Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen)"

Transkript

1 Magnetismus Magnetit (Fe 3 O 4 ) Sonne λ= 284Å Magnetare/ Kernspintomographie = Neutronensterne Magnetresonanztomographie Ein Magnetfeld wird erzeugt durch: Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen) Strom (bewegte Ladung) (-> sh. Versuch Kompassnadel neben Strom durchflossenem Draht) zeitlich veränderliches elektrisches Feld Es gibt keine magnetischen Monopole (d.h. es wurden noch keine beobachtet) Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus 1

2 Grundtypen magnetischer Felder Magnetfeld um stromdurchflossenen Draht B - I Magnetfeld um stromführenden Draht der zu einer Schleife gebogen ist Magnetfeld einer langen Spule Magnetfeld eines Permanentmagneten B N I S Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus 2

3 Wie entsteht das Magnetfeld in Materie? Magnetfeld um stromführenden Draht der zu einer Schleife gebogen ist Magnetfeld eines Elektrons Ursache: Eigendrehimpuls(Spin) des Elektrons B Drehachse I Magnetfeld eines Protons (Neutrons, Atomkerns) Drehachse Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus 3

4 Das Erdmagnetfeld Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus 4

5 Computersimulation des Erdmagnetfelds Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus 5

6 Wanderung des magnetischen Nordpols Das Erdmagnetfeld polt sich ca. alle Jahre um. Die letzte Umpolung fand allerdings schon vor Jahren statt. Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus 6

7 Kraft auf einen stromdurchflossenen Leiter im Magnetfeld Rechte Hand Regel Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus 7

8 Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus 8

9 Magnetische Kraftflussdichte B und magnetische Feldstärke H Erdmagnetfeld Stärkste Magnetfelder im Labor Magnetfeld in Atomen Magnetfeld an der Oberfläche eines Neutronensterns ca T = 1 G (Gauss) ca. 45T ca. 10T ca T Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus 9

10 Magnetfeld einer langezogenen Spule (Feld innen homogen, außen schwach): = Elektromagnet Elektromagnet Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus 10

11 Kraft auf ein geladenes Teilchen im Magnetfeld, Lorentzkraft Magnetfeld in Bildebene hinein x x x x x x x x x x x x x x x x x x x x x x x x x Rechte Hand Regel Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus 11

12 Versuch Fadenstrahlrohr: 1. Geschwindigkeit genau senkrecht zum Magnetfeld: Kreisbahn 2. Geschwindigkeit schräg zum Magnetfeld: Schraubenlinie Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus 12

13 Bedeutung (Beispiele): Magnetische Flasche, Erdmagnetfeld schützt vor kosmischer Strahlung, Polarlichter Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus 13

14 Sonnenwind = Teilchen (Protonen, Elektronen, He-Kerne) von der Sonne Erdmagnetfeld

15 Polarlicht (Aurora Borealis, Aurora Australis)

16 Polarlicht über der Erde (gesehen vom Space Shuttle Discovery)

17 Wiederholung: + - r F Kraft auf einen stromdurchflossenen Leiter im Magnetfeld: = I r l r B I = Stromstärke l = Länge des Leiters im Magnetfeld B = magnetische Kraftflussdichte F B I r F r B Kraft auf ein geladenes Teilchen im Magnetfeld (Lorentzkraft): = r q v q = Ladung des Teilchens v = Geschwindigkeit des Teilchens B = magnetische Kraftflussdichte Rechte Hand Regel Bahn eines geladenen Teilchens im Magnetfeld: a) v senkrecht B: Kreisbahn b) sonst: Schraubenlinie zwischen den Feldlinien Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus 17

18 Magnetischer Fluss: (diesen Begriff werden wir später benötigen zur Beschreibung der Induktion) Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus 18

19 Magnetische Induktion U ind Michael Faraday: Wenn der Magnet bewegt wird, ändert sich der magnetische Fluss Φ in der Spule, eine Spannung wird induziert, die vom Messgerät angezeigt wird. (Je schneller die Bewegung, desto größer die angezeigte Spannung) Induktionsgesetz (Faraday): U = φ t N Jede Änderung des magnetischen Flusses durch eine Leiterschleife, induziert darin eine elektrische Spannung U. Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus 19

20 Lenzsche Regel Die durch Veränderung magnetischer Flüsse erzeugten Induktionsströme fließen derart, dass ihre eigenen Magnetfelder der Induktionsursache entgegenwirken oder: Die in Leitern induzierten Ströme sind immer so gerichtet, dass sie die Bewegung durch die sie hervorgerufen wurden zu hemmen versuchen. Beispiel: Magnet bewegt sich auf Ring zu Aluring: Dieser Aluring (mit Schlitz!) weicht dem Magneten nicht aus. Denn: Wegen des Schlitzes können keine Wirbelströme fliessen. Bewegt sich vom Magnet weg Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus 20

21 Anwendungsbeispiel für Induktion: Wechselstromgenerator U = φ N t Hier: Der magnetische Fluss durch die Drahtschleife ändert sich, weil sich der Winkel zwischen Magnetfeld und Fläche ändert, In der Leiterschleife wird eine Spannung induziert. U ind ( t) = nbaω sin( ωt) Wechselstromgenerator Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus 21

22 Versuch zum Wechselstromgenerator: Bei Drehung der Kurbel, fließt Wechselstrom! Hufeisenmagnet Spule, wird durch Kurbel gedreht Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus 22

23 Wechselstromgenerator: Fahrraddynamo Rad dreht sich, -> Magnet dreht sich, -> Magnetfeld in der Spule ändert sich, -> Spannung wird induziert, Strom fliesst. Wenn sich das Rad schneller dreht, ist die Änderung des magnetischen Flusses größer, eine größere Spannung wird induziert, die Lampe leuchtet heller! U ind ( t) = nbaω sin( ωt) Wechselstromgenerator Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus 23

