TEMPERATUR UND WÄRMEKAPAZITÄT... 2 KALORIMETRIE I... 3 KALORIMETRIE II... 5 PHASENUMWANDLUNGEN... 6

Größe: px
Ab Seite anzeigen:

Download "TEMPERATUR UND WÄRMEKAPAZITÄT... 2 KALORIMETRIE I... 3 KALORIMETRIE II... 5 PHASENUMWANDLUNGEN... 6"

Transkript

1 Homepage: schroeder-doms.de München den 11. Mai 2009 W1 Kalorimetrie (Skript zur Vorbereitung) TEMPERATUR UND WÄRMEKAPAZITÄT... 2 Wärme und Temperatur, Kelvin-Skala:... 2 Wärmekapazität:... 2 Spezifische Wärmekapazität:... 2 Molare Wärmekapazität:... 2 Avogadro-Konstante:... 2 Mittlere Energie eines Teilchens mit einem Freiheitsgrad, Bolzmann-Konstante:... 3 Regel von Dulong-Petit... 3 KALORIMETRIE I... 3 Mechanismen der Wärmeabgabe (beim Menschen):... 3 Erster Hauptsatz der Thermodynamik:... 4 Flüssigkeitskalorimeter: Aufbau, Wirkungsweise, Funktion des Rührers:... 4 Bestimmung einer unbekannten spezifischen Wärmekapazität (Formel):... 4 Wasserwerte: Definition, experimentelle Bestimmung... 5 KALORIMETRIE II... 5 Elektrische Energie und Leistung:... 5 Messung der spezifischen Wärmekapazität von Wasser mittels elektrischer Heizung: Schaltung, Messgrößen, Formeln, graphische Auswertung... 6 PHASENUMWANDLUNGEN... 6 Aggregatszustände:... 6 Temperaturverlauf eines Stoffes bei gleichmäßiger Energiezufuhr:... 7 Schmelz- und Siedetemperatur:... 7 Warum muss zum Schmelzen und Sieden Energie aufgebracht werden?... 7 Schmelzenergie:... 8 des selbst gelernten dienen. Bei Fehlern bitte an die o.g. Adresse schreiben. Viel Erfolg! - 1 -

2 Temperatur und Wärmekapazität Wärme und Temperatur, Kelvin-Skala: Temperatur: Schmelzendes Eis 0 C, siedendes Wasser 100 C; -273,15 C absoluter Tiefstpunkt (Nullpunkt). Die Kelvinskala nimmt den absoluten Tiefstpunkt als Nullpunkt. 0 K = -273,15 C, 273 K = 0 C, 373 K = 100 C Wärme ist eine physikalische Größe für makroskopische Systeme und entspricht der ungeordneten Molekularbewegung lässt sich als gemittelte, kinetische Energie von Gasmolekülen oder Teilchen verstehen. Eine Wärmeabgabe wird wie Energie in Joule angegeben. Eine wachsende (mittlere) kinetische Energie der Gasmoleküle zeigt sich makroskopisch durch ansteigende Temperatur des Gases. Wärmekapazität: Um die Temperatur von Wasser zu erhöhen, muss man es elektrisch oder mit einer anderen Wärmequelle erwärmen. Die Wärmekapazität C eines Körpers gibt an, wie viel Energie E man dem Körper zuführen muss, um eine bestimmte Temperaturerhöhung T zu erzielen. C= E / T [C] = J/K 1 Die Wärmekapazität C hängt von der Menge (Teilchenanzahl) sowie der Art des Stoffs ab. 2 Spezifische Wärmekapazität: Die spezifische Wärmekapazität erhält man, wenn man die Wärmekapazität eines Körpers durch seine Masse m dividiert. Sie ist eine Stoffkonstante und unabhängig von der Masse. c = C / m [c] = J / (kg x K) 3 Die spezifische Wärmekapazität von Wasser c w ist 1 cal g -1 K -1. Der Umrechnungsfaktor von cal in J beträgt 1 cal 4,2 J Molare Wärmekapazität: Die molare Wärmekapazität c mol ist eine weitere Wärmekapazität. Hierbei wird die Wärmekapazität C bezogen auf die Stoffmenge der betreffenden Substanz 4 und trägt die Einheit Joule pro Mol Kelvin (J mol -1 K -1 ). c mol = C/n = C x (N A /N) [c mol ] = J / (mol x K) Avogadro-Konstante: 1 Joule / Kelvin 2 Seen erwärmen sich obwohl es im Sommer an der Luft schon sehr warm ist recht langsam. Offenbar benötigt Wasser mehr Energiezufuhr um eine bestimmt Temperatur zu erreichen. 3 klein c steht für die spezifische Wärmekapazität, groß C für die Wärmekapazität; c wird oft in Gramm Kelvin (J g -1 K -1 ) angegeben. 4 auf die Anzahl der Teilchen in Mol des selbst gelernten dienen. Bei Fehlern bitte an die o.g. Adresse schreiben. Viel Erfolg! - 2 -

3 Die Avogadro-Konstante N A ist eine nach Amedeo Avogadro benannte physikalische Konstante, die als Teilchenzahl N pro Stoffmenge n definiert ist. Sie gibt die Zahl der Teilchen in einem Mol an. Nach der aktuellen CODATA-2006 Empfehlung hat die Avogadro-Konstante den Wert N A = 6, (30) mol 1 Mittlere Energie eines Teilchens mit einem Freiheitsgrad, Bolzmann-Konstante: Ein Atom, dass sich frei in alle drei Raumrichtungen bewegen kann hat drei Freiheitsgrade. Die mittlere kinetische Energie des Teilchens lässt sich in drei gleiche Anteile aufspalten. Nach dem Gleichverteilungssatz entfällt auf jeden Freiheitsgrad die mittlere Energie: E f =½ k B T k B = Boltzmann-Konstante (1,38 x J K -1 ) Allgemein ist die Energie von N Teilchen mit f Freigeitsgraden E = N f/2 k B T Bezieht man die Wärmekapazität C ein: C = N f/2 k B Regel von Dulong-Petit Das Dulong-Petit-Gesetz besagt, dass die molare Wärmekapazität eines aus einzelnen Atomen zusammengesetzten Festkörpers einen universalen und konstanten Wert habe, nämlich das Dreifache der universellen Gaskonstante R. Kalorimetrie I Mechanismen der Wärmeabgabe (beim Menschen): Der Transport von Wärme kann immer nur von einem wärmeren Gegenstand zu einem kälteren erfolgen. Es gibt drei Mechanismen: 1. Wärmestrahlung: Jeder Körper gibt durch elektromagnetische Strahlung eine Energiemenge ab die von seiner Temperatur T abhängt. Eine Nettowärmeabgabe kann nur bei kälterer Umgebung erfolgen. 2. Wärmeleitung: Bei Kontakt zweier Molekülschichten erfolgt eine Übertragung der Bewegungsenergie der Teilchenschichten mit der Temperatur T 1 durch Stöße an die benachbarte Schicht mit der niedrigen Temperatur T 2, ohne dass ein Teilchentransport erfolgt. 3. Wärmekonvektion: Hier strömt (warme) Materie und nimmt die Bewegungsenergie der Teilchen einfach mit. Energietransport durch Teilchentransport! des selbst gelernten dienen. Bei Fehlern bitte an die o.g. Adresse schreiben. Viel Erfolg! - 3 -

