartphone

Mehr

Rechenstrategien im Zahlenraum bis 20

Rechenstrategien im Zahlenraum bis 20 Daniel Sinner im Zahlenraum bis 20 Handlungsanleitungen, Übungen und Arbeitsblätter zur Ablösung des zählenden Rechnens in Klasse 1 Grundschule u Daniel Sinner ner Downloadauszug aus dem Originaltitel:

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 1. Klasse Seite 1

Lerninhalte ALFONS Lernwelt Mathematik 1. Klasse Seite 1 Lerninhalte ALFONS Lernwelt Mathematik 1. Klasse Seite 1 1. Zählen, Mengen erfassen und Zahlen schreiben 1. Zählen bis 6 1 2. Zählen bis 6 2 3. Zählen bis 10 1 4. Zählen bis 10 2 5. Zählen bis 20 1 6.

Mehr

WELT DER ZAHL Schuljahr 1

WELT DER ZAHL Schuljahr 1 Zahlen bis 10 kennen und schreiben Zahlvorstellung entwickeln Anzahlen mit verschiedenen Sinnen erfassen, Mengen erfassen, Zahlen vergleichen Zahlzerlegung, Kraft der Fünf Zerlegungsgeschichten, mit der

Mehr

Mathematik 1 Primarstufe

Mathematik 1 Primarstufe Mathematik 1 Primarstufe Handlungs-/Themenaspekte Bezüge zum Lehrplan 21 Die Übersicht zeigt die Bezüge zwischen den Themen des Lehrmittels und den Kompetenzen des Lehrplans 21. Es ist jeweils diejenige

Mehr

2. Zeitraumbezogenes Curriculum

2. Zeitraumbezogenes Curriculum 2. Zeitraumbezogenes Curriculum 2.1. Sommer-Herbst Hauptkompetenzbereich Inhalt Muster und Strukturen - Zahlenraum bis 10 - Zahlzerlegung Erwartete inhaltliche und prozessbezogene* Kompetenzen nach dem

Mehr

Aufgabe 3: Zehnersystem, Zahlbeziehungen

Aufgabe 3: Zehnersystem, Zahlbeziehungen Schüler/in Aufgabe 3: Zehnersystem, Zahlbeziehungen LERNZIELE: Zahlen ergänzen, verdoppeln und zerlegen Beziehungen zwischen Zahlen erkennen Achte darauf: 1. Du ergänzt Zahlen mit Hilfe der Zehnereinheiten

Mehr

Erarbeitung der Operation Addition. Handlungssituationen und Rechenstrategien

Erarbeitung der Operation Addition. Handlungssituationen und Rechenstrategien Erarbeitung der Operation Addition Handlungssituationen und Rechenstrategien Vorkenntnisse von Schulanfängern ngern zum Addieren (nach einer Untersuchung von Hendrickson, 1979) Testaufgaben: Lege 2 von

Mehr

3. Rechnen mit natürlichen Zahlen

3. Rechnen mit natürlichen Zahlen 3. Rechnen mit natürlichen Zahlen 3.1 Inhaltliches Verstehen von Rechenoperationen 3.2 Die Grundaufgaben: Das 1+1 und 1x1 3.3 Lösungsstrategien für mündliches und halbschriftliches Rechnen 3.4 Die schriftlichen

Mehr

Pädagogische Hochschule Thurgau. Lehre Weiterbildung Forschung

Pädagogische Hochschule Thurgau. Lehre Weiterbildung Forschung . Lehre Weiterbildung Forschung Projekt AdL Math Monika Schoy-Lutz In Kooperation mit der PHGR Thema Kompetenzen konkret Einfache Plusaufgaben. Quartal ca. Woche 6 Zahl und Variable Additionssymbol verstehen

Mehr

Fachspezifische Themenvorschläge für das Quartalspraktikum

Fachspezifische Themenvorschläge für das Quartalspraktikum Fachspezifische Themenvorschläge für das Quartalspraktikum Liste zuhanden der Praxislehrpersonen mit Vorschlägen zur Auftragserteilung an die Studierenden Mathematik 2. Klasse A: Rechenstrategien Addition

Mehr

4. Das diagnostische Gespräch (1)

4. Das diagnostische Gespräch (1) 4. Das diagnostische Gespräch (1) diagnostisches Interview bzw. informelles Gespräch des Lehrers/der Lehrerin mit einem einzelnen Schüler/einer einzelnen Schülerin beinhaltet Nachfragen zu schriftlich

