ÜBUNGSAUFGABEN. Mathematik für Ökonomen II

Größe: px
Ab Seite anzeigen:

Download "ÜBUNGSAUFGABEN. Mathematik für Ökonomen II"

Transkript

1 Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg ÜBUNGSAUFGABEN zur Vorlesung Mathematik für Ökonomen II Sommersemester 2006

2 1 Aufgabe 51 Man gebe die rekursiv definierten Folgen (a n ),(b n ) mit a n+1 = 2 n+1 a n (a 0 = 1 2 ), b n+1 = b n (b 1 = 2) in expliziter Form an und überprüfe die Folgen auf Monotonie und Beschränktheit. Aufgabe 52 Für die Folgen (a n ),(b n ),(c n ) mit n N und a n = ( 1)n( n) 3 +(n+3) 2 2 n 1+n 2 + 4n 3, b n = 1 n ( 3 n 3 n 2 4 ), ( n ) 4 c n = ( 1) n n 1 ( ) 1 n+1 n 2 2 n 2 +1 berechne man alle Häufungspunkte und Grenzwerte. Aufgabe 53 Für die Folgen (a n ),(b n ),(c n ),(d n ),(e n ) mit n N und a n = n n n+n+1, b n = 3n n 1 n n(2+ n), c n = (a n ) 2, d n = a n b n, e n = b n a n überprüfe man die Konvergenz und berechne gegebenenfalls die Grenzwerte. Aufgabe 54 Oskars Freundin finanziert ihm das Studium. Sie möchte jedoch, dass Oskar zügig studiert, und setzt folgende Zahlungen an Oskar fest: Sie zahlt ihrem Freund in den ersten 4 Jahren des Studiums 1000 pro Monat. Ab Beginn des 9. Semesters erhält Oskar einen Fixbetrag von 600 pro Monat und im 1. Monat zusätzlich 300. Dieser Zusatzbetrag fällt jeden weiteren Monat um 5 % des Zusatzbetrages aus dem Vormonat. Es wird angenommen, dass ein Semester sechs volle Monate dauert. a) Stellen Sie die Folge (a n ) der gesamten monatlichen Zahlungen auf, die die Freundin ab Beginn des 9. Semesters an Oskar leistet. b) Welchen Betrag erhält Oskar im letzten Monat des 12. Semesters? c) Oskar weiß, dass er wenigstens 790 /Monat zum Leben braucht. Wie lange kann Oskar somit sein Studium insgesamt finanzieren, wenn er kein Geld anspart und ausgeschlossen wird, dass Oskar zu einer neuen, finanzstarken Freundin wechselt bzw. eine andere Geldquelle für sich auftut?

3 2 Aufgabe 55 Ein Schüler möchte 10 Jahre für ein Auto sparen. Zu Beginn des ersten Jahres bringt er 100,- zur Bank. Nachdem die Bank mit ihm unabhängig von der Höhe der Folgezahlungen einen jährlichen Zins von 5 % auf den jeweiligen Kontostand zu Jahresbeginn vereinbart, beschließt der Schüler, seine Spareinlage zu Beginn eines jeden nachfolgenden Jahres gegenüber dem Vorjahr um 5 % zu reduzieren. Welchen Betrag hat der Schüler am Ende des 10. Jahres angespart? Aufgabe 56 Eine Schätzung der gesamten Öl- und Gasreserven im norwegischen Festlandsockel zu Beginn des Jahres 2003 betrug 13 Milliarden Tonnen. Die Förderung im selben Jahr lag bei 250 Millionen Tonnen. a) Wann sind die Reserven erschöpft, wenn die Förderung auf demselben Niveau wie im Jahr 2003 fortgesetzt wird? b) Nehmen Sie an, dass die Förderung jedes Jahr um 2 % im Vergleich zum vorangegangenen Jahr reduziert wird, beginnend im Jahr Wie lange werden die Reserven in diesem Fall reichen? c) Wie ändert sich die Situation, wenn die jährliche Förderung um jeweils 10 Millionen Tonnen gegenüber dem Vorjahr steigt, beginnend im Jahr Wie lange werden die Reserven in diesem Fall reichen? Aufgabe 57 a) Für welche k N konvergieren die Folgen (a n ), (b n ), (c n ) mit a n = 3(n10 1) 2(n+1) k, b n = a 1 n, c n = a 2 n? Geben Sie gegebenenfalls die entsprechenden Grenzwerte an. b) Zeigen Sie, dass die Reihe (s n ) mit s n = n a i i=1 für k 12 konvergiert und für k = 10 divergiert.

4 3 Aufgabe 58 a) Man überprüfe die Reihen (r n ),(s n ),(t n ) mit r n = n i=1 3 i+1 5 i 1, s n = n i=0 3 2i 5 i, t n = auf ihre Konvergenz und bestimme den Grenzwert lim n r n. n i=1 2(i!) (2i)! b) Überprüfen Sie mit Hilfe des Quotientenkriteriums, für welche a R die Reihen (r n ),(s n ) mit n r n = a i n (a 1), s n = i a(i+1) i=0 i=0 konvergieren. Aufgabe 59 Gegeben sind die Funktionen f 1, f 2 von einer reellen Variablen mit: f 1 (x) = 4x+1 2x 1, f 2(x) = x4 3x 3 + 2x 2 x 1 a) Für welche x R sind die Funktionen f 1, f 2 definiert? b) Man zerlege f 1 additiv in ein Polynom und eine echt gebrochen rationale Funktion und zeige damit, dass f 1 für x > 1 2 streng monoton fällt (ohne Differentialrechnung). c) Man zeige, dass f 2 für alle x 2 streng monoton wächst (ohne Differentialrechnung). d) Man zeige, dass weder f 1 noch f 2 eine globale Extremalstelle besitzt. Aufgabe 60 Für die gebrochen rationale Funktion f mit f(x) = führe man eine Partialbruchzerlegung durch. 1 (x 1) 2 (x 2 + 1)

5 4 Aufgabe 61 Gegeben ist die Funktion f mit: f(x) = (x+1)(1 x) ( 0) a) Für welche x R ist f definiert? b) Man zeige ohne Differentialrechnung, dass f für x = 1 minimal und für x = 0 maximal wird. Aufgabe 62 Bei der Produktion eines Gutes wirken sich die mit steigenden Stückzahlen gewonnenen Produktionserfahrungen kostensenkend aus. Die für eine Mengeneinheit (ME) des Produkts anfallenden Stückkosten k (in /ME) hängen von der Gesamtproduktionsmenge x folgendermaßen ab: k(x) = a x b mit a,b R, x 1 Es wird nun folgendes beobachtet: i. Die erste produzierte Einheit verursacht Kosten in Höhe von 160. ii. Verdoppelt man die Produktionsmenge ausgehend von einer beliebigen Stückzahl, so sinken die Stückkosten um 20 % gegenüber dem Wert vor Stückzahlverdoppelung. a) Bestimmen Sie die Parameter a und b der Funktion k. b) Wie hoch muß die Gesamtproduktionsmenge sein, damit die gesamten Produktionskosten betragen? Aufgabe 63 Gegeben sei die Funktion f mit: f(x) = 2 1 x ln( x) a) Für welche x R ist f definiert? b) Man zeige, dass f streng monoton fällt für x < 1.