4 Beim menschlichen Körper werden 61% der gesamten Wärmeabgabe des ruhenden, nackten Körpers als Strahlung über die Haut ausgesendet 5. Luft ist ein schlechter Wärmestrahler, bei der Konvektion steigt ein an der Haut erwärmtes Volumen aus Luft und Wasserdampf auf und nimmt die Wärme fort. Trifft 1 g siedendes Wasser auf unsere Haut und kühlt sich auf 36 C ab, wird eine Energiemenge von 1g x 4,2 (J/gK) x (100 36) K = 269 J frei. Trifft hingegen 1 g Wasserdampf von 100 C auf unsere Haut, kondensiert und kühlt sich auf 36 C ab, wird eine Wärmemenge von 1g x Λ + 269J = 2256 J J = 2525 J frei. Erster Hauptsatz der Thermodynamik: Der erste Hauptsatz der Thermodynamik ist aus dem Satz der Energieerhaltung abgeleitet: jedes System besitzt eine innere Energie U (=extensive Zustandsgröße). Diese kann sich nur durch den Transport von Energie in Form von Arbeit W und/oder Wärme Q über die Grenze des Systems ändern, das heißt: Dabei ist W die Summe aus der Volumenarbeit und der im System dissipierten Arbeit (z. B. Reibungsarbeit). Die Gleichung gilt für das ruhende System. Beim bewegten System kommen die äußeren Energien E a (potentielle und kinetische Energie) hinzu: Die Energie eines abgeschlossenen Systems bleibt unverändert. Verschiedene Energieformen können sich demnach ineinander umwandeln, aber Energie kann weder aus dem Nichts erzeugt noch kann sie vernichtet werden. Deshalb ist ein Perpetuum Mobile erster Art unmöglich (kein System verrichtet Arbeit ohne Zufuhr einer anderen Energieform und/oder ohne Verringerung seiner inneren Energie). Eine Einschränkung der Umwandelbarkeit von Wärme in Arbeit ergibt sich erst aus dem zweiten Hauptsatz der Thermodynamik. Flüssigkeitskalorimeter: Aufbau, Wirkungsweise, Funktion des Rührers: Es besteht aus einem doppelwandigen Kupferbehälter, dessen Zwischenraum mit Wasser gefüllt ist und für eine temperaturkonstante Umgebung im inneren Kalorimeter sorgen soll. Das Kalorimetergefäß aus dünnem Blech wird auf einer wärmeisolierten Unterlage aufgestellt. Als Kalorimeterflüssigkeit dient gewöhnliches Wasser, doch können auch andere Flüssigkeiten verwendet werden. Durch ein Rührwerk, dessen Umdrehungszahl konstant bleiben muss, wird ein besserer Wärmeaustausch gewährleistet. Die Temperaturänderung wird mit einem Thermometer gemessen Bestimmung einer unbekannten spezifischen Wärmekapazität (Formel): 5 bei 20 C Außentemperatur des selbst gelernten dienen. Bei Fehlern bitte an die o.g. Adresse schreiben. Viel Erfolg! - 4 -

5 Zur Bestimmung der spezifischen Wärmekapazität von Wasser wird die Flüssigkeit stetig elektrische Energie durch eine Heizung der Leistung P zugeführt. Die von der Heizung pro Zeitintervall t abgegebene Wärmeenergie (Joul sche Wärme) errechnet sich aus Spannung, Strom und Heizdauer. U I t = c w (m+m w )(T 2 -T 1 ) Wasserwerte: Definition, experimentelle Bestimmung Wenn man dem Wasser im Kalorimeter Wärme zuführen möchte muss man die Wärmekapazität C k des Gefäßes kennen, da dieses sich ja selber erwärmt und einen Teil der Energie aufnimmt. Man sollte anstatt der Wärmekapazität des Kalorimetergefäßes einen Wasserwert m w angeben, den man wie folgt bestimmt. 1. Kalorimeter mit Wasser der Masse m 1 füllen und die Temperatur T 1 des Systems messen. 2. Eine zweite Wassermenge mit Masse m 2 und der Temperatur T 2 > T 1 hinzuschütten. 3. Im Kalorimeter eingestellte Mischtemperatur T M bestimmen. m W = m 2 x ((T 2 -T M ) / (T M - T 1 )) - m 1 In der Physik bezeichnet der Wasserwert die Wärmekapazität eines Gefäßes. Diese kann bestimmt werden, indem das Gefäß mit Wasser einer anderen Temperatur gefüllt wird und nach Einstellen des thermischen Gleichgewichts die Temperatur des Wassers gemessen wird, die sich dann der des Gefäßes angeglichen hat. Von dieser Messmethode stammt die Bezeichnung "Wasserwert". Genauer definiert handelt es sich bei dem Wasserwert um die Menge an Wasser, welche die gleiche Wärmekapazität wie das Gefäß besitzt. Kalorimetrie II Elektrische Energie und Leistung: Netzgeräte stellen elektrische Energie zur Verfügung 6, wobei die verfügbare Energie E el direkt proportional mit der gesammelten elektrischen Ladung Q ist. E el = U x Q U = Proportionalitätsfaktor zwischen Energie und Ladung Die bereitgestellte Ladung Q ist dabei das Produkt aus dem fließenden Strom I und der Betriebszeitspanne t: E el = U x I x t = P x t [E el ] = W s = J P = Leistung des Netzgeräts 7 6 Elektronen werden vom Pluspol abgezogen und am Minuspol gesammelot. des selbst gelernten dienen. Bei Fehlern bitte an die o.g. Adresse schreiben. Viel Erfolg! - 5 -