Mehr

Arithmetik in der Grundschule Di 08-10 Uhr HS 1. Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind

Arithmetik in der Grundschule Di 08-10 Uhr HS 1. Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind Sommersemester 2016 Arithmetik in der Grundschule Di 08-10 Uhr HS 1 V 1 12.04. V 2 19.04 Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind V 3 26.04. Zahlenraum

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Richtig rechnen - Rechenstörungen erkennen und behandeln

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Richtig rechnen - Rechenstörungen erkennen und behandeln Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: - Rechenstörungen erkennen und behandeln Das komplette Material finden Sie hier: Download bei School-Scout.de Inhalt Vorwort 5 Seite

Mehr

Aufgaben zu Lambacher Schweizer 5 Hessen

Aufgaben zu Lambacher Schweizer 5 Hessen Aufgaben zu Kapitel I Kopfrechenaufgaben 1 Berechne im Kopf. a) 60 + 32 b) 57 + 41 c) 130 + 72 d) 504 + 91 e) 75 + 47 f) 76 + 85 g) 124 + 127 h) 295 + 76 i) 129 + 396 j) 747 + 239 2 a) 3800 + 4600 b) 5700

Mehr

EINFÜHRUNG IN DIE GLEICHUNGSLEHRE (Kurzform)

EINFÜHRUNG IN DIE GLEICHUNGSLEHRE (Kurzform) EINFÜHRUNG IN DIE GLEICHUNGSLEHRE (Kurzform) (8. KLASSE) J. Möller JmoellerOwingen@aol.com Tel-07551-6889 GLEICHUNGEN Eine Gleichung ist wie eine Waage, will man sie umformen, so muss man rechts und links

Mehr

Mathematik Jahrgangsstufe 1

Mathematik Jahrgangsstufe 1 Grundschule Bad Münder Stand: 26.02.2015 Schuleigener Arbeitsplan Mathematik Jahrgangsstufe 1 Zeitraum Kompetenzen Verbindliche Sommerferien bis Herbstferien Zahlen und auffassen: Aufbau erster Vorstellungsbilder

Mehr

Kompetenzraster Förderschwerpunkt Lernen: MATHE

Kompetenzraster Förderschwerpunkt Lernen: MATHE Kompetenzraster Förderschwerpunkt Lernen: MATHE Orientierung im Zahlenraum bis (20, 100, 1.000, 10.000, 100.000 ) 1. Halbjahr: 2. Halbjahr: Negative Zahlen Kompetenzfeld: Zahlvorstellung / Umgang mit Größen

Mehr

Rechennetzwerk bis 100

Rechennetzwerk bis 100 Rechennetzwerk bis 00 Einmaleinsreihen in der Hundertertafel. Das gibt schöne Muster. Lege mit roten Plättchen die Zahlen der Sechser-Reihe. Gehe auch über 0, immer dazu. Schreibe die Zahlen in dein Heft.

Mehr

Rechentraining. 4 a) b) c) d) e) f) g) h)

Rechentraining. 4 a) b) c) d) e) f) g) h) Rechentraining Kopfrechenaufgaben 1 a) 27 + 13 b) 45 + 25 c) 78 + 22 d) 64 + 36 e) 205 + 95 f) 909 + 91 g) 487 + 23 h) 630 + 470 i) 777 + 333 j) 34 23 k) 42 33 l) 177 78 m) 555 444 n) 1010 101 o) 808 88

Mehr

3.3 Lösungsstrategien für mündliches und halbschriftliches Rechnen Halbschriftliche Addition und Subtraktion

3.3 Lösungsstrategien für mündliches und halbschriftliches Rechnen Halbschriftliche Addition und Subtraktion 3.3 Lösungsstrategien für mündliches und halbschriftliches Rechnen 3.3.1 Halbschriftliche Addition und Subtraktion 3.3.2 Halbschriftliche Multiplikation und Division Rahmenplan Rahmenplan Hessen S. 154:

Mehr

Zur Behandlung der Multiplikation. Konzept der Kernaufgaben bei der Multiplikation