24 Weitere Versuche zu Induktion, Lenzscher Regel & Wirbelströmen Thomsonscher Ringversuch Kugelrennen Waltenhofsches Pendel (Wirbelstrombremse) unmagnetisierte Kugel magnetisierte Kugel Plastikrohr Kupferrohr Beim Einschalten des Stromes durch die Spule wird der Aluring nach oben katapultiert. Ein Ring mit Schlitz zeigt keine Wirkung. Eine nicht magnetisierte Kugel fällt gleich schnell durch beide Rohre. Eine magnetisierte Kugel, erzeugt beim Fallen durch das Kupferrohr Wirbelströme und wird durch die Lenzsche Regel stark gebremst. Lässt man die magnetisierte Kugel durch das Plastikrohr und die unmagnetisierte Kugel durch das Kupferrohr fallen, kommen beide gleichzeitig an. Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus 24

25 Versuch: Induktions - Dosenöffner Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus 25

26 Weiteres Anwendungsbeispiel: Induktionsherd Im Topfboden werden durch das magnetische Wechselfeld elektrische Wirbelströme induziert. Gutes Aufheizen des Topfbodens, wenn das Topfbodenmaterial magnetisch hart ist. Im Kochfeld: Spule in der Wechselstrom ( khz) Fließt, erzeugt magnetisches Wechselfeld. Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus 26

27 Der schwebende Supraleiter (idealer Diamagnet) Supraleiter B ind Magnet B Magnet Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus 27

28 Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus 28

29 Diamagnetische Levitation: Hochfeldlabor Nijmegen erzeugt Magnetfelder von 16T: ( Die mpeg movies finden Sie unter ) Wassertropfen Beispiele verschiedener Diamagneten, die im starken Magnetfeld (16T) schweben. Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus

30 Selbstinduktion: Schalter S Spule R 1. Schalter wird geschlossen: Strom fließt durch die Spule, ein Magnetfeld baut sich auf. 2. Die Magnetfeldänderung in der Spule bewirkt Induktion in der Spule! Eine (Gegen-)Spannung entsteht, nach der Lenzschen Regel bewirkt der induzierte Strom ein Magnetfeld in entgegengesetzter Richtung. U ind = L di dt Durch diesen Effekt (= Selbstinduktion) verzögert sich der Stromanstieg beim Einschalten. 3. Schließlich fließt der Strom I 0 = U/R. U L = Induktivität, Einheit 1 Henry 1H = 1Vs/A Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus 30

31 Einschaltvorgang mit Spule (Induktivität): I( t) = I ( t /τ e ) 0 1 L (Spule) R U 0 Ausschaltvorgang mit Spule (Induktivität): I( t) = I 0 e t /τ L (Spule) R U 0 Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus 31

32 Einschaltvorgang mit Kondensator (Kapazität): U ( /τ e ) ( ) 1 t C t = U0 C R U 0 Ausschaltvorgang mit Kondensator (Kapazität): U C ( t) = U 0 e t /τ C R U 0 Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus 32

33 Der elektrische Schwingkreis: Start mit aufgeladenem Kondensator 2. C entlädt sich über L, ein Magnetfeld baut sich auf. 3. Strom fließt weiter, selbst wenn C entladen ist, weil die Selbstinduktion den Stromfluss aufrecht erhalten will. C wird vollständig aufgeladen (umgekehrte Polarität wie bei Beginn). 4. C entlädt sich über L, ein Magnetfeld baut sich auf (umgekehrte Richtung wie bei 2.) Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus 33

34 Tesla Transformator (historisches Experiment) zur Erzeugung hoher Spannungen & elektromagnetischer Wellen em-wellen werden abgestrahlt Extrem hohe Spannung Die 2 Spulen des Tesla Trafos Funkenstrecke Wechselspannung aus der Steckdose Netzgerät Kondensator Bringt man eine Leuchtstoffröhre in die Nähe, leuchtet diese auf (em-wellen!) Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus 34

35 Wechselstrom: Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus 35

36 Der schwingende Dipol (Hertzscher Dipol): Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus 36

37 Dipolschwingung: Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus 37

38 Ablösung der elektromagnetischen Wellen vom Dipol Dipolachse KEINE Abstrahlung in Richtung der Dipolachse Maximale Abstrahlung senkrecht zur Dipolachse Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus 38

39 Entstehung elektromagnetischer Wellen: em-strahlung entsteht immer, wenn Ladungen beschleunigt werden Ladungen: schwingen rauf und runter veränderliches E-Feld erzeugt -> veränderliches B-Feld erzeugt -> veränderliches E-Feld -> usw. Experimentalphysik I/II für Biologie u. Zahnmedizin: Wintersemester 2011/12 Caren Hagner Magnetismus 39

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen)

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen) Magnetismus Magnetit (Fe 3 O 4 ) Sonne λ= 284Å Magnetare/ Kernspintomographie = Neutronensterne Magnetresonanztomographie Ein Magnetfeld wird erzeugt durch: Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls

Mehr

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld 1 Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld N S Magnetfeld um stromdurchflossenen Draht Magnetfeld um stromführenden Draht der zu

Mehr

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen)

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen) Magnetismus Magnetit (Fe 3 O 4 ) Sonne λ= 284Å Magnetare/ Kernspintomographie = Neutronensterne Magnetresonanztomographie Ein Magnetfeld wird erzeugt durch: Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls

Mehr

Versuch: Induktions - Dosenöffner. Experimentalphysik I/II für Mediziner: Sommersemester 2010 Caren Hagner Magnetismus 25

Versuch: Induktions - Dosenöffner. Experimentalphysik I/II für Mediziner: Sommersemester 2010 Caren Hagner Magnetismus 25 Versuch: Induktions - Dosenöffner Experimentalphysik I/II für Mediziner: Sommersemester 2010 Caren Hagner Magnetismus 25 Der schwebende Supraleiter (idealer Diamagnet) Supraleiter B ind Magnet B Magnet