6 Messung der spezifischen Wärmekapazität von Wasser mittels elektrischer Heizung: Schaltung, Messgrößen, Formeln, graphische Auswertung Die spezifische Wärmekapazität oder kurz spezifische Wärme eines Stoffes ist eine physikalische Eigenschaft und bezeichnet die auf die Masse bezogene Wärmekapazität. dabei ist Q die Wärme, die der Materie zugeführt oder entzogen wird, m ist die Masse der Substanz, c ist die spezifische Wärmekapazität (das meist verwendete c steht für engl. capacity = Kapazität)n und T ist die Temperaturänderung. Die Messung der spezifischen Wärmekapazität erfolgt über die Kalorimetrie. Die spezifische Wärmekapazität gibt an, welche Wärmemenge einem Stoff pro Masseneinheit zugeführt werden muss, um seine Temperatur um ein Kelvin zu erhöhen. Daher ergibt sich die abgeleitete SI-Einheit der spezifischen Wärmekapazität wie folgt: Verwendet werden aber meistens folgende Einheiten: Phasenumwandlungen Aggregatszustände: Nach dem Ordnungsgrad unterscheiden wir fest, flüssig und gasförmige Materie. (Aggregatszustände = Phasen) In einem Gas bewegen sich alle Teilchen ungeordnet, frei durcheinander, in einer Flüssigkeit sind einige Teilchen aneinander gebunden (lokale Ordnung [Nahordnung] ist vorhanden) und in einem festen Körper nehmen die Teilchen feste Plätze ein. 7 Handelt es sich um eine durch elektrischen Strom in einer elektrischen Leitung erzeugte Wärmeenergie, spricht man von Joul scher Wärme. des selbst gelernten dienen. Bei Fehlern bitte an die o.g. Adresse schreiben. Viel Erfolg! - 6 -

7 Temperaturverlauf eines Stoffes bei gleichmäßiger Energiezufuhr: Die Temperatur ändert sich bei dem Übergang der Aggregatzustände trotz stetiger Energiezufuhr (Wärmezufuhr) nicht, da die Energie zum Übergang in einen anderen Aggregatzustand genutzt wird. Temperaturverlauf bei stetiger Wärmezufuhr und Atmosphärendruck T T V T S fest fest + flüssig flüssig flüssig + gasförmig gasförmig Q Schmelz- und Siedetemperatur: Schmelztemperatur: 0 C Siedetemperatur: 100 C 8 Warum muss zum Schmelzen und Sieden Energie aufgebracht werden? Zur Überwindung der Phasenübergänge (fest in flüssig, flüssig in gasförmig) 8 ist Höhenabhängig (in großer Höhe siedet Wasser früher, da der Atmosphärische Druck geringer ist und man nicht Energie gegen diesen richten muss. des selbst gelernten dienen. Bei Fehlern bitte an die o.g. Adresse schreiben. Viel Erfolg! - 7 -

8 Schmelzenergie: Schmelzenergie 9 bezeichnet die Energie, die benötigt wird, um eine Stoffprobe von dem festen in den flüssigen Aggregatzustand zu überführen. Dabei werden Bindungskräfte zwischen Molekülen bzw. Atomen überwunden, ohne deren kinetische Energie und damit ihre Temperatur zu erhöhen. Einheit: Joule Die spezifische Schmelzwärme bzw. spezifische Schmelzenergie bezeichnet die Menge Energie, die zum Schmelzen eines Stoffes benötigt wird, bezogen entweder auf die Stoffmenge (Einheit: Joule/mol) oder auf die Masse (Einheit Joule/Kilogramm). Element Schmelzwärme (kj/kg) Schmelzwärme (kj/mol) Aluminium ,7 Blei 25 5,2 Wasser 333,5 6,01 Weitergabe und Vervielfältigung dieser Publikation oder von Teilen daraus sind, zu welchem Zweck und in welcher Form auch immer, ohne die ausdrückliche schriftliche Genehmigung durch den Autor Lucas Schröder-Doms ( nicht gestattet. In dieser Publikation enthaltene Informationen können ohne vorherige Ankündigung geändert werden. Alle Rechte an Text- und Bildmaterial vorbehalten. 9 = Schmelzwärme oder Schmelzenthalpie des selbst gelernten dienen. Bei Fehlern bitte an die o.g. Adresse schreiben. Viel Erfolg! - 8 -

Versuch Nr.53. Messung kalorischer Größen (Spezifische Wärmen)

Versuch Nr.53. Messung kalorischer Größen (Spezifische Wärmen) Versuch Nr.53 Messung kalorischer Größen (Spezifische Wärmen) Stichworte: Wärme, innere Energie und Enthalpie als Zustandsfunktion, Wärmekapazität, spezifische Wärme, Molwärme, Regel von Dulong-Petit,

Mehr

O. Sternal, V. Hankele. 5. Thermodynamik

O. Sternal, V. Hankele. 5. Thermodynamik 5. Thermodynamik 5. Thermodynamik 5.1 Temperatur und Wärme Systeme aus vielen Teilchen Quelle: Wikimedia Commons Datei: Translational_motion.gif Versuch: Beschreibe 1 m 3 Luft mit Newton-Mechanik Beschreibe

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #10 30/10/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Thermisches Gleichgewicht Soll die Temperatur geändert werden, so muss dem System Wärme (kinetische

Mehr

1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen

1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen IV. Wärmelehre 1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen Historisch: Wärme als Stoff, der übertragen und in beliebiger Menge erzeugt werden kann. Übertragung: Wärmezufuhr Joulesche

Mehr

Grundlagen der statistischen Physik und Thermodynamik

Grundlagen der statistischen Physik und Thermodynamik Grundlagen der statistischen Physik und Thermodynamik "Feuer und Eis" von Guy Respaud 6/14/2013 S.Alexandrova FDIBA 1 Grundlagen der statistischen Physik und Thermodynamik Die statistische Physik und die

Mehr

Temperatur. Temperaturmessung. Grundgleichung der Kalorik. 2 ² 3 2 T - absolute Temperatur / ºC T / K

Temperatur. Temperaturmessung. Grundgleichung der Kalorik. 2 ² 3 2 T - absolute Temperatur / ºC T / K Temperatur Temperatur ist ein Maß für die mittlere kinetische Energie der Teilchen 2 ² 3 2 T - absolute Temperatur [ T ] = 1 K = 1 Kelvin k- Boltzmann-Konst. k = 1,38 10-23 J/K Kelvin- und Celsiusskala

Mehr

(VIII) Wärmlehre. Wärmelehre Karim Kouz WS 2014/ Semester Biophysik

(VIII) Wärmlehre. Wärmelehre Karim Kouz WS 2014/ Semester Biophysik Quelle: http://www.pro-physik.de/details/news/1666619/neues_bauprinzip_fuer_ultrapraezise_nuklearuhr.html (VIII) Wärmlehre Karim Kouz WS 2014/2015 1. Semester Biophysik Wärmelehre Ein zentraler Begriff

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Temperatur Der nullte Hauptsatz der Thermodynamik: Thermoskop und Thermometer Kelvin, Celsius- und der Fahrenheit-Skala Wärmeausdehnung

Mehr

Energie und Energieerhaltung. Mechanische Energieformen. Arbeit. Die goldene Regel der Mechanik. Leistung

Energie und Energieerhaltung. Mechanische Energieformen. Arbeit. Die goldene Regel der Mechanik. Leistung - Formelzeichen: E - Einheit: [ E ] = 1 J (Joule) = 1 Nm = 1 Energie und Energieerhaltung Die verschiedenen Energieformen (mechanische Energie, innere Energie, elektrische Energie und Lichtenergie) lassen