6 5 Aufgabe 64 Man bestimme alle Extremalstellen der Funktion f : [ 2π, 2π] R mit ( f(x) = 2sin x π ) 6 ohne Differentialrechnung. Aufgabe 65 Untersuchen Sie die Funktion f : R R mit: 2x x+3 für x < 3 3 für x = 3 f(x) = (x+2) 2 2 für 3 < x 0 ln(e x+2 ) für x > 0 auf Stetigkeit. Aufgabe 66 a) Gegeben sei die rationale Funktion f mit f(x) = x3 + x 2 x+1 x 2 1 Für welche x R ist die Funktion definiert, stetig, stetig fortsetzbar?. b) Für welche Konstanten a,b R ist die Funktion g mit x+1 a für x 1 g(x) = 2x x 2 + b für x < 1 +1 stetig? Bestimmen Sie im Intervall [ 1, 0] eine Nullstelle der Funktion g für a = 0.4 und b = 0.6 mit Hilfe des Zwischenwertsatzes bei einer maximalen Abweichung von 0.1.

7 6 Aufgabe 67 Gegeben sei eine Produktionsfunktion f : R + R + mit y = f(x) = ( x 2 ) 0.5, wobei x das Verhältnis von Kapital zu Arbeitsinput und y das Verhältnis von Bruttosozialprodukt zu Arbeitsinput ausdrückt. a) Man zeige, dass ein x [1, 1.2] existiert mit f(x) = b) Man bestimme einen x 0 Wert, der von einem x mit f(x) = 1.05 maximal um 0.05 abweicht, und interpretiere das Ergebnis. Aufgabe 68 Gegeben sind die reellen Funktionen f 1, f 2, f 3 : R R mit: f 1 (x) = x 3 x f 2 (x) = f 3 (x) = { x 2 + x+1 für x 0 x { für x < 0 x 2 2x+2 für x 1 e x 1 für x < 1 a) Für welche x R sind die Funktionen differenzierbar? b) Man berechne gegebenenfalls die Differentialquotienten. Aufgabe 69 Gegeben ist die reelle Funktion f : R R mit: sin ax f(x) = x für x > 0 b+x 1 x für x 0 und a,b 0 a) Berechnen Sie für beliebige Konstante a, b 0 die Grenzwerte lim f(x) und lim f(x), x x falls diese existieren. b) Berechnen Sie die reellen Konstanten a,b 0 so, dass die Funktion f mit f(0) = 1 für alle x R stetig bzw. stetig fortsetzbar ist. c) Zeigen Sie ohne Differentialrechnung, dass f mit a = b = 1 für x = 0 ein globales Maximum besitzt.

8 7 Aufgabe 70 Gegeben sei die rationale Funktion f : R R mit f(x) = x2 +x+1 x a) Berechnen Sie alle Maximalstellen, Minimalstellen und Wendepunkte der Funktion. b) Berechnen Sie die Werte f( 3), f( 1), f(0), f(1), f(3) und skizzieren Sie f(x). c) In welchen Bereichen ist die Funktion monoton wachsend bzw. fallend, konvex bzw. konkav? Aufgabe 71 Die kumulierte Nachfrage y nach Videorecordern in Abhängigkeit der Zeit t 1 wird durch die sogenannte Gompertz-Funktionsgleichung prognostiziert. y(t) = 10 7 e 5(0.5)t a) Man skizziere die Funktion und gebe eine Interpretation. b) Man berechne die Sättigungsgrenze lim t y(t). c) Man zeige, dass die Änderungsrate der Nachfrage für alle t 1 positiv und monoton fallend ist. d) Man zeige, dass die Nachfrage für t 3 elastisch und für t 4 unelastisch ist.

9 8 Aufgabe 72 Gegeben sei eine Preisabsatzfunktion f : R + R + mit x = f(p) = 50e 0.2 p. Dabei entspricht p dem Preis, x dem Absatz eines Produktes. a) Zeigen Sie, dass der Umsatz mit u(p) = p f(p) für p 5 monoton wächst bzw. für p 5 monoton fällt und für alle p [0,10] konkav ist. b) Berechnen Sie die Änderungsrate ρ und die Elastizität ε des Umsatzes in Abhängigkeit des Preises. c) Bestätigen Sie Ihre in b) berechneten Ergebnisse mit Hilfe von Beispiel 9.21, Satz 9.22 c und Satz 9.23 c des Lehrbuches. Aufgabe 73 Das Mobilfunkunternehmen TELLO bietet seinen Kunden eine Beteiligung an der Gestaltung des Gebührenmodells an. Sei x R + die Anzahl der telefonierten Minuten pro Monat und y R + ein Parameter, der vom Kunden zu Vertragsbeginn frei gewählt werden kann. Für die Gebühren G(x, y) gilt die Funktionsgleichung 1 G(x,y) = 3(y+1) x+3(y+1)2. a) Wie sollten Sie y R + wählen, wenn Sie bei festem x = x 0 Ihre Kosten minimieren wollen? b) Wie hoch sind nach Kostenminimierung die Grundgebühr sowie der Minutenpreis, wenn Sie x = 144,486 bzw. 900 Minuten im Monat telefonieren? Aufgabe 74 Man untersuche die Funktion f : R R mit ) f(x) = 5 (e 2 x (x 1) 1 auf Monotonie und Konvexität. Man bestimme alle Extremalstellen und Wendepunkte und skizziere den Verlauf der Funktion für x 0.