Mehr

4 Induktion. Worum geht es? Ein veränderliches Magnetfeld (allgemein Änderung von Φ B ) in der Spule,

4 Induktion. Worum geht es? Ein veränderliches Magnetfeld (allgemein Änderung von Φ B ) in der Spule, 4 Induktion Worum geht es? Ein veränderliches Magnetfeld (allgemein Änderung von Φ B ) in der Spule, induziert eine Spannung ( Stromfluss U=RI) in der Spule. Caren Hagner / PHYSIK 2 / Sommersemester 2015

Mehr

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld 1 Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld N S Magnetfeld um stromdurchflossenen Draht Magnetfeld um stromführenden Draht der zu

Mehr

Vorlesung 5: Magnetische Induktion

Vorlesung 5: Magnetische Induktion Vorlesung 5: Magnetische Induktion, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed georg.steinbrueck@desy.de 1 WS 2016/17 Magnetische Induktion Bisher:

Mehr

Magnetismus. Vorlesung 5: Magnetismus I

Magnetismus. Vorlesung 5: Magnetismus I Magnetismus Erzeugung eines Magnetfelds möglich durch: Kreisende Elektronen: Permanentmagnet Bewegte Ladung: Strom: Elektromagnet (Zeitlich veränderliches elektrisches Feld) Vorlesung 5: Magnetismus I

Mehr

3 Magnetismus. 2 magnetische Pole: Nord (zeigt nach S) und Süd (zeigt nach N); Feldlinien laufen von N nach S

3 Magnetismus. 2 magnetische Pole: Nord (zeigt nach S) und Süd (zeigt nach N); Feldlinien laufen von N nach S 3 Magnetismus Magnetit (Fe 3 O 4 ) Sonne λ= 284Å Magnetare/ Kernspintomographie = Neutronensterne Magnetresonanztomographie 2 magnetische Pole: Nord (zeigt nach S) und Süd (zeigt nach N); Feldlinien laufen

Mehr

4 Induktion. Worum geht es? Ein Ein veränderliches Magnetfeld (allgemein Änderung von von Φ B. induziert eine eine Spannung ( ( Stromfluss U=RI) U=RI)

4 Induktion. Worum geht es? Ein Ein veränderliches Magnetfeld (allgemein Änderung von von Φ B. induziert eine eine Spannung ( ( Stromfluss U=RI) U=RI) 4 Induktion Worum geht es? Ein Ein veränderliches Magnetfeld (allgemein Änderung von von Φ B ) B ) in in der der Spule, Spule, induziert eine eine Spannung ( ( Stromfluss U=RI) U=RI) in in der der Spule.

Mehr

15.Magnetostatik, 16. Induktionsgesetz

15.Magnetostatik, 16. Induktionsgesetz Ablenkung von Teilchenstrahlen im Magnetfeld (Zyklotron u.a.): -> im Magnetfeld B werden geladene Teilchen auf einer Kreisbahn abgelenkt, wenn B senkrecht zu Geschwindigkeit v Kräftegleichgewicht: 2 v

Mehr

O. Sternal, V. Hankele. 4. Magnetismus

O. Sternal, V. Hankele. 4. Magnetismus 4. Magnetismus Magnetfelder N S Rotationsachse Eigenschaften von Magneten und Magnetfeldern Ein Magnet hat Nord- und Südpol Ungleichnamige Pole ziehen sich an, gleichnamige Pole stoßen sich ab. Es gibt

Mehr

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen Aufbau von Atomen Ein Atom besteht aus einem positiv geladenen Atomkern und einer negativ geladenen Atomhülle. Träger der positiven Ladung sind Protonen, Träger der negativen Ladung sind Elektronen. Atomhülle

Mehr

III Elektrizität und Magnetismus

III Elektrizität und Magnetismus 20. Vorlesung EP III Elektrizität und Magnetismus 19. Magnetische Felder 20. Induktion Versuche: Diamagnetismus, Supraleiter Induktion Leiterschleife, bewegter Magnet Induktion mit Änderung der Fläche

Mehr

Elektromagnetische Induktion

Elektromagnetische Induktion Elektromagnetische M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis im bewegten und im ruhenden Leiter Magnetischer Fluss und sgesetz Erzeugung sinusförmiger Wechselspannung In diesem Abschnitt

Mehr

Wechselstrom (Widerstand von Kondensator, Spule, Ohmscher Widerst.) Abstrahlung von elektromagnetischen Wellen (Hertzscher Dipol)

Wechselstrom (Widerstand von Kondensator, Spule, Ohmscher Widerst.) Abstrahlung von elektromagnetischen Wellen (Hertzscher Dipol) Heutiges Programm: 1 Wechselstrom (Widerstand von Kondensator, Spule, Ohmscher Widerst.) Elektrischer Schwingkreis Abstrahlung von elektromagnetischen Wellen (Hertzscher Dipol) Elektromagnetische Wellen

Mehr

Administratives BSL PB

Administratives BSL PB Administratives Die folgenden Seiten sind ausschliesslich als Ergänzung zum Unterricht für die Schüler der BSL gedacht (intern) und dürfen weder teilweise noch vollständig kopiert oder verbreitet werden.

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Klausur: Montag, 11.02. 2008 um 13 16 Uhr (90 min) Willstätter-HS Buchner-HS Nachklausur: Freitag, 18.04.

Mehr

Kehrt man die Bewegungsrichtung des Leiters um, dann ändert sich die Polung der Spannung.

Kehrt man die Bewegungsrichtung des Leiters um, dann ändert sich die Polung der Spannung. 7. Die elektromagnetische Induktion ------------------------------------------------------------------------------------------------------------------ A Die Induktion im bewegten Leiter Bewegt man einen

Mehr

Die Lenzsche Regel. Frage : In welche Richtung fließt der Induktionsstrom? Versuch :

Die Lenzsche Regel. Frage : In welche Richtung fließt der Induktionsstrom? Versuch : Die Lenzsche Regel Frage : In welche Richtung fließt der Induktionsstrom? Versuch : Beobachtung : Bewegungsrichtung des Magneten in den Ring hinein aus dem Ring heraus Bewegungsrichtung des Metallringes

Mehr

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld.