Mehr

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007 Versuch 2 Physik für (Zahn-)Mediziner c Claus Pegel 13. November 2007 1 Wärmemenge 1 Wärme oder Wärmemenge ist eine makroskopische Größe zur Beschreibung der ungeordneten Bewegung von Molekülen ( Schwingungen,

Mehr

Flüssigkeitsthermometer Bimetallthermometer Gasthermometer Celsius Fahrenheit

Flüssigkeitsthermometer Bimetallthermometer Gasthermometer Celsius Fahrenheit Wärme Ob etwas warm oder kalt ist können wir fühlen. Wenn etwas wärmer ist, so hat es eine höhere Temperatur. Temperaturen können wir im Bereich von etwa 15 Grad Celsius bis etwa 45 Grad Celsius recht

Mehr

Spezifische Wärme fester Körper

Spezifische Wärme fester Körper 1 Spezifische ärme fester Körper Die spezifische, sowie die molare ärme von Kupfer und Aluminium sollen bestimmt werden. Anhand der molaren ärme von Kupfer bei der Temperatur von flüssigem Stickstoff soll

Mehr

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System: Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar

Mehr

Versuch: Spezifische Wärmekapazität fester Körper

Versuch: Spezifische Wärmekapazität fester Körper ersuch T1 SPEZIFISHE WÄRMEKAPAZITÄT FESTER KÖRPER Seite 1 von 5 ersuch: Spezifische Wärmekapazität fester Körper Anleitung für folgende Studiengänge: Physik, L3 Physik, Biophysik, Meteorologie, hemie,

Mehr

Kalorimetrie (KAL) Fakultät für Physik der Ludwig-Maximilians-Universität München Grundpraktika (29. SEPTEMBER 2017) MOTIVATION UND VERSUCHSZIELE

Kalorimetrie (KAL) Fakultät für Physik der Ludwig-Maximilians-Universität München Grundpraktika (29. SEPTEMBER 2017) MOTIVATION UND VERSUCHSZIELE Kalorimetrie (KAL) Fakultät für Physik der Ludwig-Maximilians-Universität München Grundpraktika (29. SEPTEMBER 2017) MOTIVATION UND VERSUCHSZIELE Mit Hilfe von Flüssigkeitskalorimetern können Energiemengen

Mehr

1. Wärmelehre 1.1. Temperatur Wiederholung

1. Wärmelehre 1.1. Temperatur Wiederholung 1. Wärmelehre 1.1. Temperatur Wiederholung a) Zur Messung der Temperatur verwendet man physikalische Effekte, die von der Temperatur abhängen. Beispiele: Volumen einer Flüssigkeit (Hg-Thermometer), aber

Mehr

1. Klausur ist am 5.12.! (für Vets sowie Bonuspunkte für Zahni-Praktikum) Jetzt lernen!

1. Klausur ist am 5.12.! (für Vets sowie Bonuspunkte für Zahni-Praktikum) Jetzt lernen! 1. Klausur ist am 5.12.! (für Vets sowie Bonuspunkte für Zahni-Praktikum) Jetzt lernen! http://www.physik.uni-giessen.de/dueren/ User: duerenvorlesung Password: ****** Druck und Volumen Gesetz von Boyle-Mariotte:

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 007 Vladimir Dyakonov #7 am 18.01.006 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E143, Tel.

Mehr

PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe. W 3 - Kalorimetrie

PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe. W 3 - Kalorimetrie 10.08.2008 PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe Versuch: W 3 - Kalorimetrie 1. Grundlagen Definition und Einheit von Wärme und Temperatur; Wärmekapazität (spezifische und molare); Regel von Dulong

Mehr

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung.

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Nullter und Erster Hauptsatz der Thermodynamik. Thermodynamische

Mehr

Wärmemenge, spezifische Wärmekapazität, molare Wärmekapazität, Kalorimetrie, Dulong-Petitsches Gesetz.

Wärmemenge, spezifische Wärmekapazität, molare Wärmekapazität, Kalorimetrie, Dulong-Petitsches Gesetz. W1 Spezifische Wärmekapazität von festen Stoffen Stoffgebiet: Wärmemenge, spezifische Wärmekapazität, molare Wärmekapazität, Kalorimetrie, Dulong-Petitsches Gesetz. Versuchsziel: Bestimmung der spezifischen

Mehr

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I 12.12.2014 Gase Flüssigkeiten Feststoffe Wiederholung Teil 2 (05.12.2014) Ideales Gasgesetz: pv Reale Gase: Zwischenmolekularen Wechselwirkungen

Mehr

Zwei neue Basisgrössen in der Physik

Zwei neue Basisgrössen in der Physik Nachtrag zur orlesung am vergangenen Montag Zwei neue Basisgrössen in der Physik 9. Wärmelehre, kinetische Gastheorie Temperatur T: Wärme ist verknüpft mit ungeordneter Bewegung der Atome oder Moleküle.

Mehr

1. Klausur ist am 5.12.! Jetzt lernen! Klausuranmeldung: Bitte heute in Listen eintragen!

1. Klausur ist am 5.12.! Jetzt lernen! Klausuranmeldung: Bitte heute in Listen eintragen! 1. Klausur ist am 5.12.! Jetzt lernen! Klausuranmeldung: Bitte heute in Listen eintragen! Aggregatzustände Fest, flüssig, gasförmig Schmelz -wärme Kondensations -wärme Die Umwandlung von Aggregatzuständen

Mehr

9. Thermodynamik. 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala. 9.4 Wärmekapazität

9. Thermodynamik. 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala. 9.4 Wärmekapazität 9. Thermodynamik 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala 93 9.3 Thermische h Ausdehnung 9.4 Wärmekapazität 9. Thermodynamik Aufgabe: - Temperaturverhalten von Gasen,

Mehr

Praktikum Physik. Protokoll zum Versuch 5: Spezifische Wärme. Durchgeführt am Gruppe X

Praktikum Physik. Protokoll zum Versuch 5: Spezifische Wärme. Durchgeführt am Gruppe X Praktikum Physik Protokoll zum Versuch 5: Spezifische Wärme Durchgeführt am 10.11.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das

Mehr

Tutorium Physik 1. Wärme

Tutorium Physik 1. Wärme 1 Tutorium Physik 1. Wärme WS 15/16 1.Semester BSc. Oec. und BSc. CH 2 Themen 1. Einführung, Umrechnen von Einheiten / Umformen von Formeln 2. Kinematik, Dynamik 3. Arbeit, Energie, Leistung 4. Impuls

Mehr

Bestimmung der spezifischen Wärmekapazität fester Körper

Bestimmung der spezifischen Wärmekapazität fester Körper - B02.1 - Versuch B2: Bestimmung der spezifischen Wärmekapazität fester Körper 1. Literatur: Demtröder, Experimentalphysik, Bd. I Bergmann-Schaefer, Lehrbuch der Physik, Bd.I Walcher, Praktikum der Physik

Mehr

Grund- und Angleichungsvorlesung Physik der Wärme.