Zur Behandlung der Multiplikation. Konzept der Kernaufgaben bei der Multiplikation Zur Behandlung der Multiplikation Konzept der Kernaufgaben bei der Multiplikation Wiederholung: Schriftliche Subtraktion Dana spart für ein neues Fahrrad, das 237 kostet. Sie hat schon 119. Dana rechnet

Mehr

Addition und Subtraktion natürlicher Zahlen

Addition und Subtraktion natürlicher Zahlen 0 Minuten Addition und Subtraktion natürlicher Zahlen Kurztest : Addieren und Subtrahieren 1 Bei der linken Rechenmauer wird nach oben addiert, bei der rechten Rechenmauer nach oben subtrahiert. a) b)

Mehr

Bereich: Zahlen und Operationen. Schwerpunkt: Flexibles Rechnen. Zeit/ Stufe

Bereich: Zahlen und Operationen. Schwerpunkt: Flexibles Rechnen. Zeit/ Stufe Schwerpunkt: Flexibles Rechnen Thema Kompetenz Kenntnisse/ Fertigkeiten/ Voraussetzungen, um die Kompetenz zu erlangen - Flexibles Rechnen (Addition, Subtraktion, Multiplikation, Division) - nutzen aufgabenbezogen

Mehr

Kapitel 1: Zahlen bis 10 Seiten 4 23

Kapitel 1: Zahlen bis 10 Seiten 4 23 11 Mathematik Schuljahr 1 Zahlen bis 10 kennen Zahlvorstellung entwickeln, Mengen erfassen, vergleichen und zerlegen Mengen- und Zahlvorstellungen entwickeln Zahlen in der Umwelt entdecken Kapitel 1: Zahlen

Mehr

8.3 Differenzieren und Fördern im Mathematikunterricht Rechenschwäche/Rechenstörung/Dyskalkulie

8.3 Differenzieren und Fördern im Mathematikunterricht Rechenschwäche/Rechenstörung/Dyskalkulie Sommersemester 2016 8.3 Differenzieren und Fördern im Mathematikunterricht Rechenschwäche/Rechenstörung/Dyskalkulie Mi, 08-10 Uhr, Audimax V 1 (13.04.) Klärung von Begriffen; Diskussion von Ursachen V

Mehr

Schulische Diagnostik und individuelle Förderung bei Rechenschwierigkeiten

Schulische Diagnostik und individuelle Förderung bei Rechenschwierigkeiten Schulische Diagnostik und individuelle Förderung bei Rechenschwierigkeiten Dr. Thomas Rottmann Prüm, 21. November 2011 Schulische Diagnostik und individuelle Förderung bei Rechenschwierigkeiten Möglichkeiten

Mehr

Klasse 1 Rheinland-Pfalz

Klasse 1 Rheinland-Pfalz Zahlen Zahlvorstellungen besitzen Zahldarstellungen und Zahlbeziehungen verstehen Daten, Häufigkeiten, Wahrscheinlichkeiten Daten erfassen und darstellen Eingangsdiagnostik Zahlen in der Umwelt bewusst

Mehr

WELT DER ZAHL Schuljahr 1

WELT DER ZAHL Schuljahr 1 Kapitel 1: Wiederholung und Vertiefung Seiten 4 13 Übungen mit dem Zahlen- ABC Addieren und Subtrahieren Aufgabe und Umkehraufgabe Gleichungen und Ungleichungen, Variable Sachrechnen; Rechengeschichten

Mehr

Arithmetik in der Grundschule Di 08-10 Uhr HS 1. Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind

Arithmetik in der Grundschule Di 08-10 Uhr HS 1. Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind Sommersemester 2016 Arithmetik in der Grundschule Di 08-10 Uhr HS 1 V 1 12.04. V 2 19.04 Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind V 3 26.04. Zahlenraum

Mehr

Zahlen und Operationen Grundaufgaben der Multiplikation und Division auf

Zahlen und Operationen Grundaufgaben der Multiplikation und Division auf Zahlen und Operationen Grundaufgaben der Multiplikation und Division auf analoge Aufgaben im erweiterten Zahlenraum übertragen, Gesetzmäßigkeiten sowie Regeln erkennen und zur Lösung nutzen Inhaltsbezogene

Mehr

Handelndes Rechnen. einige vorgefertigte Zehnerstangen und eine kleine Menge

Handelndes Rechnen. einige vorgefertigte Zehnerstangen und eine kleine Menge Handelndes Rechnen Rechnen ist gedankliches Operieren mit Zahlen, die für gedachte Mengen stehen. Es ist ein Nachdenken darüber, was man mit konkreten Mengen wirklich tun könnte. Rechnerisches Denken kann