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld. Induktion Die elektromagnetische Induktion ist der Umkehrprozess zu dem stromdurchflossenen Leiter, der ein Magnetfeld erzeugt. Bei der Induktion wird in einem Leiter, der sich in einem Magnetfeld bewegt,

Mehr

1.10 Elektromagnetische Induktion

1.10 Elektromagnetische Induktion 1.10 Elektromagnetische Induktion Wasserkraft: Deutschland 5% weltweit 18% Deutschland 30% weltweit 17% Deutschland 59% weltweit 64% Quelle: Wikipedia 1.10.1 Experimente zur elektromagnetischen Induktion

Mehr

20. Vorlesung EP. III Elektrizität und Magnetismus. 19. Magnetische Felder Fortsetzung: Materie im Magnetfeld 20. Induktion 21.

20. Vorlesung EP. III Elektrizität und Magnetismus. 19. Magnetische Felder Fortsetzung: Materie im Magnetfeld 20. Induktion 21. 20. Vorlesung EP III Elektrizität und Magnetismus 19. Magnetische Felder Fortsetzung: Materie im Magnetfeld 20. Induktion 21. Wechselstrom Versuche: Induktion: Handdynamo und Thomson-Transformator Diamagnetismus:

Mehr

Hertzsche Wellen. Physik 9

Hertzsche Wellen. Physik 9 Hertzsche Wellen Physik 9 ohne Hertzsche Wellen geht nichts? Wie entstehen Hertzsche Wellen? Man braucht eine Spule mit Eisenkern und einen Kondensator Fließt durch eine Spule ein Strom, so wird ein magnetisches

Mehr

Induktion. Bewegte Leiter

Induktion. Bewegte Leiter Induktion Bewegte Leiter durch die Kraft werden Ladungsträger bewegt auf bewegte Ladungsträger wirkt im Magnetfeld eine Kraft = Lorentzkraft Verschiebung der Ladungsträger ruft elektrisches Feld hervor

Mehr

was besagt das Induktionsgesetz? was besagt die Lenzsche Regel?

was besagt das Induktionsgesetz? was besagt die Lenzsche Regel? Induktion Einleitung Thema: Induktion Fragen: was ist Induktion? was besagt das Induktionsgesetz? was besagt die Lenzsche Regel? Frage: was, wenn sich zeitlich ändernde E- und -Felder sich gegenseitig

Mehr

Zusammenfassung. Induktions-Spannungspuls in einem bewegten Leiter im homogenen Magnetfeld

Zusammenfassung. Induktions-Spannungspuls in einem bewegten Leiter im homogenen Magnetfeld 5b Induktion Zusammenfassung Induktion ist ein physikalisches Phänomen, bei der eine Spannungspuls in einem Leiter oder einer Spule induziert wird, wenn sich der Leiter in einem Magnetischen Feld befindet.

Mehr

Vorlesung Physik für Pharmazeuten PPh - 09 b

Vorlesung Physik für Pharmazeuten PPh - 09 b Vorlesung Physik für Pharmazeuten PPh - 09 b Elektrizitätslehre (II) 29.01.2007 IONENLEITUNG 2 Elektrolytische Leitfähigkeit Kationen und Anionen tragen zum Gesamtstrom bei. Die Ionenleitfähigkeit ist

Mehr

Magnetismus - Einführung

Magnetismus - Einführung Magnetismus Magnetismus - Einführung Bedeutung: Technik:Generator, Elektromotor, Transformator, Radiowellen... Geologie: Erdmagnetfeld Biologie: Tiere sensitiv auf Erdmagnetfeld (z.b. Meeresschildkröten)

Mehr

Schulinterner Lehrplan Qualifikationsphase Q1. Präambel

Schulinterner Lehrplan Qualifikationsphase Q1. Präambel Präambel Dieses Curriculum stellt keinen Maximallehrplan dar, sondern will als offenes Curriculum die Möglichkeit bieten, auf die didaktischen und pädagogischen Notwendigkeiten der Qualifikationsphase

Mehr

4.10 Induktion. [23] Michael Faraday. Gedankenexperiment:

4.10 Induktion. [23] Michael Faraday. Gedankenexperiment: 4.10 Induktion Die elektromagnetische Induktion wurde im Jahre 1831 vom englischen Physiker Michael Faraday entdeckt, bei dem Bemühen die Funktions-weise eines Elektromagneten ( Strom erzeugt Magnetfeld

Mehr

ELEKTRIZITÄT & MAGNETISMUS

ELEKTRIZITÄT & MAGNETISMUS ELEKTRIZITÄT & MAGNETISMUS Elektrische Ladung / Coulombkraft / Elektrisches Feld Gravitationsgesetz ( = Gewichtskraft) ist die Ursache von Gravitationskonstante Coulombgesetz ( = Coulombkraft) Elementarladung

Mehr

Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom

Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom Aufgaben 13 Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom Lernziele - aus einem Experiment neue Erkenntnisse gewinnen können. - sich aus dem Studium eines schriftlichen

Mehr

Bewegter Leiter im Magnetfeld

Bewegter Leiter im Magnetfeld Bewegter Leiter im Magnetfeld Die Leiterschaukel mal umgedreht: Bewegt man die Leiterschaukel im Magnetfeld, so wird an ihren Enden eine Spannung induziert. 18.12.2012 Aufgaben: Lies S. 56 Abschnitt 1

Mehr

18. Magnetismus in Materie

18. Magnetismus in Materie 18. Magnetismus in Materie Wir haben den elektrischen Strom als Quelle für Magnetfelder kennen gelernt. Auch das magnetische Verhalten von Materie wird durch elektrische Ströme bestimmt. Die Bewegung der

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker 4. Vorlesung 9.5.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Magnetisches Induktionsgesetz

Magnetisches Induktionsgesetz Magnetisches Induktionsgesetz Michael Faraday entdeckte, dass ein sich zeitlich veränderndes Magnetfeld eine elektrische Spannung in einer Schleife oder Spule aus leitendem Material erzeugt: die Induktionsspannung