Grund- und Angleichungsvorlesung Physik der Wärme. 2 Grund- und Angleichungsvorlesung Physik. Physik der Wärme. WS 17/18 1. Sem. B.Sc. LM-Wissenschaften Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nichtkommerziell Weitergabe

Mehr

Grundlagen der Wärmelehre

Grundlagen der Wärmelehre Ausgabe 2007-09 Grundlagen der Wärmelehre (Erläuterungen) Die Wärmelehre ist das Teilgebiet der Physik, in dem Zustandsänderungen von Körpern infolge Zufuhr oder Abgabe von Wärmeenergie und in dem Energieumwandlungen,

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti.

Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti. (c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 10. 05. 2007 Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik Universität Ulm (c) Ulm University p.

Mehr

Thermodynamik der Atmosphäre II

Thermodynamik der Atmosphäre II Einführung in die Meteorologie Teil I Thermodynamik der Atmosphäre II Der erste Hauptsatz der Thermodynamik Die Gesamtenergie in einem geschlossenen System bleibt erhalten. geschlossen steht hier für thermisch

Mehr

Skript zur Vorlesung

Skript zur Vorlesung Skript zur Vorlesung 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für

Mehr

8.4.5 Wasser sieden bei Zimmertemperatur ******

8.4.5 Wasser sieden bei Zimmertemperatur ****** 8.4.5 ****** 1 Motivation Durch Verminderung des Luftdrucks siedet Wasser bei Zimmertemperatur. 2 Experiment Abbildung 1: Ein druckfester Glaskolben ist zur Hälfte mit Wasser gefüllt, so dass die Flüsigkeit

Mehr

2.2 Spezifische und latente Wärmen

2.2 Spezifische und latente Wärmen 1 Einleitung Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 2 Wärmelehre 2.2 Spezifische und latente Wärmen Die spezifische Wärme von Wasser gibt an, wieviel Energie man zu 1 kg Wasser zuführen

Mehr

Vorlesung Physik für Pharmazeuten PPh Wärmelehre

Vorlesung Physik für Pharmazeuten PPh Wärmelehre Vorlesung Physik für Pharmazeuten PPh - 07 Wärmelehre Aggregatzustände der Materie im atomistischen Bild Beispiel Wasser Eis Wasser Wasserdampf Dynamik an der Wasser-Luft Grenzfläche im atomistischen Bild

Mehr

Fachhochschule Flensburg. Die spezifische Wärmekapazität fester Körper

Fachhochschule Flensburg. Die spezifische Wärmekapazität fester Körper Name : Fachhochschule Flensburg Fachbereich Technik Institut für Physik und Werkstoffe Name: Versuch-Nr: W4 Die spezifische Wärmekapazität fester Körper Gliederung: Seite Einleitung 1 Berechnung 1 Versuchsbeschreibung

Mehr

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités)

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für die Temperatur Prinzip

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik -. Hauptsatz der Thermodynamik - Prof. Dr. Ulrich Hahn WS 2008/09 Energieerhaltung Erweiterung des Energieerhaltungssatzes der Mechanik Erfahrung: verschiedene

Mehr

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert.

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert. Grundbegriffe der Thermodynamik Die Thermodynamik beschäftigt sich mit der Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur. Die Thermodynamik kann voraussagen,

Mehr

Hochschule Düsseldorf University of Applied Sciences. 20. April 2016 HSD. Energiespeicher Wärme

Hochschule Düsseldorf University of Applied Sciences. 20. April 2016 HSD. Energiespeicher Wärme Energiespeicher 02 - Wärme Wiederholung Energiearten Primärenergie Physikalische Energie Kernenergie Chemische Energie Potentielle Energie Kinetische Energie Innere Energie Quelle: Innere Energie Innere

Mehr

Festkörper - System steht unter Atmosphärendruck gemessenen Wärmen erhalten Index p : - isoliert

Festkörper - System steht unter Atmosphärendruck gemessenen Wärmen erhalten Index p : - isoliert Kalorimetrie Mit Hilfe der Kalorimetrie können die spezifischen Wärmekapazitäten für Festkörper, Flüssigkeiten und Gase bestimmt werden. Kalorische Grundgleichung: ΔQ = c m ΔT Festkörper - System steht

Mehr

Formelsammlung Abfallwirtschaft Seite 1/6 Wärmekapazität Prof. Dr. Werner Bidlingmaier & Dr.-Ing. Christian Springer

Formelsammlung Abfallwirtschaft Seite 1/6 Wärmekapazität Prof. Dr. Werner Bidlingmaier & Dr.-Ing. Christian Springer Formelsammlung Abfallwirtschaft Seite 1/6 1 Energiebedarf zur Erwärmung von Stoffen Der Energiebetrag, der benötigt wird, um 1 kg einer bestimmten Substanz um 1 C zu erwärmen, wird als die (auch: Spezifische

Mehr

11. Ideale Gasgleichung

11. Ideale Gasgleichung . Ideale Gasgleichung.Ideale Gasgleichung Definition eines idealen Gases: Gasmoleküle sind harte punktförmige eilchen, die nur elastische Stöße ausführen und kein Eigenvolumen besitzen. iele Gase zeigen

Mehr

13.Wärmekapazität. EP Vorlesung 14. II) Wärmelehre

13.Wärmekapazität. EP Vorlesung 14. II) Wärmelehre 13.Wärmekapazität EP Vorlesung 14 II) Wärmelehre 10. Temperatur und Stoffmenge 11. Ideale Gasgleichung 12. Gaskinetik 13. Wärmekapazität 14. Hauptsätze der Wärmelehre Versuche: Mechanisches Wärmeäquivalent

Mehr

2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme

2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme 2 Wärmelehre Die Thermodynamik ist ein Musterbeispiel an axiomatisch aufgebauten Wissenschaft. Im Gegensatz zur klassischen Mechanik hat sie die Quantenrevolution überstanden, ohne in ihren Grundlagen

Mehr

8.1. Kinetische Theorie der Wärme

8.1. Kinetische Theorie der Wärme 8.1. Kinetische Theorie der Wärme Deinition: Ein ideales Gas ist ein System von harten Massenpunkten, die untereinander und mit den Wänden elastische Stöße durchühren und keiner anderen Wechselwirkung

Mehr

Spezifische Wärmekapazität fester Körper

Spezifische Wärmekapazität fester Körper Version: 14. Oktober 2005 Spezifische Wärmekapazität fester Körper Stichworte Wärmemenge, spezifische Wärme, Schmelzwärme, Wärmekapazität, Wasserwert, Siedepunkt, innere Energie, Energiesatz, Hauptsätze

Mehr

Unterrichtskonzept zum Themenbereich Wasser (NT 5.1.2)

Unterrichtskonzept zum Themenbereich Wasser (NT 5.1.2) Staatsinstitut für Schulqualität und Bildungsforschung Unterrichtskonzept zum Themenbereich Wasser (NT 5.1.2) Lehrplanbezug Beim Themenbereich Wasser sollen die Schülerinnen und Schüler die drei Aggregatzustände

Mehr

Alles was uns umgibt!