10 9 Aufgabe 75 a) Für welche x R konvergieren die Potenzreihen (p n (x)), (q n (x)) mit n [ ] p n (x) = 23 i n (x 1), qn (x) = i(x+1) i? i=0 i=0 b) Zur Funktion f mit f(x) = 2 x bestimme man die Folge der Taylor Polynome an der Stelle x 0 = 0 sowie den Konvergenzradius dieser Folge. Aufgabe 76 Gegeben ist die Funktion f : R R mit (1) f(x) = a 2 x 2 2a 2 x+1. a) Mit a R ist zunächst eine Konstante charakterisiert. Bestimmen Sie alle lokalen und globalen Extremalstellen von f in Abhängigkeit von a. b) Setzen Sie a = x in der Funktionsgleichung (1), und geben Sie die daraus resultierende Funktion g : R R in Abhängigkeit von x an. c) Diskutieren Sie das Monotonie- und das Konvexitätsverhalten von g. d) Berechnen Sie die Funktionswerte g( 1), g(0), g(0.5), g(1), g(1.5), g(2) und skizzieren Sie die Funktion. Aufgabe 77 Gegeben sei die CES Produktionsfunktion (Constant Elasticity of Substitution function) mit der Gleichung y = f(x 1,x 2 ) = a [ (1 b) x c 1 + b ] 1 x c c 2, der Proportionalitätskonstanten a > 0, dem Verteilungsparameter b 0, 1 und dem Substitutionsparameter c > 0. Ferner stehen x 1 > 0 für den Produktionsfaktor Arbeit, x 2 > 0 für den Produktionsfaktor Kapital und y für das Bruttosozialprodukt (vgl. auch Aufgabe 67). a) Man berechne die partiellen Grenzproduktivitäten der beiden Faktoren und zeige, dass diese positiv sind. b) Man berechne die Grenzrate der Substitution x 1 x 2. c) Man berechne die partiellen Elastizitäten der Faktoren und zeige, dass die CES Funktion homogen vom Grade 1 ist. d) Man kann zeigen, dass die partiellen Ableitungen zweiter Ordnung f x1 x 1 (x 1,x 2 ) und f x2 x 2 (x 1,x 2 ) negativ sind. Geben Sie für diese Aussage eine ökonomische Interpretation.

11 10 Aufgabe 78 a) Man bestimme alle Extremalstellen der Funktion f : R 3 R mit b) Man berechne die Veränderung f(x 1,x 2,x 3 ) = x x2 2 3x2 1 x 2 + x 2 3. f(100,200,300) = f(100+ x 1,200+ x 2,300+ x 3 ) f(100,200,300) mit x 1 = x 2 = x 3 = 1 näherungsweise mit Hilfe des totalen Differentials und vergleiche das Ergebnis mit dem exakten Wert. Aufgabe 79 Für ein Produkt, das ein monopolistischer Anbieter auf den Markt bringen möchte, gelte die Preis Absatz Beziehung x = 100 p+ q, wobei p den Preis, x die Absatzquantität und q die Werbekosten bezeichnen. Ferner sind die Produktionskosten durch c(x) = 40x+500 gegeben. a) Skizzieren Sie in der (x,q) Ebene die Punktmenge, die zu einem positiven Preis führt. b) Man berechne den Preis p, das Werbebudget q und die Absatzquantität x so, dass der Gewinn lokal maximal wird, und gebe den maximalen Gewinn an. Aufgabe 80 Bestimmen Sie zur Funktion f : R 2 R mit f(x,y) = x 3 x 2 ln(y 2 + 1) 3x a) den Funktionswert f( 1, 0), b) den Gradienten, c) die Hesse Matrix, d) alle Nullstellen des Gradienten, e) die Definitheitseigenschaft der Hesse Matrix in jeder Nullstelle des Gradienten, f) eine lokale Maximalstelle.

12 11 Aufgabe 81 Zwischen dem Preis x und dem Absatz y eines Gutes wird eine lineare Beziehung der Form y = a+bx vermutet. Folgende Daten wurden beobachtet: y x a) Mit Hilfe der Daten schätze man a und b nach der KQ Methode auf zwei Kommastellen. b) Mit Hilfe von a) prognostiziere man den Absatz y bei einem Preis von x = 25. Aufgabe 82 Zeigen Sie, dass die Funktion f : R 3 R mit f(x 1,x 2,x 3 ) = x 1 + x 2 + x 3 unter der Nebenbedingung x x2 2 + x2 3 = r2 mit r > 0 genau ein globales Maximum und ein globales Minimum besitzt. Wie verändert sich die Lösung, wenn zusätzlich x 2 = x 3 erfüllt sein soll. Aufgabe 83 Ein Teegroßhändler will seinen Tee in quaderförmigen Blechdosen mit quadratischer Grundund Deckfläche auf den Markt bringen. Welche Abmessungen müssen die Blechdosen haben, damit bei einem Volumen von 1 Liter (= 1000 cm 3 ) ein möglichst geringer Blechverbrauch anfällt.

13 12 Aufgabe 84 Ein Student möchte mit Freunden seine bestandene Mathematikprüfung mit Bier (x 1 ) zum Preis von 2, Schnaps (x 2 ) zum Preis von 20 und Zigaretten (x 3 ) zum Preis von 4 pro Einheit feiern. Insgesamt veranschlagt er einen Betrag von 120. Ferner bewertet er den Nutzen eines Einkaufs durch die Funktion f mit und möchte diesen Nutzen maximieren. f(x 1,x 2,x 3 ) = x 1 x 2 x 3 a) Man zeige, dass die nach Satz berechnete Hessematrix indefinit ist. b) Man löse das gegebene Nutzenmaximierungsproblem mit Budgetrestriktion mit Hilfe variabler Lagrange Multiplikatoren (Satz 10.42). Aufgabe 85 Man bestimme die Stammfunktionen der Funktionen f 1, f 2, f 3, f 4, f 5 mit: f 1 (x) = 2x+ 1 x + 2 x 2 cosx+e 2x f 2 (x) = (x 2 + x)cosx x 2 1 f 3 (x) = (x 3 3x+2) n für n = 1,2 1 f 4 (x) = x 3 x f 5 (x) = x e x2 + 1 e x2 Aufgabe 86 Für die in Aufgabe 85 angegebenen Funktionen berechne man 2 f 1 (x)dx, π 2 f 2 (x)dx, 4 f 4 (x)dx Aufgabe 87 Man berechne die bestimmten Integrale 2π 0 xsinxdx, und interpretiere die erhaltenen Ergebnisse. 2π 0 xsinx dx