Mehr

vor ca Jahren gefunden Kleinasien, Magnesia: Steine ziehen kleine Eisenstücke an. --> Magnetismus

vor ca Jahren gefunden Kleinasien, Magnesia: Steine ziehen kleine Eisenstücke an. --> Magnetismus Magnetismus vor ca. 2000 Jahren gefunden Kleinasien, Magnesia: Steine ziehen kleine Eisenstücke an. --> Magnetismus Magnetismus ist permanent, durch Überstreichen können andere magnetische Materialien

Mehr

Vorlesung 6: Wechselstrom, ElektromagnetischeWellen, Wellenoptik

Vorlesung 6: Wechselstrom, ElektromagnetischeWellen, Wellenoptik Vorlesung 6: Wechselstrom, ElektromagnetischeWellen, Wellenoptik, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed georg.steinbrueck@desy.de 1 WS 2015/16

Mehr

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P]

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] 3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] B = µ 0 I 4 π ds (r r ) r r 3 a) Beschreiben Sie die im Gesetz von Biot-Savart vorkommenden Größen (rechts vom Integral). b) Zeigen Sie, dass das Biot-Savartsche

Mehr

Schulversuchspraktikum WS2000/2001 Redl Günther 9655337. Elektromagnet. 7.Klasse

Schulversuchspraktikum WS2000/2001 Redl Günther 9655337. Elektromagnet. 7.Klasse Schulversuchspraktikum WS2000/2001 Redl Günther 9655337 Elektromagnet 7.Klasse Inhaltsverzeichnis: 1) Lernziele 2) Verwendete Quellen 3) Versuch nach Oersted 4) Magnetfeld eines stromdurchflossenen Leiter

Mehr

Kraft, Hall-Effekt, Materie im magnetischen Feld, Flussdichte, Energie

Kraft, Hall-Effekt, Materie im magnetischen Feld, Flussdichte, Energie Aufgaben 12 Magnetisches Feld Kraft, Hall-Effekt, Materie im magnetischen Feld, Flussdichte, Energie Lernziele - aus einem Experiment neue Erkenntnisse gewinnen können. - sich aus dem Studium eines schriftlichen

Mehr

12. Elektrodynamik. 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion. 12.5 Magnetische Kraft. 12. Elektrodynamik Physik für Informatiker

12. Elektrodynamik. 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion. 12.5 Magnetische Kraft. 12. Elektrodynamik Physik für Informatiker 12. Elektrodynamik 12.11 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

Elektrisches Feld ================================================================== 1. a) Was versteht man unter einem elektrischen Feld?

Elektrisches Feld ================================================================== 1. a) Was versteht man unter einem elektrischen Feld? Elektrisches Feld 1. a) Was versteht man unter einem elektrischen Feld? b) Zwei Metallplatten, die mit der Ladung + Q bzw. Q aufgeladen sind, stehen sich parallel gegenüber. Zeichne das Feldlinienbild

Mehr

Ladungsfluss durch geschlossene Fläche = zeitliche Änderung der Ladung im Volumen 4.2 Elektrischer Widerstand

Ladungsfluss durch geschlossene Fläche = zeitliche Änderung der Ladung im Volumen 4.2 Elektrischer Widerstand E-Dynamik Teil II IV Der elektrische Strom 4.1 Stromstärke, Stromdichte, Kontinuitätsgleichung Definition der Stromstärke: ist die durch eine Querschnittsfläche pro Zeitintervall fließende Ladungsmenge

Mehr

4.4 Induktion. Bisher: Strom durch einen Draht Magnetfeld Jetzt: zeitlich veränderliches Magnetfeld Strom

4.4 Induktion. Bisher: Strom durch einen Draht Magnetfeld Jetzt: zeitlich veränderliches Magnetfeld Strom Bisher: Strom durch einen Draht Magnetfeld Jetzt: zeitlich veränderliches Magnetfeld Strom 4.4 Induktion Spannungen und Ströme, die durch Veränderungen von Magnetfeldern entstehen, bezeichnet man als Induktionsspannungen,

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #17 14/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Laden eines Kondensators Aufladen erfolgt durch eine Spannungsquelle, z.b. Batterie, die dabei

Mehr

Lernaufgabe zur elektromagnetischen Induktion für GK Physik 12

Lernaufgabe zur elektromagnetischen Induktion für GK Physik 12 Lernaufgabe zur elektromagnetischen Induktion für GK Physik 1 Diese Aufgabe ist in 3 er Gruppen, bei nicht durch 3 ohne Rest teilbarer Anzahl von Schülern 1 bzw. zwei 'er Gruppen, zu bearbeiten. Kenntnisse

Mehr

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

Magnetismus. Prof. DI Michael Steiner

Magnetismus. Prof. DI Michael Steiner Magnetismus Prof. DI Michael Steiner www.htl1-klagenfurt.at Magnetismus Natürlicher Künstlicher Magneteisenstein Magnetit Permanentmagnete Stabmagnet Ringmagnet Hufeisenmagnet Magnetnadel Temporäre Magnete

Mehr

Basiswissen Physik Jahrgangsstufe (G9)

Basiswissen Physik Jahrgangsstufe (G9) Wärmelehre (nur nspr. Zweig) siehe 9. Jahrgangsstufe (mat-nat.) Elektrizitätslehre Basiswissen Physik - 10. Jahrgangsstufe (G9) Ladung: Grundeigenschaft der Elektrizität, positive und negative Ladungen.

Mehr

Induktionsbeispiele. Rotierende Leiterschleife: Spule mit Induktionsschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 )

Induktionsbeispiele. Rotierende Leiterschleife: Spule mit Induktionsschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 ) Induktionsbeispiele Rotierende eiterschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 ) A φ B ω Induktionsspannung: U ind = dφ m = AB [ ω sin(ωt + φ 0 )] = ABω sin(ωt + φ 0 ) (Wechselspannung)

Mehr

(1) (4) Integralform. Differentialform ρ. Hier fehlt noch. etwas!