Alles was uns umgibt! Was ist Chemie? Womit befasst sich die Chemie? Die Chemie ist eine Naturwissenschaft, die sich mit der Materie (den Stoffen), ihren Eigenschaften und deren Umwandlung befasst Was ist Chemie? Was ist Materie?

Mehr

3.4 Änderung des Aggregatzustandes

3.4 Änderung des Aggregatzustandes 34 Änderung des Aggregatzustandes Man unterscheidet 3 Aggregatzustände: Fest Flüssig Gasförmig Temperatur: niedrig mittel hoch Molekülbindung: Gitter lose Bindung keine Bindung schmelzen sieden erstarren

Mehr

Die Heizungsanlage eines Hauses wird auf Ölfeuerung umgestellt. Gleichzeitig wird mit dieser Anlage Warmwasser aufbereitet.

Die Heizungsanlage eines Hauses wird auf Ölfeuerung umgestellt. Gleichzeitig wird mit dieser Anlage Warmwasser aufbereitet. Übungsaufgaben zur Wärmelehre mit Lösungen 1) Die Heizungsanlage eines Hauses wird auf Ölfeuerung umgestellt. Gleichzeitig wird mit dieser Anlage Warmwasser aufbereitet. Berechnen Sie die Wärme, die erforderlich

Mehr

4.1.2 Quantitative Definition durch Wärmekapazitäten

4.1.2 Quantitative Definition durch Wärmekapazitäten 4 Energie Aus moderner (mikroskopischer Sicht ist klar, daß die Summe U der kinetischen Energien der Moleküle eines Gases (und ggf. ihrer Wechselwirkungsenergien eine thd. Zustandsgröße des Gases ist,

Mehr

Grundwissen. Physik. Jahrgangsstufe 8

Grundwissen. Physik. Jahrgangsstufe 8 Grundwissen Physik Jahrgangsstufe 8 Grundwissen Physik Jahrgangsstufe 8 Seite 1 1. Energie; E [E] = 1Nm = 1J (Joule) 1.1 Energieerhaltungssatz Formulierung I: Energie kann nicht erzeugt oder vernichtet

Mehr

Wärme, unsere wichtigste Energieform.

Wärme, unsere wichtigste Energieform. Kalorik Lehrwerkstätten und Berufsschule Zeughausstrasse 56 für Mechanik und Elektronik Tel. 052 267 55 42 CH-8400 Winterthur Fax 052 267 50 64 Thermo-Gefäss, 1 Liter PA6100 Wärme, unsere wichtigste Energieform.

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I W21 Name: Verdampfungswärme von Wasser Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Folgende Fragen

Mehr

Physikalische Chemie 1

Physikalische Chemie 1 Physikalische Chemie 1 Christian Lehmann 31. Januar 2004 Inhaltsverzeichnis 1 Einführung 2 1.1 Teilgebiete der Physikalischen Chemie............... 2 1.1.1 Thermodynamik (Wärmelehre)............... 2 1.1.2

Mehr

d) Das ideale Gas makroskopisch

d) Das ideale Gas makroskopisch d) Das ideale Gas makroskopisch Beschreibung mit Zustandsgrößen p, V, T Brauchen trotzdem n, R dazu Immer auch Mikroskopische Argumente dazunehmen Annahmen aus mikroskopischer Betrachtung: Moleküle sind

Mehr

Allgemeines Gasgesetz. PV = K o T

Allgemeines Gasgesetz. PV = K o T Allgemeines Gasgesetz Die Kombination der beiden Gesetze von Gay-Lussac mit dem Gesetz von Boyle-Mariotte gibt den Zusammenhang der drei Zustandsgrößen Druck, Volumen, und Temperatur eines idealen Gases,

Mehr

Antrieb und Wärmebilanz bei Phasenübergängen. Speyer, März 2007

Antrieb und Wärmebilanz bei Phasenübergängen. Speyer, März 2007 Antrieb und Wärmebilanz bei Phasenübergängen Speyer, 19-20. März 2007 Michael Pohlig, WHG-Durmersheim michael@pohlig.de Literatur: Physik in der Oberstufe; Duden-PAETEC Schmelzwärme wird auch als Schmelzenergie

Mehr

Versuch W1: Kalorimetrie

Versuch W1: Kalorimetrie Versuch W1: Kalorimetrie Aufgaben: 1. Bestimmen Sie die Wärmekapazität zweier Kalorimeter (Kalorimeterkonstanten). 2. Bestimmen Sie die spezifische Wärmekapazität von 2 verschiedenen festen Stoffen. 3.

Mehr

4.6.5 Dritter Hauptsatz der Thermodynamik

4.6.5 Dritter Hauptsatz der Thermodynamik 4.6 Hauptsätze der Thermodynamik Entropie S: ds = dq rev T (4.97) Zustandsgröße, die den Grad der Irreversibilität eines Vorgangs angibt. Sie ist ein Maß für die Unordnung eines Systems. Vorgänge finden

Mehr

Hochschule Düsseldorf University of Applied Sciences. 13. April 2016 HSD. Energiespeicher. Thermodynamik

Hochschule Düsseldorf University of Applied Sciences. 13. April 2016 HSD. Energiespeicher. Thermodynamik 13. April 2016 Energiespeicher Thermodynamik Prof. Dr. Alexander Braun // Energiespeicher // SS 2016 26. April 2017 Thermodynamik Grundbegriffe Prof. Dr. Alexander Braun // Energiespeicher // SS 2017 26.

Mehr

oder 10 = 1bar = = 10 Pa Für viele Zwecke wird die Umrechnung 1bar = 10 verwendet.

oder 10 = 1bar = = 10 Pa Für viele Zwecke wird die Umrechnung 1bar = 10 verwendet. R. Brinkmann http://brinkmann-du.de Seite 1 5.11.013 HF14S Arbeitsblatt Wärme als Energieform Die Celsius-Skala ist durch folgende Fixpunkte definiert: 0 0 C: Schmelzpunkt des Eises bei einem Druck von

Mehr

Fachrichtung Klima- und Kälteanlagenbauer

Fachrichtung Klima- und Kälteanlagenbauer Fachrichtung Klima- und Kälteanlagenbauer 1-7 Schüler Datum: 1. Titel der L.E. : 2. Fach / Klasse : Fachrechnen, 3. Ausbildungsjahr 3. Themen der Unterrichtsabschnitte : 1. Zustandsänderung 2. Schmelzen

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Einführung in die Wärmelehre - Prof. Dr. Ulrich Hahn WS 2008/09 Entwicklung der Wärmelehre Sinnesempfindung: Objekte warm kalt Beschreibung der thermische Eigenschaften