14 13 Aufgabe 88 Gegeben sei eine Grenzkostenfunktion 3 für x [0,100] c (x) = 30 für x [100, 400] 600 für x [400,900] x. Die fixen Kosten betragen c(0) = Bestimmen Sie dazu eine stetige Gesamtkostenfunktion c(x) und berechnen Sie die Gesamtkosten für x = 100, x = 150 und x = 625. Aufgabe 89 Der momentane Umsatz eines Produktes zum Zeitpunkt t sei durch die Funktion u : R + R + mit u(t) = 1000(t + 1) e t 2 gegeben. a) Man skizziere die Funktion u im Planungszeitraum [0, 10] und berechne den Gesamtumsatz in [0,T]. b) Man ermittle den Gesamtumsatz für T = 10 und T. Aufgabe 90 Für ein Produkt sollen die Kosten- und Umsatzentwicklungen in Abhängigkeit der Zeit t 0 betrachtet werden. Dabei wurden für die Veränderung der Kosten k(t) bzw. des Umsatzes u(t) die Beziehungen ermittelt. k (t) = d k(t) d t = 100 t + 1 bzw. u (t) = d u(t) d t = 1000 (t + 1) 2 für alle t 0 a) Zeigen Sie, dass die Kosten k(t) und der Umsatz u(t) für t 0 monoton wachsen, während der Gewinn g(t) = u(t) k(t) für t 9 monoton wächst und für t 9 monoton fällt. b) Berechnen Sie die bestimmten Integrale k 9 = 9 0 k (t) d t, u 9 = und interpretieren Sie diese Ergebnisse. 9 0 u (t) d t, g 9 = u 9 k 9 c) Zeigen Sie, dass es eine obere Integrationsgrenze z 9 mit g z = 0 gibt (keine Berechnung erforderlich).

a n := 5n4 + 2n 2 2n n + 1. a n := n 5n 2 n 2 + 7n + 8 b n := ( 1) n c n := ( 1) n+1 6n2 + 13n 5n 3 + 7

a n := 5n4 + 2n 2 2n n + 1. a n := n 5n 2 n 2 + 7n + 8 b n := ( 1) n c n := ( 1) n+1 6n2 + 13n 5n 3 + 7 Folgen und Reihen. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 2. Untersuchen Sie folgende Folgen auf Monotonie, Beschränktheit, Häufungspunkte und Konvergenz,

Mehr

Aufgabe 51. Gegeben ist die Preis-Absatz-Funktion. p W R C! R C mit p.x/ D 20 2x :

Aufgabe 51. Gegeben ist die Preis-Absatz-Funktion. p W R C! R C mit p.x/ D 20 2x : Aufgabe 5 Differentialrechnung: Preiselastizität (DIFF0.4) Gegeben ist die Preis-Absatz-Funktion p W R C! R C mit p./ D 0 : Dabei steht R C für die nachgefragte Menge und p R C für den Preis. Bestimmen

Mehr

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0!

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 25.02.2004 Aufgabe 5 Gegeben ist die Funktion f(x) = 2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 06.08.2003 Aufgabe 5 Gegeben ist

Mehr

Mathematik für Betriebswirte II (Analysis) 1. Klausur Sommersemester

Mathematik für Betriebswirte II (Analysis) 1. Klausur Sommersemester Mathematik für Betriebswirte II (Analysis). Klausur Sommersemester 04 5.07.04 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:................................................................... Vorname:....................................................................

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Aufgabe 98 12.12.2012 Untersuchen Sie die Funktion f W R! R mit f.x/

Mehr

Univariate Analysis. Analysis und nichtlineare Modelle Sommersemester

Univariate Analysis. Analysis und nichtlineare Modelle Sommersemester Analysis und nichtlineare Modelle Sommersemester 9 5 Univariate Analysis C. Berechnen Sie ohne Taschenrechner(!). Runden Sie die Ergebnisse auf ganze Zahlen. (a) 7 :, (b) 795 :.. Berechnen Sie ohne Taschenrechner(!):

Mehr

Integralrechnung. Aufgabe 62. Gegeben seien die beiden Funktionen f; g W R! R mit. f.x/ D 2x C 10 sowie g.x/ D x 2 C 2 :

Integralrechnung. Aufgabe 62. Gegeben seien die beiden Funktionen f; g W R! R mit. f.x/ D 2x C 10 sowie g.x/ D x 2 C 2 : Integralrechnung Aufgabe 62 Integralrechnung: Fläche zwischen Kurven (Flaeche2) Gegeben seien die beiden Funktionen f; g W R! R mit f.x/ D 2x C sowie g.x/ D x 2 C 2 : a) Bestimmen Sie die Schnittpunkte

Mehr

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2)

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2) Prof. Hesse Höhere Mathematik I und II Musterlösung 7. 0. 0, 80min Aufgabe (3 Punkte) Zeigen Sie mit vollständiger Induktion: Für alle n N gilt n k= k k k(k + ) = n+ n +. Induktionsanfang: k= Induktionsschluss

Mehr

Mathematik für Betriebswirte II (Analysis) 2. Klausur Sommersemester

Mathematik für Betriebswirte II (Analysis) 2. Klausur Sommersemester Mathematik für Betriebswirte II (Analysis). Klausur Sommersemester 7 3.9.7 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:................................................................... Vorname:....................................................................

Mehr

Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur Sommersemester

Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur Sommersemester Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur Sommersemester 2011 30.09.2011 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................

Mehr

2 a 6. a 4 a Wir führen nun den Gauÿalgorithmus durch: 2 a a 2 4a 2 4a a a 2 2a 0 2 a

2 a 6. a 4 a Wir führen nun den Gauÿalgorithmus durch: 2 a a 2 4a 2 4a a a 2 2a 0 2 a Aufgabe 8 Punkte). Bestimmen Sie die Lösungsmenge in R in Abhängigkeit von a R) des folgenden linearen Gleichungssystem: x + ax + 6x = 4, ax + 4x + ax =, x + 4x =. Lösung. Wir schreiben das lineare Gleichungssystem

Mehr

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I Staatsexamen Herbst 17 Differential- und Integralrechnung, Thema I 1. a) Die Aussage ist wahr! Sei s R der Reihenwert der Reihe k=1 Da a n = s n s n 1 für n, ist also b) Die Aussage ist falsch! a k, also

Mehr

Mathematik für Wirtschaftswissenschaftler II (Analysis) 1. Klausur Sommersemester

Mathematik für Wirtschaftswissenschaftler II (Analysis) 1. Klausur Sommersemester Mathematik für Wirtschaftswissenschaftler II (Analysis) 1. Klausur Sommersemester 2012 24.07.2012 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................