(1) (4) Integralform. Differentialform ρ. Hier fehlt noch. etwas! Zeitlich veränderliche Felder: Elektrodynamik Die Maxwell-Gleichungen im statischen Fall (1) 1 E d = ρdv E = V( ) (2) B d = B = etwas! (3) E dr = E = (4) Integralform ε Hier fehlt noch Differentialform

Mehr

Elektrisches und magnetisches Feld. Elektrostatik Das elektrische Feld Kondensator Magnetische Felder Induktion

Elektrisches und magnetisches Feld. Elektrostatik Das elektrische Feld Kondensator Magnetische Felder Induktion Elektrisches und magnetisches Feld Elektrostatik Das elektrische Feld Kondensator Magnetische Felder Induktion Elektrostatik Elektrostatische Grundbegriffe Zusammenhang zwischen Ladung und Stromstärke

Mehr

Physik-Skript. Teil II. Melanchthon-Gymnasium Nürnberg

Physik-Skript. Teil II. Melanchthon-Gymnasium Nürnberg Physik-Skript Teil II Melanchthon-Gymnasium Nürnberg Volker Dickel 3. überarbeitete Auflage, 2014 2. überarbeitete Auflage, 2012 1. Auflage 2009 Inhaltsverzeichnis EINLEITUNG: ELEMENTARTEILCHEN UND WECHSELWIRKUNGEN...

Mehr

12. Elektrodynamik. 12. Elektrodynamik

12. Elektrodynamik. 12. Elektrodynamik 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Maxwell sche Verschiebungsstrom 12.4 Magnetische Induktion 12.5 Lenz sche Regel 12.6 Magnetische Kraft 12. Elektrodynamik

Mehr

Grundkurs Physik (2ph2) Klausur

Grundkurs Physik (2ph2) Klausur 1. Ernest O. Lawrence entwickelte in den Jahren 1929-1931 den ersten ringförmigen Teilchenbeschleuniger, das Zyklotron. Dieses Zyklotron konnte Protonen auf eine kinetische Energie von 80 kev beschleunigen.

Mehr

Physik II für Bauingenieure. Vorlesung 03 (08. Mai 2007)

Physik II für Bauingenieure. Vorlesung 03 (08. Mai 2007) Physik II für Bauingenieure Vorlesung 03 (08. Mai 2007) http://homepage.rub.de/daniel.haegele Prof. D. Hägele Vorlesung Stoff umfangreich, Zeit knapp. Probleme beim Verständnis der Vorlesung Übungen. Schulgrundlagen

Mehr

Mit 184 Bildern und 9 Tabellen

Mit 184 Bildern und 9 Tabellen Physik II Elektrodynamik Einfuhrungskurs für Studierende der Naturwissenschaften und Elektrotechnik von Klaus Dransfeld und Paul Kienle Bearbeitet von Paul Berberich 5., verbesserte Auflage Mit 184 Bildern

Mehr

Elektrik. M. Jakob. 6. November Gymnasium Pegnitz

Elektrik. M. Jakob. 6. November Gymnasium Pegnitz Elektrik M. Jakob Gymnasium Pegnitz 6. November 2016 Inhaltsverzeichnis 1 Magnetisches und elektrisches Feld Magnetismus Das Magnetfeld von elektrischen Leitern Kräfte auf bewegte Ladungen Elektrisches

Mehr

Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H

Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H ET 6 Elektromagnetisches Feld Magnetische Feldstärke (magnetische Erregung) In der Umgebung stromdurchflossener Leiter entsteht ein magnetisches Feld, H = H e s... quellenfreies Vektorfeld der Feldstärke

Mehr

6.4.8 Induktion von Helmholtzspulen ******

6.4.8 Induktion von Helmholtzspulen ****** V648 6.4.8 ****** Motivation Das Induktionsgesetz von Faraday wird mit einer ruhenden Leiterschleife im zeitabhängigen B-Feld und mit einer bewegten Leiterschleife im stationären B-Feld untersucht. 2 Experiment

Mehr

Magnetische Phänomene

Magnetische Phänomene Magnetische Phänomene Bekannte magnetische Phänomene: Permanentmagnete; Das Erdmagnetfeld (Magnetkompass!); Elektromagnetismus (Erzeugung magnetischer Kraftwirkungen durch Stromfluss) Alle magnetischen

Mehr

Magnetisches Feld. Grunderscheinungen Magnetismus - Dauermagnete

Magnetisches Feld. Grunderscheinungen Magnetismus - Dauermagnete Magnetisches Feld Grunderscheinungen Magnetismus - Dauermagnete jeder drehbar gelagerte Magnet richtet sich in Nord-Süd-Richtung aus; Pol nach Norden heißt Nordpol jeder Magnet hat Nord- und Südpol; untrennbar

Mehr

IV. Elektrizität und Magnetismus

IV. Elektrizität und Magnetismus IV. Elektrizität und Magnetismus IV.5 Elektromagnetische Wellen Physik für Mediziner 1 Elektromagnetische Wellen Physik für Mediziner 2 Wiederholung: Schwingkreis elektrische Feld im Kondensator wird periodisch

Mehr

5.1 Statische und zeitlich veränderliche

5.1 Statische und zeitlich veränderliche 5.1 Statische und zeitlich veränderliche Felder 5 Induktion 5.1 Statische und zeitlich veränderliche Felder Bisher haben wir elektrische und magnetische Felder betrachtet, die durch zeitlich konstante

Mehr

1.Schulaufgabe aus der Physik Lösungshinweise

1.Schulaufgabe aus der Physik Lösungshinweise 1.Schulaufgabe aus der Physik Lösungshinweise Gruppe A Aufgabe 1 (Grundwissen) Größe Energie Stromstärke Widerstand Ladung Kraft Buchstabe E I R Q F Einheit Joule: J Ampere: A Ohm: Ω Coulomb: C Newton:

Mehr

Experimentalphysik II Zeitlich veränderliche Felder und Wechselstrom

Experimentalphysik II Zeitlich veränderliche Felder und Wechselstrom Experimentalphysik II Zeitlich veränderliche Felder und Wechselstrom Ferienkurs Sommersemester 009 Martina Stadlmeier 09.09.009 Inhaltsverzeichnis 1 Zeitlich veränderliche Felder 1.1 Faradaysches Induktionsgesetz.....................