Mehr

Merkaufgaben im Zahlenraum bis 20

Merkaufgaben im Zahlenraum bis 20 Daniel Sinner im Zahlenraum bis 20 Handlungsanleitungen, Übungen und Arbeitsblätter zur Ablösung des zählenden Rechnens in Klasse 1 Grundschule u Daniel Sinner ner Downloadauszug aus dem Originaltitel:

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse

Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse Seite 1 Turmzimmer 1: Zählen, Mengen erfassen und Zahlen schreiben 1. Mengen erfassen 1 7. Zehnerzahlen lesen und als Wörter schreiben 2. Mengen erfassen 2 8. Zahlen bis 100 lesen und als Wörter schreiben

Mehr

Methodische Anregungen für die Vorschule und Grundschule

Methodische Anregungen für die Vorschule und Grundschule Methodische Anregungen für die Vorschule und Grundschule Autorin: Renate von Witzleben Hinweise: Aufgaben für die Vorschule Aufgaben für die Grundschule Hinweise für Lehrer/innen Methodische Anregungen

Mehr

Thema. beschreiben. Wahrnehmung und Lagebeziehung

Thema. beschreiben. Wahrnehmung und Lagebeziehung Zeit Prozessbezogene Kompetenzen Thema Inhaltsbezogene Kompetenzen Methoden Material/ Medien/ Schulbuch Überprüfung Sommerferien bis Herbstferien - Eine Darstellung in eine andere übertragen - Zahlen auf

Mehr

Die Schülerinnen und Schüler sollen. Zahlenraum bis Sommer- bis Herbstferien

Die Schülerinnen und Schüler sollen. Zahlenraum bis Sommer- bis Herbstferien Unterrichtsinhalt Seite im Schülerbuch Kompetenzerwartungen Die Schülerinnen und Schüler sollen Allgemeine und inhaltsbezogene mathematische Kompetenzbereiche Zeitlicher Rahmen Zahlenraum bis 10 4-20 Sommer-

Mehr

DOWNLOAD. Rechenstrategien: Verdoppeln und Halbieren. Unterrichtsmaterialien zum nicht-zählenden Rechnen. im ZR bis 20

DOWNLOAD. Rechenstrategien: Verdoppeln und Halbieren. Unterrichtsmaterialien zum nicht-zählenden Rechnen. im ZR bis 20 DOWNLOAD Ellen Kraft Rechenstrategien: Verdoppeln und Halbieren Unterrichtsmaterialien zum nichtzählenden Rechnen im ZR bis 0 Ellen Kraft Bergedorfer Unterrichtsideen Downloadauszug aus dem Originaltitel:

Mehr

4 + Rechnen über die Zehn = = = bis 3 Eigene Aufgaben. Auf zur Rechenkonferenz!

4 + Rechnen über die Zehn = = = bis 3 Eigene Aufgaben. Auf zur Rechenkonferenz! Rechnen über die Zehn bis Eigene Aufgaben Das kann ich schon + = + = + = + = Hier brauche ich Hilfe + Auf zur Rechenkonferenz!, Aufgaben mit Zahlenkarten legen. Entscheiden, ob die Lösung im Kopf oder

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Rechenstrategien im Zahlenraum bis 20 trainieren

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Rechenstrategien im Zahlenraum bis 20 trainieren Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Rechenstrategien im Zahlenraum bis 20 trainieren Das komplette Material finden Sie hier: School-Scout.de Bergedorfer Unterrichtsideen

Mehr

Beiträge zur Heil- und Sonderpädagogik

Beiträge zur Heil- und Sonderpädagogik Elisabeth Moser Opitz Rechenschwäche / Dyskalkulie Beiträge zur Heil- und Sonderpädagogik Beiträge zur Heil- und Sonderpädagogik Band 31 Begründer der Reihe: Prof. em. Dr. Urs Haeberlin, Universität Freiburg

Mehr

Schuleigener Arbeitsplan im Fach Mathematik 2. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand:

Schuleigener Arbeitsplan im Fach Mathematik 2. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand: Schuleigener Arbeitsplan im Fach Mathematik 2. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand: 10.11.2010 Inhalte des Schulbuches Wiederholung und Vertiefung Seiten Prozessbezogene Kompetenzen