Mehr

Nachklausur Analysis 2

Nachklausur Analysis 2 Nachklausur Analysis 2. a) Wie ist der Grenzwert einer Folge in einem metrischen Raum definiert? Antwort: Se (a n ) n N eine Folge in dem metrischen Raum (M, d). Diese Folge besitzt den Grenzwert g M,

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg elementarer Funktionen Gegeben: f : D R, mit D R und a > 0, b R. Dann gilt: f(x) f (x) 1 ln x x 1 log a x x ln a e x e

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

Mathematik für Betriebswirte II (Analysis) 1. Klausur Sommersemester

Mathematik für Betriebswirte II (Analysis) 1. Klausur Sommersemester Mathematik für Betriebswirte II (Analysis) 1. Klausur Sommersemester 2015 14.07.2015 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

Prof. Steinwart Höhere Mathematik I/II Musterlösung A =

Prof. Steinwart Höhere Mathematik I/II Musterlösung A = Prof. Steinwart Höhere Mathematik I/II Musterlösung 9.8.6 Aufgabe Punkte a Berechnen Sie die Eigenwerte der folgenden Matrix: A 3 b Es sei 4 A. 8 5 Bestimmen Sie P, P M, und eine Diagonalmatrix D M, so,

Mehr

Inhaltsverzeichnis. Universität Basel 7 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematik 1

Inhaltsverzeichnis. Universität Basel 7 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematik 1 Universität Basel 7 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematik 1 Dr. Thomas Zehrt Produktionsfunktionen Inhaltsverzeichnis 1 Homogene Funktionen 2 1.1 Definition und

Mehr

Kapitel 7. Differentialrechnung. Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56

Kapitel 7. Differentialrechnung. Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56 Kapitel 7 Differentialrechnung Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f x = f (x 0 + x) f (x 0 ) x = f (x)

Mehr

Prüfungsklausur Mathematik II für Wirtschaftsingenieure,

Prüfungsklausur Mathematik II für Wirtschaftsingenieure, HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik II für Wirtschaftsingenieure, 06.07.2015 B Name, Vorname Matr. Nr. Sem. gr. Aufgabe 1 2 3 4 5 6 7 8 gesamt erreichbare

Mehr

Wirtschaftsmathematik - Übungen WS 2017/18

Wirtschaftsmathematik - Übungen WS 2017/18 Wirtschaftsmathematik - Übungen WS 17/18 Blatt 4: Funktionen von einer Variablen 1. Gegeben sind die Mengen M 1 = {, 1,, 3, 4, 5, 6, 7, 8, 9} und M = { 1,, 1, } sowie die Zuordnungsvorschrift f : M 1 æ

Mehr

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen 1 Einleitung Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis 1 aus dem Wintersemester 2008/09

Mehr

Lösungsvorschlag zur Nachklausur zur Analysis

Lösungsvorschlag zur Nachklausur zur Analysis Prof Dr H Garcke, D Depner SS 09 NWF I - Mathematik 080009 Universität Regensburg Lösungsvorschlag zur Nachklausur zur Analysis Aufgabe Untersuchen Sie folgende Reihen auf Konvergenz und berechnen Sie

Mehr

Mathematik 1 Bachelorstudiengang Maschinenbau

Mathematik 1 Bachelorstudiengang Maschinenbau Mathematik 1 Bachelorstudiengang Maschinenbau Prof. Dr. Stefan Etschberger Hochschule Augsburg Sommersemester 2012 7. Differentialrechnung einer Veränderlichen 7.2. Differentialquotient und Ableitung

Mehr

KLAUSUR. Analysis (E-Technik/Mechatronik/W-Ing) Prof. Dr. Werner Seiler Dr. Matthias Fetzer, Dominik Wulf

KLAUSUR. Analysis (E-Technik/Mechatronik/W-Ing) Prof. Dr. Werner Seiler Dr. Matthias Fetzer, Dominik Wulf KLAUSUR Analysis (E-Technik/Mechatronik/W-Ing).9.7 Prof. Dr. Werner Seiler Dr. Matthias Fetzer, Dominik Wulf Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.: Unterschrift: In der Klausur können Sie insgesamt

Mehr

Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur SoSe 2010 Hamburg,

Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur SoSe 2010 Hamburg, Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur SoSe 2010 Hamburg, 08.10.2010 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen

Mehr

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg Hinreichende Bedingung für lokale Extrema Voraussetzungen Satz D R n konvex und offen Funktion f : D R zweimal stetig partiell differenzierbar

Mehr

Prüfungsklausur Mathematik II für Wirtschaftsingenieure am

Prüfungsklausur Mathematik II für Wirtschaftsingenieure am HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik II für Wirtschaftsingenieure am 17.07.2017 B Name, Vorname Matr. Nr. Sem. gr. Aufgabe 1 2 3 4 5 6 7 8 gesamt erreichbare

Mehr

Klausur. Wir wünschen Ihnen viel Erfolg! Klausur Höhere Mathematik Teil

Klausur. Wir wünschen Ihnen viel Erfolg! Klausur Höhere Mathematik Teil Prof. Dr. Guido Schneider Fachbereich Mathematik Universität Stuttgart Klausur für Studierende der Fachrichtungen el, kyb, mecha, phys, tpel Bitte unbedingt beachten: Bitte beschriften Sie jeden Ihrer

Mehr

Prüfungsklausur Mathematik II für Wirtschaftsingenieure am

Prüfungsklausur Mathematik II für Wirtschaftsingenieure am HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik II für Wirtschaftsingenieure am 17.07.2017 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 1 2 3 4 5 6 7 8 gesamt erreichbare

Mehr

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007 Analysis-Klausuren in den ET-Studiengängen (Ba) ab 7 Im Folgenden finden Sie die Aufgabenstellungen der bisherigen Klausuren Analysis im Bachelorstudium der ET-Studiengänge sowie knapp gehaltene Ergebnisangaben.

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Differentialrechnung für Funktionen mehrerer

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12 Mathematik für Wirtschaftswissenschaftler im WS /3 Lösungen zu den Übungsaufgaben Blatt Aufgabe 5 Welche der folgenden Matrizen sind positiv bzw negativ definit? A 8, B 3 7 7 8 9 3, C 7 4 3 3 8 3 3 π 3

Mehr

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT) Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 6..3 Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((3++5) Punkte)

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Lehrstuhl II für Mathematik Prof Dr E Triesch Höhere Mathematik II SoSe 5 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Es gibt 5 Punkte pro Teilaufgabe, also insgesamt 85 Punkte. Die Klausureinsicht findet am Montag, den 5..8 ab : Uhr im H3 statt. Aufgabe. (a) Lösen Sie

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 7 Anwendungen der Differentialrechnung 7.1 Maxima und Minima einer Funktion................. 141 7.2 Mittelwertsatz............................ 144 7.3 Kurvendiskussion..........................

Mehr

Mathematische Grundlagen der Ökonomie Übungsblatt 11

Mathematische Grundlagen der Ökonomie Übungsblatt 11 Mathematische Grundlagen der Ökonomie Übungsblatt 11 Abgabe Donnerstag 1. Januar, 10:15 in H3 3+4+8+5 = 0 Punkte Mit Lösungshinweisen zu einigen Aufgaben 43. Die Funktion f sei auf einem Intervall I R

Mehr

Analysis I. 6. Beispielklausur mit Lösungen

Analysis I. 6. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 6. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Eine Relation zwischen den Mengen X und Y.