Mehr

Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt?

Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt? Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt? elektrischer Strom Stromstärke elektrische Spannung Spannungsquelle Gerichtete Bewegung von Ladungsträgern in einem elektrischen

Mehr

Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: Abb Verknüpfung von elektrischem Strom und Magnetfeld

Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: Abb Verknüpfung von elektrischem Strom und Magnetfeld 37 3 Transformatoren 3. Magnetfeldgleichungen 3.. Das Durchflutungsgesetz Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: H I Abb. 3..- Verknüpfung von elektrischem Strom und Magnetfeld

Mehr

THEMEN UND INHALTE TUTORIUM FÜR AUSLANDSSTUDENTEN 2

THEMEN UND INHALTE TUTORIUM FÜR AUSLANDSSTUDENTEN 2 THEMEN UND INHALTE Kapitel Themen Inhalte 1. Kapitel Made in Germany 1.1 Was in Ingenieurwesen? 1.2 Ingenieur Studium an der OTH Regensburg? 1.3 Überblick über die OTH Regensburg 1.4 Studienordnung: SWS,

Mehr

Wir demonstrieren die Spannungserzeugung in einer Leiterschleife bei Änderung der vom Magnetfeld durchsetzten Fläche:

Wir demonstrieren die Spannungserzeugung in einer Leiterschleife bei Änderung der vom Magnetfeld durchsetzten Fläche: 4.2: Versuche zum Faraday'schen Induktionsgesetz Wir demonstrieren die Spannungserzeugung in einer Leiterschleife bei Änderung der vom Magnetfeld durchsetzten Fläche: a) Veränderliche Fläche der Leiterschleife

Mehr

1 a) Das Messgerät zeigt eine Spannung an. b) Das Messgerät zeigt keine Spannung an.

1 a) Das Messgerät zeigt eine Spannung an. b) Das Messgerät zeigt keine Spannung an. Anwendungsaufgaben - Induktion - Lösungen 1 a) Das Messgerät zeigt eine pannung an. b) Das Messgerät zeigt keine pannung an. Auf die Elektronen wirken Lorentzkräfte, die sie zu einem Ende des Leiters hin

Mehr

Geschlossener Schwingkreis

Geschlossener Schwingkreis Name: Klasse: Datum: Geschlossener Schwingkreis 1. Ein Kondensator wird aufgeladen. Anschließend wird der Schalter S umgelegt, so dass der Kondensator mit der Spule verbunden ist. a) Markiere den Schwingkreis

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen

Mehr

Das magnetische Feld

Das magnetische Feld Das Magnetfeld wird durch Objekte erzeugt und wirkt gleichzeitig auf Objekte repräsentiert die Kraftwirkung aufgrund des physikalischen Phänomens Magnetismus ist gerichtet und wirkt vom Nordpol zum Südpol

Mehr

Grundwissen. Physik. Jahrgangsstufe 9

Grundwissen. Physik. Jahrgangsstufe 9 Grundwissen Physik Jahrgangsstufe 9 Grundwissen Physik Jahrgangsstufe 9 Seite 1 1. Elektrische Felder und Magnetfelder 1.1 Elektrisches Feld Elektrisches Kraftgesetz: Gleichnamige Ladungen stoßen sich

Mehr

Induktion. Methoden zum Nachweis dieser Magnetfelder:

Induktion. Methoden zum Nachweis dieser Magnetfelder: Induktion 1. Aufgabe a) Beschreiben Sie grundsätzliche Möglichkeiten, um im Physikunterricht zeitlich konstante sowie zeitlich variierende Magnetfelder zu erzeugen! Erläutern Sie für beide Fälle jeweils

Mehr

Klausur 2 Kurs 12Ph3g Physik

Klausur 2 Kurs 12Ph3g Physik 2009-11-16 Klausur 2 Kurs 12Ph3g Physik Lösung (Rechnungen teilweise ohne Einheiten, Antworten mit Einheiten) Die auf Seite 3 stehenden Formeln dürfen benutzt werden. Alle anderen Formeln müssen hergeleitet

Mehr

Magnetismus Elektrizität 19. Jhd: Magnetismus und Elektrizität sind zwei unterschiedliche Aspekte eines neues Konzeptes : Zeitabhängig (dynamisch)

Magnetismus Elektrizität 19. Jhd: Magnetismus und Elektrizität sind zwei unterschiedliche Aspekte eines neues Konzeptes : Zeitabhängig (dynamisch) Magnetismus Elektrizität 9. Jhd: Magnetismus und Elektrizität sind zwei unterschiedliche Aspekte eines neues Konzeptes : Elektromagnetisches Feld Realität: elektrische Ladung elektrisches Feld magnetisches

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #23 am 06.06.2007 Vladimir Dyakonov (Klausur-)Frage des Tages Zeigen Sie mithilfe des Ampere

Mehr

8.1 Faradaysches Induktionsgesetz

8.1 Faradaysches Induktionsgesetz Kapitel 8 ZEITLICH VERÄNDERLICHE FELDER Hier geht es um Effekte, die durch die zeitliche Änderung der Feldgrößen E und B hervorgerufen werden. Aus der zweiten Gleichung folgt, dass ein sich zeitlich änderndes

Mehr

Wiederholdung wichtiger Begriffe, Zeichen, Formeln und Einheiten.