Mehr

Physik Erster Hauptsatz (mechanisches und elektrisches Wärmeäquivalent)

Physik Erster Hauptsatz (mechanisches und elektrisches Wärmeäquivalent) Physik Erster Hauptsatz (mechanisches und elektrisches Wärmeäquivalent) 1. Ziel des Versuches Umwandlung von mechanischer Reibungsarbeit in Wärme, Umwandlung von elektrischer Arbeit bzw. Energie in Wärme,

Mehr

2.4 Kinetische Gastheorie - Druck und Temperatur im Teilchenmodell

2.4 Kinetische Gastheorie - Druck und Temperatur im Teilchenmodell 2.4 Kinetische Gastheorie - Druck und Temperatur im Teilchenmodell Mit den drei Zustandsgrößen Druck, Temperatur und Volumen konnte der Zustand von Gasen makroskopisch beschrieben werden. So kann zum Beispiel

Mehr

2 Grundbegriffe der Thermodynamik

2 Grundbegriffe der Thermodynamik 2 Grundbegriffe der Thermodynamik 2.1 Thermodynamische Systeme (TDS) Aufteilung zwischen System und Umgebung (= Rest der Welt) führt zu einer Klassifikation der Systeme nach Art der Aufteilung: Dazu: adiabatisch

Mehr

13.Wärmekapazität. EP Vorlesung 15. II) Wärmelehre

13.Wärmekapazität. EP Vorlesung 15. II) Wärmelehre 13.Wärmekapazität EP Vorlesung 15 II) Wärmelehre 10. Temperatur und Stoffmenge 11. Ideale Gasgleichung 12. Gaskinetik 13. Wärmekapazität 14. Hauptsätze der Wärmelehre Versuche: Wärmekapazität von Festkörpern

Mehr

Vorlesung 15 II Wärmelehre 15. Wärmetransport und Stoffmischung

Vorlesung 15 II Wärmelehre 15. Wärmetransport und Stoffmischung Vorlesung 15 II Wärmelehre 15. Wärmetransport und Stoffmischung a) Wärmestrahlung b) Wärmeleitung c) Wärmeströmung d) Diffusion 16. Phasenübergänge (Verdampfen, Schmelzen, Sublimieren) Versuche: Wärmeleitung

Mehr

Staatsexamen Physikdidaktik Unterrichtsfach (nicht vertieft) Frühjahr 2010, Aufgabe 1: Spezifische Wärmekapazität

Staatsexamen Physikdidaktik Unterrichtsfach (nicht vertieft) Frühjahr 2010, Aufgabe 1: Spezifische Wärmekapazität Staatsexamen Physikdidaktik Unterrichtsfach (nicht vertieft) Frühjahr 2010, Aufgabe 1: Spezifische Wärmekapazität 1. Erläutern Sie die Begriffe innere Energie, Wärme, Wärmeleitung und spezifische Wärme

Mehr

II. Der nullte Hauptsatz

II. Der nullte Hauptsatz II. Der nullte Hauptsatz Hauptsätze... - sind thermodyn. Gesetzmäßigkeiten, die als Axiome (Erfahrungssätze) formuliert wurden - sind mathematisch nicht beweisbar, basieren auf Beobachtungen und Erfahrungen

Mehr

Protokoll zum Versuch: Elektrisches Wärmeäquivalent

Protokoll zum Versuch: Elektrisches Wärmeäquivalent Protokoll zum Versuch: Elektrisches Wärmeäquivalent Nils Brüdigam Fabian Schmid-Michels Universität Bielefeld Wintersemester 2006/2007 Grundpraktikum I 07.12.2006 Inhaltsverzeichnis 1 Ziel 2 2 Theorie

Mehr

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a)

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a) Aufgabe 1: Multiple Choice (10P) Geben Sie an, welche der Aussagen richtig sind. Unabhängig von der Form der Fragestellung (Singular oder Plural) können eine oder mehrere Antworten richtig sein. a) Welche

Mehr

Ergänzungsübungen zur Physik für Nicht-Physikerinnen und Nicht-Physiker(SoSe 14)

Ergänzungsübungen zur Physik für Nicht-Physikerinnen und Nicht-Physiker(SoSe 14) Ergänzungsübungen zur Physik für Nicht-Physikerinnen und Nicht-Physiker(SoSe 14) Prof. W. Meyer Übungsgruppenleiter: A. Berlin & J. Herick (NB 2/28) Ergänzung F Temperatur In der Wärmelehre lernen wir

Mehr

Versuche: Brownsche Bewegung pneumatisches Feuerzeug Wärmekapazität gleicher Massen von verschiedenen Metallen

Versuche: Brownsche Bewegung pneumatisches Feuerzeug Wärmekapazität gleicher Massen von verschiedenen Metallen 14. Vorlesung EP II. Wärmelehre 1. Temperatur und Stoffmenge 11. Ideale Gasgleichung 1. Gaskinetik 13. Wärmekapazität Versuche: Brownsche Bewegung pneumatisches Feuerzeug Wärmekapazität gleicher Massen

Mehr

1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases. f=5 Translation + Rotation. f=7 Translation + Rotation +Vibration. Wiederholung

1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases. f=5 Translation + Rotation. f=7 Translation + Rotation +Vibration. Wiederholung 1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases Wiederholung Speziische molare Wärmekapazität c m,v = 2 R R = N A k B = 8.315 J mol K =5 Translation + Rotation =7 Translation + Rotation +ibration 1.

Mehr

Typische Fragen. Fragen und Aufgaben zu den Themenbereichen: 1. Mechanische Energien 2. Gasgesetze 3. Innere Energie 4. Aggregatszustandsänderungen

Typische Fragen. Fragen und Aufgaben zu den Themenbereichen: 1. Mechanische Energien 2. Gasgesetze 3. Innere Energie 4. Aggregatszustandsänderungen 28.05.2004 - Seite 1 von 7 Fragen und Aufgaben zu den Themenbereichen: 1. Mechanische nergien 2. Gasgesetze 3. Innere nergie 4. Aggregatszustandsänderungen Typische Fragen F1. Mechanische nergien 1. Welche

Mehr

Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH

Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH 3 Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH Physik Wärme 5 Themen Begriffsklärung Anwendungen Temperaturskalen Modellvorstellung Wärmeausdehnung Thermische Ausdehnung Phasenübergänge

Mehr

Thermodynamik 2. Zweiter Hauptsatz der Thermodynamik. Entropie. Die statistische Definition der Entropie.