Mehr

Wirtschaftsmathematik - Übungen SS 2019

Wirtschaftsmathematik - Übungen SS 2019 Wirtschaftsmathematik - Übungen SS 019 Blatt 4: Funktionen von einer Variablen 1. Gegeben sind die Mengen M 1 = {1,, 3, 4, 5, 6, 7} und M = { 1, 0, 1, } sowie die Zuordnungsvorschrift f : M 1 M, x f(x)

Mehr

Mathematik für International Management und Betriebswirtschaft Aufgabensammlung Wintersemester 2012/13

Mathematik für International Management und Betriebswirtschaft Aufgabensammlung Wintersemester 2012/13 Mathematik für International Management und Betriebswirtschaft Aufgabensammlung Wintersemester 2012/13 Prof. Dr. Stefan Etschberger Hochschule Augsburg 1 Aufgabe 45 Geben Sie die rekursiv definierten Folgen.a

Mehr

Übungen zu Einführung in die Analysis

Übungen zu Einführung in die Analysis Übungen zu Einführung in die Analysis (Nach einer Zusammengestellung von Günther Hörmann) Sommersemester 2011 Vor den folgenden Aufgaben werden in den ersten Wochen der Übungen noch jene zur Einführung

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,

Mehr

Aufgabe V1. Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2n n 3 b) lim. n n 7 c) lim 1 1 ) 3n.

Aufgabe V1. Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2n n 3 b) lim. n n 7 c) lim 1 1 ) 3n. Blatt 1 V 1 Grenzwerte von Folgen Aufgabe V1 Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2 ( n! a) lim n 2n n 3 b) lim n n 7 c) lim 1 1 ) 3n n n Marco Boßle

Mehr

Übung 5, Analytische Optimierung

Übung 5, Analytische Optimierung Übung 5, 5.7.2011 Analytische Optimierung Aufgabe 5.1 Bei der Herstellung von Konserven werden für Boden und Deckel bzw. für den Konservenmantel verschiedene Materialien verwendet, die g 1 = bzw. g 2 =

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra

Mehr

Monotonie, Konkavität und Extrema

Monotonie, Konkavität und Extrema Kapitel 8 Monotonie, Konkavität und Extrema Josef Leydold Auffrischungskurs Mathematik WS 2017/18 8 Monotonie, Konkavität und Extrema 1 / 55 Monotonie Eine Funktion f heißt monoton steigend, falls x 1

Mehr

Monotonie, Konkavität und Extrema

Monotonie, Konkavität und Extrema Kapitel 8 Monotonie, Konkavität und Extrema Josef Leydold Auffrischungskurs Mathematik WS 2017/18 8 Monotonie, Konkavität und Extrema 1 / 55 Monotonie Eine Funktion f heißt monoton steigend, falls x 1

Mehr

1. Aufgabe 8 Punkte. f (x) = (x 2 + 1) e x2. Es gilt. f (x) = 2xe x2 + ( x ) e x2 ( 2x) = 2x 3 e x2.

1. Aufgabe 8 Punkte. f (x) = (x 2 + 1) e x2. Es gilt. f (x) = 2xe x2 + ( x ) e x2 ( 2x) = 2x 3 e x2. 1. Aufgabe 8 Punkte Geben Sie die Bereiche, auf denen die Funktion f : R R mit f (x) = (x + 1) e x monoton wachsend oder fallend ist, an, und untersuchen Sie die Funktion auf lokale und globale Extrema.

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

a,b,c a,b,d a,d,e b,c,e c,d,e ( ) ( ) ( ) ( ) ( )

a,b,c a,b,d a,d,e b,c,e c,d,e ( ) ( ) ( ) ( ) ( ) Klausur, Mathematik, Juli 2012, A 1 [ 1 ] Bestimmen Sie Y und C in dem makroökonomischen Modell Y = C + Ī C = a + by mit a = 300, b = 0.7 und Ī = 600. Y = C = [ 2 ] Die folgenden Aussagen befassen sich

Mehr

Prüfungsfragen Mathematik I für Wirtschaftswissenschaftler

Prüfungsfragen Mathematik I für Wirtschaftswissenschaftler Prüfungsfragen Mathematik I für Wirtschaftswissenschaftler Die nachfolgende Zusammenstellung enthält vor allem Klausuraufgaben aus den Jahren 2 bis 211. Hierbei wurden die Aufgaben thematisch geordnet,

Mehr

Mathematik 1 Probeprüfung 1

Mathematik 1 Probeprüfung 1 WWZ Wirtschaftswissenschaftliche Fakultät der Universität Basel Dr. Thomas Zehrt Bitte in Druckbuchstaben ausfüllen: Name Vorname Mathematik 1 Probeprüfung 1 Zeit: 90 Minuten, Maximale Punktzahl: 72 Zur

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (7 Punkte) Gegeben seien folgende Potenzreihen: ( 2) n n xn,

Stroppel Musterlösung , 180min. Aufgabe 1 (7 Punkte) Gegeben seien folgende Potenzreihen: ( 2) n n xn, Stroppel Musterlösung 0. 09. 03, 80min Aufgabe 7 Punkte) Gegeben seien folgende Potenzreihen: ) n fx) = n xn, gx) = n= + ) n n x+) n. 3 n= a) Bestimmen Sie jeweils den Konvergenzradius und den Entwicklungspunkt.

Mehr

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Stefan Etschberger für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2017 Gliederung 1 : Einführung 2 Differenzieren 2 3 Deskriptive 4 Wahrscheinlichkeitstheorie

Mehr

4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion.

4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion. 4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion. Definition 4.3. Es sei f : R D R eine auf D erklarte Funktion. Die Funktion f hat in a D eine globales oder

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

Aufgabe 1 Zeigen Sie mittels vollständiger Induktion, dass für alle n N. n(n + 1)(2n + 1) 6. j 2 = gilt.

Aufgabe 1 Zeigen Sie mittels vollständiger Induktion, dass für alle n N. n(n + 1)(2n + 1) 6. j 2 = gilt. Aufgabe Zeigen Sie mittels vollständiger Induktion, dass für alle n N j 2 j n(n + )(2n + ) gilt. Der Beweis wird mit Hilfe vollständiger Induktion geführt. Wir verifizieren daher zunächst den Induktionsanfang,

Mehr

Vorlesung Analysis I WS 07/08

Vorlesung Analysis I WS 07/08 Vorlesung Analysis I WS 07/08 Erich Ossa Vorläufige Version 07/12/04 Ausdruck 8. Januar 2008 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Elementare Logik.................................. 1 1.1.A Aussagenlogik................................