Wiederholdung wichtiger Begriffe, Zeichen, Formeln und Einheiten. Elektrizitätslehre I: Wiederholdung wichtiger Begriffe, Zeichen, Formeln und Einheiten. Elementarladung: Ladung: Q Einheit: 1 Coulomb = 1C = 1 Amperesekunde Stromstärke: I Einheit: 1 A = 1 Ampere elektrische

Mehr

Magnetostatik. Magnetfelder

Magnetostatik. Magnetfelder Magnetostatik 1. Permanentmagnete i. Phänomenologie ii. Kräfte im Magnetfeld iii. Magnetische Feldstärke iv.erdmagnetfeld 2. Magnetfeld stationärer Ströme 3. Kräfte auf bewegte Ladungen im Magnetfeld 4.

Mehr

Übungen zu Experimentalphysik 2

Übungen zu Experimentalphysik 2 Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 13 - Lösungen zu Übungsblatt 4 1 Schiefe Ebene im Magnetfeld In einem vertikalen, homogenen Magnetfeld

Mehr

V 401 : Induktion. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf. Fachbereich EI Testat : Physikalisches Praktikum

V 401 : Induktion. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf. Fachbereich EI Testat : Physikalisches Praktikum Fachbereich El Gruppe : Namen, Matrikel Nr.: Versuchstag: Vorgelegt: Hochschule Düsseldorf Testat : V 401 : Induktion Zusammenfassung: 01.04.16 Versuch: Induktion Seite 1 von 6 Gruppe : Korrigiert am:

Mehr

Zusammenfassung EPII. Elektromagnetismus

Zusammenfassung EPII. Elektromagnetismus Zusammenfassung EPII Elektromagnetismus Elektrodynamik: Überblick Dynamik (Newton): Elektromagnetische Kräfte zw. Ladungen: Definition EFeld: Kraft auf ruhende Testladung Q: BFeld: Kraft auf bewegte Testladung:

Mehr

Vorlesung : Roter Faden:

Vorlesung : Roter Faden: Vorlesung 18+19+20: Roter Faden: Heute: Elektrostatik, Magnetostatik, Elektrodynamik, Magnetodynamik, Elektromagnetische Schwingungen Versuche: Feldlinien, Kondensator, Spule, Generator, Elektromoter Applets:

Mehr

Reihen- und Parallelschaltung von Kondensatoren

Reihen- und Parallelschaltung von Kondensatoren Ladung Spannung Kapazität Skizze wir-sind-klasse.jimdo.com Das elektrische Feld Energie des Kondensators Die Energie sitzt nach Faradays Feldvorstellung nicht bei den Ladungen auf den Platten sondern zwischen

Mehr

Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern.

Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern. 16. Kapazität Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern. 16.1 Plattenkondensator Das einfachste Beispiel für einen Kondensator ist der

Mehr

SMART. Sammlung mathematischer Aufgaben als Hypertext mit TEX. Gymnasium Jahrgangstufe 11 (Physik)

SMART. Sammlung mathematischer Aufgaben als Hypertext mit TEX. Gymnasium Jahrgangstufe 11 (Physik) SMART Sammlung mathematischer Aufgaben als Hypertext mit TEX Gymnasium Jahrgangstufe 11 (Physik) herausgegeben vom Zentrum zur Förderung des mathematisch-naturwissenschaftlichen Unterrichts der Universität

Mehr

1.2.6 Induktion in bewegten und in ruhenden Leitern: Induktionsgesetz; magnetischer Fluss; Lenzsche Regel

1.2.6 Induktion in bewegten und in ruhenden Leitern: Induktionsgesetz; magnetischer Fluss; Lenzsche Regel 1.2.6 Induktion in bewegten und in ruhenden Leitern: Induktionsgesetz; magnetischer Fluss; Lenzsche Regel Grundlegende Erscheinungen In einem der orangegangenen Kapitel wurde gezeigt, dass auf einen stromdurchflossenen

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 19. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 19. 06.

Mehr

10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft

10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft Inhalt 10. Elektrodynamik 10.3 Das elektrische Potential 10.4 Elektrisches Feld und Potential ti 10.5 Magnetische Kraft und Felder 1051M 10.5.1 Magnetische Kraft 10.3 Das elektrische Potential ti Wir hatten

Mehr

Protokoll. Induktion

Protokoll. Induktion Protokoll Induktion Michael Aichinger 9855264 Inhaltsverzeichnis: 1.Einleitung S.2 2. Lernziele S.2 3. Didaktische Hinleitung S.3 4. Versuche 4.1 Relativbewegung Magnetfeld Spule S.4 4.2 Induktionsspannung

Mehr

Deine Erwartungen: Was erwartest du vom Leistungskurs Physik, was vom Grundkurs?

Deine Erwartungen: Was erwartest du vom Leistungskurs Physik, was vom Grundkurs? Deine Erwartungen: Was erwartest du vom Leistungskurs Physik, was vom Grundkurs? Das erwartet dein Lehrer von dir: Neugier und Interesse am Fach Bereitschaft, sich auch an kniffligen Aufgabenstellungen

Mehr

Magnete die geheimnisvolle Kraft?

Magnete die geheimnisvolle Kraft? Magnete die geheimnisvolle Kraft? Magnete stellen für viele Leute etwas Mysteriöses dar. Schließlich kann der Mensch Magnetismus weder sehen, hören, riechen, schmecken noch direkt fühlen. Zudem ziehen

Mehr

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel 11. Elektrodynamik 11.5.4 Das Amperesche Gesetz 11.5.5 Der Maxwellsche Verschiebungsstrom 11.5.6 Magnetische Induktion 11.5.7 Lenzsche Regel 11.6 Maxwellsche Gleichungen 11.7 Elektromagnetische Wellen

Mehr

Elektromagnetische Induktion. 1. Erklärung für das Entstehen einer Induktionsspannung bzw. eines Induktionsstromes:

Elektromagnetische Induktion. 1. Erklärung für das Entstehen einer Induktionsspannung bzw. eines Induktionsstromes: Elektromagnetische Induktion Eperiment: Ergebnis: Ein Fahrraddynamo wandelt Bewegungsenergie in elektrische Energie um. Er erzeugt trom (zuerst pannung). Wir zerlegen einen Dynamo. Ein Dynamo besteht aus

Mehr