Mehr

eine kurze Vorstellung

eine kurze Vorstellung Das Arbeitsheft Fingerturnen immer 10: eine kurze Vorstellung Dieses Heft fügt sich dem Arbeitsheft Fingerturnen an. Es wird in der 1. Klasse, 2. Halbjahr eingesetzt. Das Fingerturnen baut auf dem Prinzip:

Mehr

Zahlzerlegungen und Teil-Ganzes-Beziehungen

Zahlzerlegungen und Teil-Ganzes-Beziehungen und Teil-Ganzes-Beziehungen Eine wichtige Grundlage für die Entwicklung von Rechenstrategien von Andrea Peter-Koop und Thomas Rottmann Ein Selbstversuch Rechnen mit Buchstaben Wir möchten diesen Beitrag

Mehr

Inhalte des Schulbuches Kompetenzen und Inhalte Erweiterte Materialien aus dem Lehrwerksverbund

Inhalte des Schulbuches Kompetenzen und Inhalte Erweiterte Materialien aus dem Lehrwerksverbund Wiederholung (S. 4 9) Der Zahlenraum bis 100 (S. 10 23) Wiederholung der zentralen Inhalte im Bereich Arithmetik unter dem Aspekt des beziehungsreichen Übens, des Festigens der bereits bekannten Rechenstrategien

Mehr

Laute und Buchstaben erkennen. Wörter und Sätze lesen und schreiben

Laute und Buchstaben erkennen. Wörter und Sätze lesen und schreiben 1. Klasse Laute und Buchstaben erkennen Selbstlaute und Umlaute 14 Buchstabenkombination ie 16 Buchstaben l, m, n und h, k, t 18 Buchstaben b,r,s 20 Buchstaben d,f,j 22 Buchstaben ch und p 24 Buchstaben

Mehr

Nussknacker Mein Mathematikbuch

Nussknacker Mein Mathematikbuch Stoffverteilungsplan Nussknacker Mein Mathematikbuch Klasse 2 Ausgabe Nordrhein-Westfalen Nussknacker - Mein Mathematikbuch Klasse 2 / Nordrhein-Westfalen Monat Woche Lernziel Schulbuchseite September

Mehr

WELT DER ZAHL Schuljahr 2

WELT DER ZAHL Schuljahr 2 Kapitel 1: Wiederholung und Vertiefung Seiten 4 13 Übungen mit dem Zahlen- ABC Addieren und Subtrahieren Aufgabe und Umkehraufgabe Gleichungen und Ungleichungen, Variable Sachrechnen; Rechengeschichten

Mehr

SPIEGLEIN. SPIEGLEIN IN DER HAND

SPIEGLEIN. SPIEGLEIN IN DER HAND SPIEGLEIN. SPIEGLEIN IN DER HAND Thema: Anzahlen verdoppeln, vervielfachen Klasse: 1. Klasse und EK 1 (Zahlenbuch 1 ab S. 30) Material: ein (evt. zwei) Spiegel je Kind, Legeplättchen, Würfel, Dominosteine,

Mehr

Wie kann kann im Unterricht vorgegangen werden?

Wie kann kann im Unterricht vorgegangen werden? 1:1 richtig üben Die Division nimmt als eine der vier Grundrechenarten einen eher kleinen Stellenwert im Lehrplan der Mathematik ein. Trotzdem sollen den Kindern in der Grundschule auch Lerngelegenheiten

Mehr

Vorlesung zur Arithmetik V1 18./ Arithmetik in der Grundschule V2 -./ Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den

Vorlesung zur Arithmetik V1 18./ Arithmetik in der Grundschule V2 -./ Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Anfangsunterricht V3 02./03.05. Natürliche Zahlen im Anfangsunterricht

Mehr

Arbeitsplan mit Implementierung der Bildungsstandards Mathematik Klasse 3

Arbeitsplan mit Implementierung der Bildungsstandards Mathematik Klasse 3 Arbeitsplan mit Implementierung der Bildungsstandards Mathematik Klasse 3 Kapitel 1: Zahlen überall Seite 4 15 (ca. 1. 6. Woche) Grundrechenarten im Zahlenraum bis 100 Zahldarstellung und Grundrechenarten

Mehr