Mehr

Wirtschaftsmathematik: Formelsammlung (V1.40)

Wirtschaftsmathematik: Formelsammlung (V1.40) Wirtschaftsmathematik: Formelsammlung (V.40) Grundlagen n! = 2 3... n = 0! = n i für n N, n 0, i= pq-formel Lösung von x 2 + px + q = 0 x /2 = p p 2 ± 2 4 q abc-formel Lösung von ax 2 + bx + c = 0 Binomische

Mehr

Übungen zur Vorlesung Mathematik im Querschnitt Lösungsvorschlag

Übungen zur Vorlesung Mathematik im Querschnitt Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 06/7 Blatt 4 5..06 Übungen zur Vorlesung Mathematik im Querschnitt Lösungsvorschlag 3. Die gegebene Polynomfunktion f : R R, f(x, y) =

Mehr

6 Übungsaufgaben. 6.1 Übungsaufgaben zu Kapitel ÜBUNGSAUFGABEN

6 Übungsaufgaben. 6.1 Übungsaufgaben zu Kapitel ÜBUNGSAUFGABEN 0 6 ÜBUNGSAUFGABEN 6 Übungsaufgaben In diesem Kapitel sind Übungsaufgaben zusammengestellt, die den Stoff der Vorlesung vertiefen und die für Prüfungen erforderliche Praxis und Schnelligkeit vermitteln

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 6. (n+1)!. Daraus folgt, dass e 1/x < (n+

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 6. (n+1)!. Daraus folgt, dass e 1/x < (n+ D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Lösung - Serie 6 1. MC-Aufgaben (Online-Abgabe) 1. Für alle ganzen Zahlen n 1 gilt... (a) e 1/x = o(x n ) für x 0 + (b) e 1/x = o(x n ) für x 0 + (c)

Mehr

Wirtschaftsmathematik - Übungen WS 2018

Wirtschaftsmathematik - Übungen WS 2018 Wirtschaftsmathematik - Übungen WS 8 Blatt 4: Funktionen von einer Variablen. Gegeben sind die Mengen M = {,,, 3, 4, 5, 6, 7, 8, 9} und M = {,,, } sowie die Zuordnungsvorschrift f : M æ M,x æ f(x) mit

Mehr

Wirtschaftsmathematik - Übungen SS 2017

Wirtschaftsmathematik - Übungen SS 2017 Wirtschaftsmathematik - Übungen SS 017 Blatt 4: Funktionen von einer Variablen 1. Gegeben sind die Mengen M 1 = {0, 1,, 3, 4, 5, 6, 7, 8, 9} und M = { 1, 0, 1, } sowie die Zuordnungsvorschrift f : M 1

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an.

Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. Analysis I, WiSe 2013/14, 04.02.2014 (Iske), Version A 1 Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. a) Welche der folgenden Aussagen über Folgen sind sinnvoll und

Mehr

Wirtschafts- und Finanzmathematik

Wirtschafts- und Finanzmathematik Wirtschafts- und Finanzmathematik für Betriebswirtschaft und International Management Wintersemester 2017/18 04.10.2017 Einführung, R, Grundlagen 1 11.10.2017 Grundlagen, Aussagen 2 18.10.2017 Aussagen

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (3 Punkte) Bestimmen Sie die Determinante der Matrix

Stroppel Musterlösung , 180min. Aufgabe 1 (3 Punkte) Bestimmen Sie die Determinante der Matrix Stroppel Musterlösung 7.., 8min Aufgabe Punkte Bestimmen Sie die Determinante der Matrix A =. Geben Sie alle Lösungen x des homogenen Gleichungssystems Ax = an. Entwicklung nach der ersten Spalte: deta

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Wirtschaftsmathematik für die Betriebswirtschaftslehre (B.Sc.) Adam Georg Balogh Sommersemester 2017 Dr. rer. nat. habil. Adam Georg Balogh E-mail: adam-georg.balogh@h-da.de 1 Ökonomische Funktionen In

Mehr

Der Differenzenquotient

Der Differenzenquotient Der Differenzenquotient Von den linearen Funktionen kennen wir den Begriff des Differenzenquotienten k = y 2 y 1 x 2 x 1 mit dem die Steigung einer Geraden festgelegt wird. Der Begriff des Differentialkoeffizienten

Mehr

Gegeben: Die beiden Funktionen (a x) 2, 0 x < 1

Gegeben: Die beiden Funktionen (a x) 2, 0 x < 1 SoSe 216 H-Aufgaben sind weiteres, bunt gemischtes Übungsmaterial, das teilweise auch, wenn die Zeit reicht, in den Tutorien besprochen wird. Im Laufe des Semesters erhalten Sie zu diesen Aufgaben Ergebniskontrollen

Mehr

Wirtschaftsmathematik - Übungen SS 2018

Wirtschaftsmathematik - Übungen SS 2018 Wirtschaftsmathematik - Übungen SS 218 Blatt 4: Funktionen von einer Variablen 1. Gegeben sind die Mengen M 1 = {, 1, 2, 3, 4, 5, 6, 7, 8, 9} und M 2 = { 1,, 1, 2} sowie die Zuordnungsvorschrift f : M

Mehr

Mathematik I HM I A. SoSe Variante A

Mathematik I HM I A. SoSe Variante A Prof. Dr. E. Triesch Mathematik I SoSe 08 Variante A Hinweise zur Bearbeitung: Benutzen Sie zur Beantwortung aller Aufgaben ausschließlich das in der Klausur ausgeteilte Papier! Es werden nur die Antworten

Mehr

1 Übungsaufgaben zu Kapitel 1

1 Übungsaufgaben zu Kapitel 1 Übungsaufgaben zu Kapitel. Übungsaufgaben zu Abschnitt... Aufgabe. Untersuchen Sie die nachstehend definierten Folgen ( a k ) k und ( b k ) k auf Konvergenz und bestimmen Sie ggf. den jeweiligen Grenzwert:

Mehr

Aufgabensammlung zum UK Mathematische Optimierung

Aufgabensammlung zum UK Mathematische Optimierung Aufgabensammlung zum UK Mathematische Optimierung Mehrdimensionale Analysis Stetigkeit. Man bestimme den natürlichen Definitionsbereich D f der folgenden Funktionen f: a) f(x, y) = ln(x y ) b) f(x, y)

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (

Mehr

Ferienkurs Seite 1. Technische Universität München Ferienkurs Analysis 1 Stetigkeit, Konvergenz, Topologie