Thermodynamik 2. Zweiter Hauptsatz der Thermodynamik. Entropie. Die statistische Definition der Entropie. Thermodynamik 2. Zweiter Hauptsatz der Thermodynamik. Entropie. Die statistische Definition der Entropie. Die Hauptsätze der Thermodynamik Kurze Zusammenfassung der Hauptsätze 0. Hauptsatz: Stehen zwei

Mehr

Spezifische Wärmekapazität

Spezifische Wärmekapazität Versuch: KA Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: L. Jahn B. Wehner J. Pöthig J. Stelzer am 01. 06. 1997 Bearbeitet: M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher am

Mehr

Spezifische Wärme. Was ist ein Dewargefäß? Wie ist es konstruiert und welche Vorteile bietet dieser Aufbau?

Spezifische Wärme. Was ist ein Dewargefäß? Wie ist es konstruiert und welche Vorteile bietet dieser Aufbau? Wie viel Energie ist nötig, um die Luft im Raum oder einen Topf mit Wasser zu erwärmen? Und wie viel Energie, um das Wasser zu verdampfen? In diesem Versuch sollen Sie solche Fragen experimentell untersuchen.

Mehr

6.2 Zweiter HS der Thermodynamik

6.2 Zweiter HS der Thermodynamik Die Änderung des Energieinhaltes eines Systems ohne Stoffaustausch kann durch Zu-/Abfuhr von Wärme Q bzw. mechanischer Arbeit W erfolgen Wird die Arbeit reversibel geleistet (Volumenarbeit), so gilt W

Mehr

NTB Druckdatum: DWW

NTB Druckdatum: DWW WÄRMELEHRE Der Begriff der Thermisches Gleichgewicht und - Mass für den Wärmezustand eines Körpers - Bewegung der Atome starke Schwingung schwache Schwingung gleichgewicht (Thermisches Gleichgewicht) -

Mehr

Verwendet man ein Seil, dann kann der Angriffspunkt A der Kraft verschoben werden,

Verwendet man ein Seil, dann kann der Angriffspunkt A der Kraft verschoben werden, Kraftwandler Ein Kraftwandler ist eine Vorrichtung, die den Angriffspunkt, die Richtung oder die Größe einer aufzuwendenden Kraft verändern kann. Beispiele : a) b) Verwendet man ein Seil, dann kann der

Mehr

Lösungen Serie 16: Kalorimetrie

Lösungen Serie 16: Kalorimetrie en Serie 16: Kalorimetrie Aufgabe 16.1 A Sie wollen in einem Kochtopf ( =0.6, =0.4 ( =4.182 k K gegeben: =0.6 =0.4 k K ) einen halben Liter Wasser ) von 10 auf 40 erwärmen. Welche Wärmemenge ist dazu notwendig?

Mehr

1 Grundwissen Energie. 2 Grundwissen mechanische Energie

1 Grundwissen Energie. 2 Grundwissen mechanische Energie 1 Grundwissen Energie Die physikalische Größe Energie E ist so festgelegt, dass Energieerhaltung gilt. Energie kann weder erzeugt noch vernichtet werden. Sie kann nur von einer Form in andere Formen umgewandelt

Mehr

PCG Grundpraktikum Versuch 4 Neutralisationswärme Multiple Choice Test

PCG Grundpraktikum Versuch 4 Neutralisationswärme Multiple Choice Test PCG Grundpraktikum Versuch 4 Neutralisationswärme Multiple Choice Test 1. Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Neutralisationswärme wird dieses Vorgespräch durch einen

Mehr

1. GRUNDLAGEN B04 SPEZIFISCHE WÄRMEN B04

1. GRUNDLAGEN B04 SPEZIFISCHE WÄRMEN B04 B04 SPEZIFISCHE WÄRMEN B04 1. GRUNDLAGEN 1.1. Spezifische Wärme Wie viel Energie ist erforderlich, um die Luft im Raum oder einen Topf mit Wasser zu erwärmen? Und wie viel Energie, um das Wasser zu verdampfen?

Mehr

Grundwissen Physik (8. Klasse)

Grundwissen Physik (8. Klasse) Grundwissen Physik (8. Klasse) 1 Energie 1.1 Energieerhaltungssatz 1.2 Goldene egel der Mechanik Energieerhaltungssatz: n einem abgeschlossenen System ist die Gesamtenergie konstant. Goldene egel der Mechanik:

Mehr

Technische Thermodynamik

Technische Thermodynamik Kalorimetrie 1 Technische Thermodynamik 2. Semester Versuch 1 Kalorimetrische Messverfahren zur Charakterisierung fester Stoffe Namen : Datum : Abgabe : Fachhochschule Trier Studiengang Lebensmitteltechnik

Mehr

Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1

Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1 Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1 A 6 Kalorimetrie Aufgabe: Mittels eines Flüssigkeitskalorimeters ist a) die Neutralisationsenthalpie von säure b) die ösungsenthalpie

Mehr

PCG Grundpraktikum Versuch 5 Lösungswärme Multiple Choice Test

PCG Grundpraktikum Versuch 5 Lösungswärme Multiple Choice Test PCG Grundpraktikum Versuch 5 Lösungswärme Multiple Choice Test 1. Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Lösungswärme wird dieses Vorgespräch durch einen Multiple Choice

Mehr

Aufgaben zur Wärmelehre

Aufgaben zur Wärmelehre Aufgaben zur Wärmelehre 1. Ein falsch kalibriertes Quecksilberthermometer zeigt -5 C eingetaucht im schmelzenden Eis und 103 C im kochenden Wasser. Welche ist die richtige Temperatur, wenn das Thermometer

Mehr

Versuch C5: Kalorimetrie

Versuch C5: Kalorimetrie Physikalisches Praktikum für Pharmazeuten Gruppennummer Name Vortestat Endtestat Name Versuch A. Vorbereitungsteil (VOR der Versuchsdurchführung lesen! 1. Kurzbeschreibung In diesem Versuch wird der Unterschied

Mehr

Kapitel IV Wärmelehre und Thermodynamik

Kapitel IV Wärmelehre und Thermodynamik Kapitel IV Wärmelehre und Thermodynamik a) Definitionen b) Wärme und Wärmekapazität c) Das ideale Gas - makroskopisch d) Das reale Gas / Phasenübergänge e) Das ideale Gas mikroskopisch f) Hauptsätze und

Mehr

Physikalisches Grundpraktikum. Phasenumwandlungen

Physikalisches Grundpraktikum. Phasenumwandlungen Fachrichtungen der Physik UNIVERSITÄT DES SAARLANDES Physikalisches Grundpraktikum WWW-Adresse Grundpraktikum Physik: http://grundpraktikum.physik.uni-saarland.de/ Kontaktadressen der Praktikumsleiter:

Mehr

1.2 Zustandsgrößen, Zustandsänderungen, Gleichgewichtszustand

1.2 Zustandsgrößen, Zustandsänderungen, Gleichgewichtszustand 1.2 Zustandsgrößen, Zustandsänderungen, Gleichgewichtszustand Wie erfolgt die Beschreibung des Zustands eines Systems? über Zustandsgrößen (makroskopische Eigenschaften, die den Zustand eines Systems kennzeichnen)

Mehr