Ferienkurs Seite 1. Technische Universität München Ferienkurs Analysis 1 Stetigkeit, Konvergenz, Topologie Ferienkurs Seite Technische Universität München Ferienkurs Analysis Hannah Schamoni Stetigkeit, Konvergenz, Topologie Lösung 2.03.202. Gleichmäßige Konvergenz Entscheiden Sie, ob die folgenden auf (0,

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils . Aufgabe Punkte a Berechnen Sie den Grenzwert n + n + 3n. b Leiten Sie die folgenden Funktionen ab. Dabei ist a R eine Konstante. fx : lnx e a, gx : x + x + 4 sinx c Berechnen Sie z z und z z in der Form

Mehr

HTWD, FB Informatik/Mathematik. Mathematik für Bauingenieure. Wiederholungsaufgaben: Mathematik I

HTWD, FB Informatik/Mathematik. Mathematik für Bauingenieure. Wiederholungsaufgaben: Mathematik I HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik I Wiederholung Mathematik für Bauingenieure Wiederholungsaufgaben: Mathematik I Aufgabe : Für die Aussagenverbindung T = (A B) ( A) gebe man

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

Klausur Wirtschafts- und Finanzmathematik Lösungshinweise

Klausur Wirtschafts- und Finanzmathematik Lösungshinweise Klausur Wirtschafts- und Finanzmathematik Lösungshinweise Prüfungsdatum: 8. Januar 06 Prüfer: Etschberger, Heiden, Jansen Studiengang: IM und BW Punkte: 5, 5, 5, 5, 5, 5 Summe der Punkte: 90 Aufgabe 5

Mehr

Analysis I Lösung von Serie 14. Um die Inhomogene DGl zu lösen, müssen wir partikuläre Lösungen finden. (a) Wir machen den Ansatz:

Analysis I Lösung von Serie 14. Um die Inhomogene DGl zu lösen, müssen wir partikuläre Lösungen finden. (a) Wir machen den Ansatz: d-infk Lösung von Serie 4 FS 07 4.. Inhomogene Lineare Differentialgleichungen Das charakteristische Polynom der homogenen DGl y (4) + y + y = 0 ist λ 4 + λ + = (λ + ). Seine Wurzeln sind ±i und jede hat

Mehr

Stroppel Musterlösung , 180min

Stroppel Musterlösung , 180min Stroppel Musterlösung 040907, 80min Aufgabe (8 Punkte) (a) Seien A, D, T R d d für ein d N Weiter sei T invertierbar und es gelte T AT D Zeigen Sie durch vollständige Induktion, dass A n T D n T gilt für

Mehr

Übersicht. 1. Motivation. 2. Grundlagen

Übersicht. 1. Motivation. 2. Grundlagen Übersicht 1. Motivation 2. Grundlagen 3. Analysis 3.1 Folgen, Reihen, Zinsen 3.2 Funktionen 3.3 Differentialrechnung 3.4 Extremwertbestimmung 3.5 Nichtlineare Gleichungen 3.6 Funktionen mehrerer Variabler

Mehr

Wirtschafts- und Finanzmathematik

Wirtschafts- und Finanzmathematik Prof. Dr. Stefan Etschberger HSA Wirtschafts- und Finanzmathematik für Betriebswirtschaft und International Management Wintersemester 2016/17 Grundlagentest Ungleichungen! Testfrage: Ungleichungen 1 Die

Mehr

Mathematisches Institut der Universität Heidelberg Prof. Dr. E. Freitag /Thorsten Heidersdorf. Probeklausur

Mathematisches Institut der Universität Heidelberg Prof. Dr. E. Freitag /Thorsten Heidersdorf. Probeklausur Mathematisches Institut der Universität Heidelberg Prof. Dr. E. Freitag /Thorsten Heidersdorf Probeklausur Diese Probeklausur soll a) als Test für euch selber dienen, b) die Vorbereitung auf die Klausur

Mehr

a) Begründen Sie, dass der Graph von f symmetrisch zum Punkt S 0 2 f) Ermitteln Sie eine Gleichung der Tangente im Punkt B

a) Begründen Sie, dass der Graph von f symmetrisch zum Punkt S 0 2 f) Ermitteln Sie eine Gleichung der Tangente im Punkt B I. Wendepunkte 1. Bestimmen Sie Art und Lage der Extrempunkte sowie die Wendepunkte des Graphen der Funktion f mit der angegebenen Funktionsgleichung. a) f(x) 1 b) 12 (x + 1) (x 2) (x + 6) f(x) 1 4 x4

Mehr

Übungen Ingenieurmathematik

Übungen Ingenieurmathematik Übungen Ingenieurmathematik 1. Übungsblatt: Komplexe Zahlen Aufgabe 1 Bestimmen Sie Real- und Imaginärteil der folgenden komplexen Zahlen: a) z =(3+i)+(5 7i), b) z =(3 i)(5 7i), c) z =( 3+i)( 3+ 3 i),

Mehr

(1 + z 2j ) = 1 z2n+2. 1 z. (1 + z)(1 z) 1 z. 1 z. (1 + z 2j ) = 1 z. 1 z 1 z

(1 + z 2j ) = 1 z2n+2. 1 z. (1 + z)(1 z) 1 z. 1 z. (1 + z 2j ) = 1 z. 1 z 1 z Aufgabe Zeigen Sie mit vollständiger Induktion: Für alle n N gilt (8 Punkte) n ( + z 2j ) = 2n+, wobei z C, z, eine komplexe Zahl ist Lösung [8 Punkte] Induktionsanfang: n = : ( + z 2j ) = ( + z 2 ) =

Mehr

Vorkurs Mathematik Übungsaufgaben. Dozent Dr. Arne Johannssen

Vorkurs Mathematik Übungsaufgaben. Dozent Dr. Arne Johannssen Vorkurs Mathematik Übungsaufgaben 2 Dozent Dr. Arne Johannssen Lehrstuhl für Betriebswirtschaftslehre, insbesondere Mathematik und Statistik in den Wirtschaftswissenschaften Neues Logo: ie gesamte Universität

Mehr

Musterlösung zu Blatt 1

Musterlösung zu Blatt 1 Musterlösung zu Blatt Analysis III für Lehramt Gymnasium Wintersemester 0/4 Überprüfe zunächst die notwendige Bedingung Dfx y z = 0 für die Existenz lokaler Extrema Mit x fx y z = 8x und y fx y z = + z

Mehr

Klausur Höhere Mathematik I für die Fachrichtung Physik

Klausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 4.3.3 Klausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((4+3+3 Punkte a Welche

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr