Aufgabensammlung für die Primar- und Vorschulstufe

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Aufgabensammlung für die Primar- und Vorschulstufe"

Transkript

1 . Lehre Weiterbildung Forschung Aufgabensammlung für die Primar- und Vorschulstufe Mögliche ergänzende Aufgabenstellungen für Vorschul- und Primarschülerinnen und - schüler zur Ausstellung Matheliebe von G. Schierscher. (Quelle: Schierscher, Georg. Matheliebe. Herausgegeben von Rainer Vollkommer. Liechtenstein: Alpenland Verlag Schaan, 2013.) Kurze Einleitung: Die Formulierungen der Aufträge sind auf der Grundlage von Schierscher (2013) entstanden und wurden von um weitere Aufgaben mit Bezügen zum Vor- und Primarschulbereich ergänzt. Die Vorschläge und verwendeten ien sind bewusst einfach gehalten, damit die Lehrpersonen jederzeit davon in der Ausstellung oder in ihrem Unterricht Gebrauch machen können, ohne dass grosse Vorbereitungen oder Kosten entstehen. Es ist nicht zwingend, wird aber empfohlen, die Inhalte der Aufgaben mit den Kindern im Unterricht Vor- oder nachzubearbeiten und Begrifflichkeiten (z.b. regelmässig, rechtwinklig, Körpernetz etc.) zu klären. Bitte bringen Sie in die Ausstellung Schreibutensilien (auch Holzbuntstifte), einen Schnellhefter, das heft, Geodreieck und Schere mit.

2 . Lehre Weiterbildung Forschung Wachstum und Form 1 Bienenwaben (Schierscher, 2013, S.16) Streichhölzer, Faltanleitung Schachtel, Kopiervorlage WF 1_1, 3 Scheren, 2x2 Spiegelwinkel, 10 gleichseitige Dreiecke, doppelseitiges Klebeband Beschreib das Muster einer Honigwabe. Warum sieht es wohl so aus? (Foto: Aufgabe b) Streichhölzer Versuch, das Muster einer Honigwabe auf Karopapier zu zeichnen oder mit Streichhölzern zu legen. Aufgabe c) 2x Faltbuch, Kopiervorlage WF1_1 (auf 180g Papier), 3 Scheren, doppelseitiges Klebeband Eine sechsseitige Prisma-Schachtel falten. (Foto: Schoy-Lutz, 2016)

3 Aufgabe d) 3x2 Spiegel, gleichseitige Dreiecke Leg die Plättchen so, dass zusammen mit dem Spiegelbild ein regelmässiges Sechseck entsteht. (Foto: Schoy-Lutz, 2016) Aufgabe e) Wie viele Plättchen verwendest du, um Aufgabe d) zu legen? Aufgabe f) Aus wie vielen Plättchen besteht das ganze Bild? Aufgabe g) nur PS Wie viele Symmetrieachsen hat ein regelmässiges Sechseck? Probier mit dem Spiegel. Aufgabe h) nur PS Weshalb kann mit gleichseitigen Dreiecken ein regelmässiges Sechseck gelgt werden? Seite 2

4 . Lehre Weiterbildung Forschung Wachstum und Form 2 Wachstum in der Natur (Schierscher, 2013, S.24) In der Natur findet man häufig unglaubliche Wachstumsprozesse. Kürbisse z.b. können zu einer grossen Frucht heran wachsen. Man kann sich das Wachstum des Kürbisses mit immer grösser werdenden Würfeln vorstellen. (Bild: Schierscher 2013) Ca. 150 Holzwürfel, heft ca. 150 Holzwürfel, heft Baut die drei Würfel auf dem Foto nach. Aus wie vielen kleinen Würfelchen besteht der nächstgrössere 4. Würfel? Baut nach und versucht, die Anzahl der Würfelchen auf unterschiedliche Arten zu berechnen. Schreibt dazu eure Rechenwege auf und tragt die Anzahl der Würfelchen in eine Tabelle (siehe Aufgabe b) in euer Heft ein. (Foto: Schoy-Lutz, 2016)

5 Aufgabe b) ca. 150 Holzwürfel Könnt ihr euch vorstellen, wie der 5. Würfel aussieht? Beschreibt und baut nach. Würfel 1 Würfel 2 Würfel 3 Würfel 4 Würfel 5 Anzahl kleiner Würfelchen (Volumen) Tab. WF2_1 Aufgabe c) nur PS heft Wie verändert sich die Anzahl kleiner Würfelchen in Aufgabe b)? Kreuzt die zutreffende Aussage an Wenn die Seitenlänge des Würfels auf dem ersten Bild verdoppelt wird, dann verändert sich die Anzahl kleiner Würfelchen auf dem zweiten Bild nicht verdoppelt sich auch die Anzahl kleiner Würfelchen auf dem zweiten Bild vervierfacht sich die Anzahl kleiner Würfelchen auf dem zweiten Bild verachtfacht sich die Anzahl kleiner Würfelchen auf dem zweiten Bild Aufgabe d) heft Zeichnet wie Pia immer grösser werdende Figuren in eure Hefte. (Bsp: Schoy-Lutz, 2016) Seite 2

6 . Lehre Weiterbildung Forschung Wachstum und Form 3 Wachstum in der Natur (Schierscher, 2013, S.24) VS: Experimentieren PS: Systematisches Probieren und Zählen Turm von Hanoi, heft Wie oft müssen die Scheiben mindestens umgelegt werden, damit der linke Turm auf der rechten Seite steht und immer nur eine kleinere Scheibe auf eine grössere gelegt werden darf? (Abb. WF3_1: Turm von Hanoi, Foto: Schoy-Lutz, 2016) Aufgabe b) nur PS Schreibt einen Tipp für andere auf, wie man vorgehen kann.

7 . Lehre Weiterbildung Forschung Wachstum und Form 4 Exponentielles Wachstum (Matheliebe S.40) 2x Puzzle DIN-Formate Du siehst verschiedene Rechtecke vor dir. Es sind verschiedene DIN- Papierformate. Setz die Rechtecke zu einem DIN A4 Blatt (grosses Heft) zusammen. Aufgabe b) nur PS DIN-Papierformate entstehen, indem man wie im Puzzle aus a) ein DIN-Rechteck an der längeren Seite halbiert. Wie viele DIN-Formate könnte man herstellen? Aufgabe c) nur PS Erkennst du einen Zusammenhang der Rechtecke aus den Aufgaben a) und b) und der folgenden Aufgabe? Was kannst du über das Ergebnis der Aufgabe sagen? Mach eine Skizze (siehe Abb. WF4_1) an. Abb.WF4_1

8 . Lehre Weiterbildung Forschung Goldgrube 5 Satz des Pythagoras (Schierscher, 2013, S.122) 60 Schoggi-Täfelchen, Quadrat zum Umfahren, Blankopapier, 2 Scheren, 2x Puzzle gelb, heft Wie kann man aus zwei gleich grossen Quadraten ein Quadrat herstellen, das den gleichen Flächeninhalt wie die beiden kleinen Quadrate zusammen hat? Zeichne (umfahre) zwei gleich grosse Quadrate, zerschneide sie setz sie auf andere Art wieder zu einem grösseren Quadrat zusammen. Aufgabe b) Leg die drei Quadrate aus Abbildung G5_1 mit Schoggi-Täfelchen nach. Addiere die Anzahl der Schoggi-Täfelchen aus dem kleinen und dem mittleren Quadrat und vergleiche sie mit der Anzahl an Schoggi-Täfelchen aus dem grossen Quadrat. Anzahl Schoggi kleines Quadrat Anzahl Schoggi mittleres Quadrat Anzahl Schoggi grosses Quadrat Was stellst du fest? Abb. G5_1: Schierscher, (2013) S.122 Aufgabe c) nur PS Der Zusammenhang der Schoggi-Täfelchen wird im Satz des Pythagoras (einem berühmten er) beschrieben. Er gilt nur für ganz besondere Dreiecke. Erkennst du? Welche Dreiecke das sind? Aufgabe d) nur PS Wo kannst du auf den Bildern rechtwinklige Dreiecke erkennen? Was müsste man auf den Fotos noch verbessern, damit der Satz des Pythagoras angewendet werden darf?

9 (Foto: Schoy-Lutz, 2016) Aufgabe e) Partnerarbeit: Versucht mit diesen 11 Puzzleteilen gleichzeitig zwei gleich grosse Quadrate zu legen. Es werden alle Teile benötigt. Was kannst du über den Flächeninhalt der entstandenen Quadrate sagen? (Foto: Schoy-Lutz, 2016) Seite 2

10 . Lehre Weiterbildung Forschung Goldgrube 6 Tangramfiguren Tangram-Puzzle, Blanco-Papier, Kopiervorlage Tangram G6_1 Tangram ist ein Legespiel, das aus 7 Teilen besteht. Versuche diese Häschen zu zeichnen, indem du die entsprechenden Tangram- Formen umfährst. Bestehen beide Häschen aus denselben Formen? Was bedeutet das? (Foto: Schoy-Lutz, 2016)

11 Aufgabe b) Mit dieser Kopiervorlage kannst du dir dein eigenes Tangram erstellen und viele verschiedene Dinge legen. Probiere es gleich aus. Tangram Kopiervorlage G2_1 Seite 2

12 . Lehre Weiterbildung Forschung Goldgrube 7 Fibonacci-Zahlen Tab. G7_1, Ananas, Tannenzapfen, Sonnenblume In der Natur findet man sehr häufig Zahlen der Zahlenreihe 1, 1, 2, 3, 5, 8, 13.Versuch, diese Zahlen an den Gegenständen zu finden. Zähl dazu beim Tannenzapfen, bei der Frucht der Ananas und beim Inneren der Sonnenblume die jeweiligen Linien (Schraubenlinien, die rechtsherum gehen und jene, die sich nach links drehen). Was stellst du fest? Schraubenlinien rechtsherum Schraubenlinien linksherum Tab. G7_1

13 Aufgabe b) nur PS Wie könnte die Zahlenreihe weiter gehen? Hast du die Regel gefunden? (Tipp: = = = ) Die Zahlen 1, 1, 2, 3, 5, 8, 13. usw. nennt man die Fibonacci-Zahlen. Seite 2

14 . Lehre Weiterbildung Forschung Goldgrube 8 Goldener Schnitt nur PS Massband, Taschenrechner, Kopiervorlage Goldener Schnitt G8_1 Der goldene Schnitt kommt in der Natur häufig vor. Er teilt Strecken in einem besonderen Verhältnis. Dabei verhält sich die kleinste Strecke zur mittleren Strecke, wie die mittlere Strecke zur grossen Strecke. Abb.G8_1: Goldener Schnitt Verhältnis blau zu rot, wie rot zu grün. Aber auch an eurem Körper könnt ihr dieses Verhältnis entdecken. (Foto Schoy-Lutz, 2016) In der Tabelle findet ihr Beispiele dafür. Messt gegenseitig die Längen der angegebenen Strecken und teilt den grösseren Wert mit dem Taschenrechner durch den kleineren Wert (siehe Tab. G4_1). Schafft ihr es, immer ähnliche Ergebnisse zu erzielen? Findet ihr weitere Beispiele an eurem Körper, wo dieses Verhältnis gilt?

15 Körperteile Länge b (lange Strecke) Länge c (kurze Strecke) Verhältnis b: c (mit dem Taschenrechner) Miss Schweiz Tab. G4_1 Seite 2

16 . Lehre Weiterbildung Forschung Spieglein, Spieglein an der Wand 9 Steiner-Kreise: (Schierscher, 2013, S.250) Verschiedene Kreisschablonen, Papier blanko und kariert (z.b. Glückwunschkarten), Muggelsteine Versuch mit diesen Kreisschablonen durch Umfahren einen Steinerkreis zu zeichnen (vgl. Abb. S1_1). Abb. S9_1 Aufgabe b) Leg oder zeichne Bilder mit Kreisen/Muggelsteinen in unterschiedlichen Farben und versuch verschiedene Aufgaben dazu zu finden, z.b. (Foto Schoy-Lutz, 2016)

17 Aufgabe c) nur PS Hier siehst du noch mehr Steinerkreise. Aus wie vielen kleinen Muggelsteinen besteht das Bild? Versuch die Lösung möglichst geschickt zu finden. (Foto Schoy-Lutz, 2016) Seite 2

18 . Lehre Weiterbildung Forschung Spieglein, Spieglein an der Wand 10 Symmetrie experimentell 2 Spiegel, ca. 100 Muggelsteine Leg symmetrische Muster mit Muggelsteinen und kontrolliere mit dem Spiegel, ob die Muster tatsächlich symmetrisch sind. Beispiel: Aufgabe b) Ergänze folgende Muster zu symmetrischen Mustern und male. Es gibt nicht nur eine Möglichkeit.

19 Aufgabe c) Wo steckt der Fehler im geometrischen Muster? Aufgabe d) Leg Punktemuster, zähl, verdopple mit dem Spiegel und notier die Aufgaben im Heft. Beispiel: Seite 2

20 . Lehre Weiterbildung Forschung Spieglein, Spieglein an der Wand 11 Symmetrie experimentell: Geradenspiegelung (Schierscher, 2013, S.226) nur PS 2 Spiegel, Foto Polizeiauto Du siehst in der Abbildung, wie man Dreiecke an einer Linie (Geraden) spiegeln kann. Welche Eigenschaften treffen auf Spiegelungen an einer Geraden zu? Experimentier mit dem Spiegel und kreuz die richtigen Aussagen an: Abb. S11_1: Schierscher G. (2013), S.226 f > Linien (Geraden) gehen in Linien (Geraden) über. > Längen bleiben erhalten. > Winkel verdoppeln sich. > Der Umlaufsinn von A nach B nach C ändert im neuen Bild die Richtung. > Entdeckst du noch weitere Eigenschaften?

21 Aufgabe b) Wie müsste das Wort POLIZEI (Seepolizei, Taxi, Pizzaservice, Fahrschule) auf dem Autodach geschrieben sein, damit du das Wort im Rückspiegel deines Autos lesen kannst? Überlege gut und experimentiere mit dem Spiegel verschiedene Schreibweisen des Wortes POLIZEI. (Foto: Schoy-Lutz, 2016) Seite 2

22 . Lehre Weiterbildung Forschung Spieglein, Spieglein an der Wand 12 Herzkurve «Ein Herz konstruieren» (Schierscher, 2013, S.246) Klappkarten, Geodreieck, Moosgummischablonen für Herz, rotes Papier, Zirkel Herz zeichnen: Es gibt eine schöne Möglichkeit, ein einfaches Herz selbst zu konstruieren. (Bezug zu Schiersche, 2013, S.246) VS: Zeichne ein Herz, indem du die entsprechenden Formen umfährst. (Foto Schoy-Lutz, 2016) PS: Konstruiere ein Herz, indem du wie folgt vorgehst: > Konstruiere mit dem Zirkel ein gleichseitiges Dreieck. > Zeichne zu den Schenkeln die Senkrechten (siehe Abbildung). Sie erzeugen ein zweites gleichschenkliges Dreieck (gelb). > Zeichne über die Schenkel des gelben Dreiecks Halbkreise, indem du zunächst die Seitenmitten markierst.

23 . Lehre Weiterbildung Forschung Typen mit Ecken und Kanten 13 Eulerscher Polyedersatz (Schierscher, 2013, S.220) nur PS Körper Kopiervorlage EK13_1, ca. 100 Strohhalme, ca. 30 Pfeifenputzer Du siehst in der Tabelle verschiedene Körper und deren Netze. Überleg, wie viele Ecken, Kanten und Flächen die Köper haben. Bau einzelne Körper nach und kontrollier deine Überlegungen. Trag die Anzahl der Ecken, Flächen (f) und Kanten (k) in die Tabelle ein. Berechne die Anzahl der Ecken plus die Anzahl der Flächen minus die Anzahl der Kanten. Was stellst du fest? Körper Netz Ecken Flächen Kanten e + f - k = Tetraeder (Vierflächner) Würfel (Sechsflächner) Oktaeder (Achtflächner)

24 Dodekaeder (12- Flächner) Ikosaeder (20- Flächner) Tab EK 1_1 Damit hast du einen ganz besonderen mathematischen Satz entdeckt: Eulerscher Polyedersatz e (Ecken) + f (Flächen) - k ( Kanten) = Seite 2

25 . Lehre Weiterbildung Forschung Typen mit Ecken und Kanten 14 Parkette selbst herstellen Blaue Quadrate, Rechtecke, Scheren, Tesa, Stifte, Blankopapier 1. Schneide aus einem Quadrat oder Rechteck an einer Seite ein Stück weg. 2. Kleb das Abgeschnittene genau an der gegenüberliegenden Seite mit Tesa fest (siehe Abbildung). 3. Wiederhol den Schritt 2 an den noch freien Seiten der Grundfigur wenn du möchtest. 4. Jetzt hast du eine fertige Schablone für ein Parkett. 5. Umfahr deine Schablone und erstelle damit ein schönes Parkett. 6. Was stellt dein Parkett dar? Erfinde einen Namen. (Abb. EK2_1: Foto Schoy-Lutz, 2016) (Foto Schoy-Lutz, 2016)

Aufgabensammlung für die Primar- und Vorschulstufe

Aufgabensammlung für die Primar- und Vorschulstufe . Lehre Weiterbildung Forschung Mathematik Monika Schoy-Lutz Matheliebe an der PHTG Aufgabensammlung für die Primar- und Vorschulstufe Mögliche ergänzende Aufgabenstellungen für Vorschul- und Primarschülerinnen

Mehr

Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94

Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94 Geometrie Ich kann... 91 Figuren und Körper erkennen und beschreiben Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94 die Lage von Gegenständen im Raum erkennen

Mehr

RabenWerkstatt Effektsystem Geometrie in Fläche und Raum. erarbeitet von Peter Herbert Maier. Lösungen

RabenWerkstatt Effektsystem Geometrie in Fläche und Raum. erarbeitet von Peter Herbert Maier. Lösungen RabenWerkstatt Effektsystem Geometrie in Fläche und Raum erarbeitet von Peter Herbert Maier Lösungen Muster legen Figuren legen Lege die Muster nach. Setze sie fort. Entwirf ein eigenes Muster. 2 Figuren

Mehr

Dreiecke, Quadrate, Rechtecke, Kreise erkennen und benennen Würfel, Quader, Kugeln erkennen und benennen

Dreiecke, Quadrate, Rechtecke, Kreise erkennen und benennen Würfel, Quader, Kugeln erkennen und benennen Geometrie Ich kann... Formen und Körper erkennen und beschreiben Dreiecke, Quadrate, Rechtecke, Kreise erkennen und benennen Würfel, Quader, Kugeln erkennen und benennen Symmetrien in Figuren erkennen

Mehr

Körper erkennen und beschreiben

Körper erkennen und beschreiben Vertiefen 1 Körper erkennen und beschreiben zu Aufgabe 6 Schulbuch, Seite 47 6 Passt, passt nicht Nenne zu jeder Aussage alle Formen, auf die die Aussage zutrifft. a) Die Form hat keine Ecken. b) Die Form

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Addieren und subtrahieren

Addieren und subtrahieren Addieren und subtrahieren Zahlenmauern Mirko und Luca schreiben möglichst oft die Ziffer in ihre Zahlenmauer.. Mirko 0 0 8 Luca 0 0 Basissteine:, 0, (Die Zahl 0 ist verboten.) 90 0 Basissteine:,,, 0 (Die

Mehr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 7: Module 13 und :00-18:00 Uhr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 7: Module 13 und :00-18:00 Uhr SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht Kurs 7: Module 13 und 14 08.01.2015 15:00-18:00 Uhr 1 Modul 13: Vielecke (Vielecke; regelmäßige Vielecke; Orientierungsfigur:

Mehr

AB1: Ähnliche Figuren untersuchen und zeichnen Was heißt Vergrößern und Verkleinern? Was ist eine zentrische Streckung?

AB1: Ähnliche Figuren untersuchen und zeichnen Was heißt Vergrößern und Verkleinern? Was ist eine zentrische Streckung? AB1: Ähnliche Figuren untersuchen und zeichnen Was heißt Vergrößern und Verkleinern? Was ist eine zentrische Streckung? 1 Finde möglichst viele Gemeinsamkeiten und Unterschiede der folgenden Abbildungen.

Mehr

MB 10. Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 Arbeitsmaterial ab Seite MB 15 Checkliste Seite MB 23

MB 10. Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 Arbeitsmaterial ab Seite MB 15 Checkliste Seite MB 23 MB 10 Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 ab Seite MB 15 Checkliste Seite MB 23 Wissensspeicher Körper und Flächen MB 11 Wissensspeicher Fachwörter zu Körpern

Mehr

Inhaltsverzeichnis. Leseprobe Mathetiger 1 - Schülerbuch Bestell-Nr Mildenberger Verlag

Inhaltsverzeichnis. Leseprobe Mathetiger 1 - Schülerbuch Bestell-Nr Mildenberger Verlag Inhaltsverzeichnis Erstes Zählen, Strichlisten, Zahlen darstellen, Formen und Figuren 4 In der Schule Zahlen entdecken 4 Zahlen erkennen 5 Menge, Zahl und Würfelbild 6 Sortieren und Strichlisten erstellen

Mehr

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel

Mehr

Die Platonischen Körper

Die Platonischen Körper Die Platonischen Körper Ablauf: 1. Die Studenten erklären den Schülern kurz, wer Platon war, wann und wo er gelebt hat und womit er sich beschäftigt hat. 2. Anschließend wird den Schülern erklärt was Platonische

Mehr

Wassily Kandinsky: Structure joyeuse. Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft.

Wassily Kandinsky: Structure joyeuse. Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft. 6 Flächen Wie heißen die Figuren? a) Dreiecke Viereck d) Quadrat b) Kreis Quadrate e) Dreiecke Rechteck c) Rechtecke Viereck f) Kreis Wassily Kandinsky: Structure joyeuse Lege Vierecke. a) Nimm vier gleich

Mehr

1. QUADRAT. Wie nennt man Pentominos noch? Quadratdrillinge Quadratvierlinge Quadratfünflinge. Was sind Pentominos?

1. QUADRAT. Wie nennt man Pentominos noch? Quadratdrillinge Quadratvierlinge Quadratfünflinge. Was sind Pentominos? 1. QUADRAT Was sind Pentominos? Ein Quadrat hat vier gleich lange Seiten. Fünf Quadrate aneinandergefügt ergeben ein Pentomino Es gibt zwölf verschiedene Pentominos Man nennt sie Pentominos oder Quadratfünflinge.

Mehr

Wassily Kandinsky: Structure joyeuse. Eigene Lösungen Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft.

Wassily Kandinsky: Structure joyeuse. Eigene Lösungen Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft. 6 Flächen Wie heißen die Figuren? Dreiecke Viereck d) Quadrat b) Kreis Quadrate Dreiecke Rechteck c) Rechtecke f) Kreis Wassily Kandinsky: Structure joyeuse Lege Vierecke. Nimm vier gleich lange Stäbe.

Mehr

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Neues Zahlenbuch Übersicht

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Neues Zahlenbuch Übersicht Kanton Schaffhausen Abteilung Schulentwicklung und Aufsicht Herrenacker 3 CH-8200 Schaffhausen www.sh.ch An alle Primarschulen des Kantons SH Schaffhausen, 11.04.2012 Geometrie im Mathematiklehrmittel

Mehr

Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft

Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich Mathematik Primarschule, Teil 2 Übungsheft Lektion 7 Umfangberechnungen Lektion 7 Umfangberechnungen 4. Miss alle Seiten und schreibe sie an, berechne

Mehr

4.4 Zu ausgewählten Inhalten des Geometrieunterrichts in der Grundschule

4.4 Zu ausgewählten Inhalten des Geometrieunterrichts in der Grundschule 4.4 Zu ausgewählten Inhalten des Geometrieunterrichts in der Grundschule Lagebeziehungen Eigenschaften von Gegenständen Geometrische Figuren und Körper Muster, Ornamente, Symmetrien Größe und Umfang von

Mehr

Download. Mathe an Stationen. Mathe an Stationen. Das 4x4-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges

Download. Mathe an Stationen. Mathe an Stationen. Das 4x4-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges Download Marco Bettner, Erik Dinges Mathe an Stationen Das 4x4-Geobrett in der Sekundarstufe I Downloadauszug aus dem Originaltitel: Sekundarstufe I Marco Bettner Erik Dinges Mathe an Stationen Umgang

Mehr

Körper kennen lernen Station 1

Körper kennen lernen Station 1 Körper kennen lernen Station 1 Aufgabe 1.1) Der kleine Lars hat mit Bauklötzen eine Stadt nachgebaut. Welche Teile (geometrische Körper) hat er dabei verwendet? Fertigt eine Liste an. Aufgabe 1.2) Viele

Mehr

Basteln und Zeichnen

Basteln und Zeichnen Titel des Arbeitsblatts Seite Inhalt 1 Falte eine Hexentreppe 2 Falte eine Ziehharmonika 3 Die Schatzinsel 4 Das Quadrat und seine Winkel 5 Senkrechte und parallele Linien 6 Ein Scherenschnitt 7 Bastle

Mehr

5. Jahrestagung Berlin. Formen und Veränderungen Geometrische Aktivitäten als Grundlage für fachliches Verständnis

5. Jahrestagung Berlin. Formen und Veränderungen Geometrische Aktivitäten als Grundlage für fachliches Verständnis 5/6 5./6. 12. 08 SINUS Transfer Grundschule 5. Jahrestagung Berlin Formen und Veränderungen Geometrische Aktivitäten als Grundlage für fachliches Verständnis Workshop: Faltwinkel, rechte Winkel, Flächeninhalt

Mehr

Kopfgeometrie Vorbemerkung

Kopfgeometrie Vorbemerkung Kopfgeometrie Vorbemerkung Kopfgeometrie lässt sich wie das Kopfrechnen regelmäßig in den Unterricht einbauen, z. B. zu Beginn einer Stunde alle 14 Tage oder wöchentlich während einer Phase von ein bis

Mehr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs :00-17:00 Uhr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs :00-17:00 Uhr SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht Kurs 6 09.10.2014 09:00-17:00 Uhr 1 (1) Vorbereitung Abschlussdokumentation (2) Modul 10 (3) Modul 11 (4) Modul 12

Mehr

Parallelogramme und Dreiecke A512-03

Parallelogramme und Dreiecke A512-03 12 Parallelogramme und Dreiecke A512-0 1 10 Dreiecke 01 Berechne den Flächeninhalt der vier Dreiecke. Die Dreiecke und sind gleichschenklig. 2 M 12,8 cm 7,2 cm 1 9,6 cm 12 cm A 1 = A 2 = A = A = 61, cm2,56

Mehr

Kompetenzorientiert unterrichten: -Argumentieren -Kommunizieren -Problemlösen -Modellieren -Darstellen

Kompetenzorientiert unterrichten: -Argumentieren -Kommunizieren -Problemlösen -Modellieren -Darstellen Sommersemester 2016 Didaktik der Grundschulmathematik Di, 12-14 Uhr, HS 1 I Zahlen und Operationen V 1 12.04. Arithmetik in der Grundschule V 2 19.04. Die Entwicklung mathematischer Kompetenzen V 3 26.04.

Mehr

Mein Indianerheft: Geometrie 4. Lösungen

Mein Indianerheft: Geometrie 4. Lösungen Mein Indianerheft: Geometrie 4 Lösungen So lernst du mit dem Indianerheft Parallele Linien Flächen Kapitel: Flächen Flächen nicht? Prüfe mit dem Geodreieck. e parallele Linien. parallel nicht parallel

Mehr

Satz des Pythagoras Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA

Satz des Pythagoras Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA Satz des Pythagoras Aufgabe 1.1.1 Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA a ) Die Katheten in einem rechtwinkligen Dreieck sind 8 cm bzw. 15 cm lang. Berechne die Länge der Hypotenuse.

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

Gundlagen Klasse 5/6 Geometrie. nach oben. Inhaltsverzeichnis

Gundlagen Klasse 5/6 Geometrie. nach oben. Inhaltsverzeichnis Inhaltsverzeichnis Grundbegriffe der Geometrie Geometrische Abbildungen Das Koordinatensystem Schnittpunkt von Geraden Symmetrien Orthogonale Geraden Abstände Parallele Geraden Vierecke Diagonalen in Vielecken

Mehr

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Logisch Übersicht. Liebe Kolleginnen und Kollegen

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Logisch Übersicht. Liebe Kolleginnen und Kollegen Kanton Schaffhausen Abteilung Schulentwicklung und Aufsicht Herrenacker 3 CH-8200 Schaffhausen www.sh.ch An alle Primarschulen des Kantons SH Schaffhausen, 11.04.2012 Geometrie im Mathematiklehrmittel

Mehr

Fingerterme. Welche. passen?

Fingerterme. Welche. passen? Zahlenkarten, Heft Welche 28 Fingerterme passen? Zwischen Marisa und Felix liegen Zahlenkarten. Felix zeigt Marisa eine Karte. Felix weiß nicht, welche Zahl auf der Karte steht. Marisa zeigt Felix mit

Mehr

Bereich: Raum und Form. Schwerpunkt: Ebene Figuren. Zeit/ Stufe

Bereich: Raum und Form. Schwerpunkt: Ebene Figuren. Zeit/ Stufe Schwerpunkt: Ebene Figuren Ebene Figuren - untersuchen weitere ebene Figuren, - benennen sie und verwenden Fachbegriffe zu deren Beschreibung - setzen Muster fort (z.b. Bandornamente, Parkettierungen),

Mehr

Drachen. Station 7. Aufgabe. Name: Untersuche die Eigenschaften eines Drachenvierecks. a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten?

Drachen. Station 7. Aufgabe. Name: Untersuche die Eigenschaften eines Drachenvierecks. a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten? Eigenschaften von Figuren Station 7 Aufgabe Drachen Untersuche die Eigenschaften eines Drachenvierecks. D f A E e C B a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten? c) Sind die Diagonalen

Mehr

Flächenberechnung Flächenberechnung. Mögliche Schritte zur Einführung. Einleitung

Flächenberechnung Flächenberechnung. Mögliche Schritte zur Einführung. Einleitung Flächenberechnung Flächenberechnung Einleitung Mögliche Schritte zur Einführung Wie groß ist diese Form? Mit diesem Material kannst du erfahren, wie man bei geometrischen Formen die Fläche berechnen kann.

Mehr

Kompetenzraster Geometrie

Kompetenzraster Geometrie Mathebox 6 I Themenbereich 3 Kompetenzraster Geometrie Eigenschaften von Vierecken und Dreiecken finden Einfachen Anwendungsaufgaben Vierecken lösen unterscheiden Symmetrieachsen in Vierecken und Dreiecken

Mehr

Trage die Ergebnisse in die nachfolgende Tabelle ein. A 3. Größe der Fläche A 1

Trage die Ergebnisse in die nachfolgende Tabelle ein. A 3. Größe der Fläche A 1 Aufgabe: Bestimme die Flächeninhalte A 1, A 2 und A 3. Trage die Ergebnisse in die nachfolgende Tabelle ein. A 1 A 2 A 3 des Winkels Fläche A 1 Fläche A 2 Fläche A 3 1. Dreieck (Ausgangsdreieck) Vergleiche

Mehr

8.5.1 Real Geometrie Viereck, Dreieck

8.5.1 Real Geometrie Viereck, Dreieck 8.5.1 Real Geometrie Viereck, Dreieck P8: Mathematik 8 G2: komb.üchlein Zeitraum : 3 Wochen Inhalte Kernstoff Zusatzstoff Erledigt am Vierecke Typen: Quadrat, Rechteck, P8: 146 P8: 147 Rhombus, Parallelogramm,

Mehr

Geometrie. Umfang/Fläche (eckige Körper)

Geometrie. Umfang/Fläche (eckige Körper) Seite 1 Hier lernst du, Umfänge und Flächen bei folgenden geometrischen Flächen zu ermitteln: Quadrat, Rechteck, Parallelogramm, Dreieck, Trapez Und einfache zusammengesetzte Formen Prinzipielle Grundlagen

Mehr

Download. Mathe an Stationen. Mathe an Stationen Spezial Geometrie 1+2. Geometrische Formen. Carolin Donat. Downloadauszug aus dem Originaltitel:

Download. Mathe an Stationen. Mathe an Stationen Spezial Geometrie 1+2. Geometrische Formen. Carolin Donat. Downloadauszug aus dem Originaltitel: Download Carolin Donat Mathe an Stationen Spezial Geometrie 1+2 Geometrische Formen zielt üben Anforderungen des ch Geometrie erfüllen wichtige Inhalte und leiten zugleich Ihre eiten trotz unterschiedlicher

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2015 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60 Für

Mehr

Dokumentation des Themenworkshops. Mathematik in Raum und Form entdecken Als Lernbegleitung die Entwicklung mathematischer Kompetenzen unterstützen

Dokumentation des Themenworkshops. Mathematik in Raum und Form entdecken Als Lernbegleitung die Entwicklung mathematischer Kompetenzen unterstützen Dokumentation des Themenworkshops Mathematik in Raum und Form entdecken Als Lernbegleitung die Entwicklung mathematischer Kompetenzen unterstützen Oktober 2014 in Holzminden Dozentin: Melanie Hecker ComNatura-Umweltbildung

Mehr

Eigenschaften des blauen Vierecks. b) Kennst du den Namen der Vierecke? Das rote Viereck heißt Das blaue Viereck heißt Das grüne Viereck heißt

Eigenschaften des blauen Vierecks. b) Kennst du den Namen der Vierecke? Das rote Viereck heißt Das blaue Viereck heißt Das grüne Viereck heißt Name: Klasse: Datum: Besondere Vierecke erkunden Öffne die Datei 2_3_BesondereVierecke.ggb. 1 Im Fenster siehst du drei Vierecke: ein rotes, ein blaues und ein gelbes. Durch Verschieben der Eckpunkte kannst

Mehr

Vorbereitung auf die Gymiprüfung 2016 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft

Vorbereitung auf die Gymiprüfung 2016 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft Vorbereitung auf die Gymiprüfung 2016 im Kanton Zürich Mathematik Primarschule, Teil 2 Übungsheft Lektion 7 Umfangberechnungen Lektion 7 Umfangberechnungen 4. Miss alle Seiten und schreibe sie an, berechne

Mehr

Unkorrigiertes Vorabmaterial

Unkorrigiertes Vorabmaterial -B-17-01 1 1 Kreis: und Flächeninhalt 1 Bestimme den und den Flächeninhalt des Quadrates. u = A = 2 Schätze die Länge des Kreisumfangs (rote Linie) und des Kreisflächeninhalts (gelbe Fläche). Erkläre,

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Mathematische Probleme, SS 2013 Montag $Id: convex.tex,v /10/22 15:58:28 hk Exp $

Mathematische Probleme, SS 2013 Montag $Id: convex.tex,v /10/22 15:58:28 hk Exp $ $Id: convex.tex,v 1.12 2013/10/22 15:58:28 hk Exp $ 3 Konvexgeometrie 3.1 Konvexe Polyeder Wir hatten einen konvexen Polyeder P im R n als die konvexe Hülle von endlich vielen Punkten definiert, wobei

Mehr

Tag der Mathematik 2007

Tag der Mathematik 2007 Tag der Mathematik 2007 Gruppenwettbewerb Einzelwettbewerb Speed-Wettbewerb Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind

Mehr

Vierte Schularbeit Mathematik Klasse 3E am

Vierte Schularbeit Mathematik Klasse 3E am Vierte Schularbeit Mathematik Klasse 3E am 22.05.2014 SCHÜLERNAME: Gruppe A Lehrer: Dr. D. B. Westra Punkteanzahl : von 24 Punkten NOTE: NOTENSCHLÜSSEL 23-24 Punkte Sehr Gut (1) 20-22 Punkte Gut (2) 16-19

Mehr

Download. Mathe an Stationen. Mathe an Stationen. Das 5x5-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges

Download. Mathe an Stationen. Mathe an Stationen. Das 5x5-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges Download Marco Bettner, Erik Dinges Mathe an Stationen Das 5x5-Geobrett in der Sekundarstufe I Downloadauszug aus dem Originaltitel: Sekundarstufe I Marco Bettner Erik Dinges Mathe an Stationen Umgang

Mehr

Übungen. Löse folgende Aufgaben mit GeoGebra

Übungen. Löse folgende Aufgaben mit GeoGebra Übungen Löse folgende Aufgaben mit GeoGebra A1 Die Fachbegriffe in den Kästchen sollen den untenstehenden Aussagen bezüglich eines Dreiecks ABC zugeordnet werden. Du darfst die Kärtchen mehrfach verwenden

Mehr

Rechendreiecke Ich erkenne einfache Formen aus der Umwelt, beschreibe und benenne sie: Rechteck, Dreieck, Kreis, Quadrat

Rechendreiecke Ich erkenne einfache Formen aus der Umwelt, beschreibe und benenne sie: Rechteck, Dreieck, Kreis, Quadrat Mathematik 1. Klasse EBENE UND RAUM Gegenstandsmengen zählen, vergleichen und Ich orientiere und positioniere mich im Raum (links, rechts, oben, unten) und bewege mich zielorientiert. Zahlenraum 20/30

Mehr

ILeA. SCHÜLERHEFT Mathematik. Name: Individuelle Lernstandsanalysen. Wissenschaftliche Mitarbeit

ILeA. SCHÜLERHEFT Mathematik. Name: Individuelle Lernstandsanalysen. Wissenschaftliche Mitarbeit ILeA Individuelle Lernstandsanalysen SCHÜLERHEFT Mathematik 2 Name: Wissenschaftliche Mitarbeit ILeA-Aufgaben Form und Veränderung 2 Aufgabe 1 Auf dem Bild siehst du Kästchen. Zeichne in das mittlere

Mehr

Übung zur Abgaben Didaktik der Geometrie. Gruppe 5 Alt, Regine u. Gampfer,Stefanie

Übung zur Abgaben Didaktik der Geometrie. Gruppe 5 Alt, Regine u. Gampfer,Stefanie Übung zur Abgaben Didaktik der Geometrie Gruppe 5 Alt, Regine u. Gampfer,Stefanie Inhalt der Klassenstufe 2 in Geometrie Der Geometrieunterricht im zweiten Schuljahr findet in allen fünf Ebenen der Geometrie

Mehr

Dreiecke. Worum geht es? Das Material

Dreiecke. Worum geht es? Das Material Dreiecke Worum geht es? Das Es handelt sich um gleichseitige Dreiecke aus Holz mit einer Kantenlänge von 5 cm in drei verschiedenen Farben: orange, rot und grün. Die Dreiecke regen zum Legen von flächigen

Mehr

1 Grundwissen Pyramide

1 Grundwissen Pyramide 1 Grundwissen Pyramide 1 Definition und Volumen der Pyramide Eine Pyramide ist ein geradlinig begrenzter Körper im R 3. Dabei wird ein Punkt S außerhalb der Ebene eines Polygons (Vieleck) mit den Ecken

Mehr

Name: Arbeitsauftrag Tangram

Name: Arbeitsauftrag Tangram Name: Arbeitsauftrag Tangram Tangram ein sehr altes Lege- und Geduldsspiel, das vermutlich zwischen dem achten und dem vierten Jahrhundert vor Christus in China entstand. Andere Bezeichnungen für dieses

Mehr

Bruchrechnen Brüche mit dem Geobrett. Ein Teil der Gesamtfläche des Geobretts ist mit einem Gummiring abgegrenzt.

Bruchrechnen Brüche mit dem Geobrett. Ein Teil der Gesamtfläche des Geobretts ist mit einem Gummiring abgegrenzt. SZ Förderkonzept Brüche mit dem Geobrett M. Seite Du brauchst hierzu: Ein Geobrett & Gummis Brüche mit dem Geobrett Ein Teil der Gesamtfläche des Geobretts ist mit einem Gummiring abgegrenzt. Das kleinste

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Geometrie (3) - Stereometrie

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Geometrie (3) - Stereometrie Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kopiervorlagen Geometrie (3) - Stereometrie Das komplette Material finden Sie hier: School-Scout.de Inhaltsverzeichnis Stereometrie

Mehr

Konstruktionen am Dreieck

Konstruktionen am Dreieck Winkelhalbierende Die Winkelhalbierende halbiert den jeweiligen Innenwinkel des Dreiecks. Sie agieren als Symmetrieachse. Dadurch ist jeder Punkt der Winkelhalbierenden gleich weit von den beiden Schenkeln

Mehr

Quader und Würfel. 1. Kreuze jene Wörter oder Bilder an, die Körper bezeichnen. Mathematische Bildung von der Schulstufe

Quader und Würfel. 1. Kreuze jene Wörter oder Bilder an, die Körper bezeichnen. Mathematische Bildung von der Schulstufe Geometrische Körper Diagnoseblatt 5. Schulstufe Quader und Würfel 1. Kreuze jene Wörter oder Bilder an, die Körper bezeichnen Kreis Schuhschachtel Eistüte Fahrkarte Kugel Seite 1 2. Kannst du Quader und

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A 2014

Sekundarschulabschluss für Erwachsene. Geometrie A 2014 SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2014 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60 Für

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A b) Strecken Sie das Dreieck ABC (Streckfaktor: -1/ Streckzentrum Z) (3 Punkte)

Sekundarschulabschluss für Erwachsene. Geometrie A b) Strecken Sie das Dreieck ABC (Streckfaktor: -1/ Streckzentrum Z) (3 Punkte) SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2013 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Mitten-Dreiund Vier-Ecke

Mitten-Dreiund Vier-Ecke Alle Ergebnisse - dazu gehören auch Kopiene der Zeichnungen - sind im Heft zu notieren Du wirst im Folgenden einiges selbst herausfinden müssen. Nutze dazu auch die Hilfen, dei dir kig liefert. 1 Mittendreieck

Mehr

Geometrische Körper Fragebogen zum Film - Lösung B1

Geometrische Körper Fragebogen zum Film - Lösung B1 Geometrische Körper Fragebogen zum Film - Lösung B Fragen zum Film Geometrische Körper (BR Alpha) ) Ergänze mit den passenden Begriffen! Eine _Kante_ entsteht dort, wo zwei _Flächen_ zusammenstoßen. Eine

Mehr

Geometrische Knobeleien ein Stationenlauf zum räumlichen Vorstellungsvermögen. Walter Czech, Krumbach

Geometrische Knobeleien ein Stationenlauf zum räumlichen Vorstellungsvermögen. Walter Czech, Krumbach S 1 Geometrische Knobeleien ein Stationenlauf zum räumlichen Vorstellungsvermögen Walter Czech, Krumbach Spiele mit Streichhölzern und Holzwürfeln Laufzettel Trage zunächst das Datum, deinen Namen und

Mehr

Materialien zur Eingangsdiagnostik. erste Zahlerfahrungen. Eingangsdiagnostik

Materialien zur Eingangsdiagnostik. erste Zahlerfahrungen. Eingangsdiagnostik : 1. 10. Woche Lernvoraussetzungen erfassen erste Zahlerfahrungen Eingangsdiagnostik Materialien zur Eingangsdiagnostik die Zahlen von 1 bis 10 benennen und unterscheiden Zuordnungen zwischen Ziffern und

Mehr

Der Höhenschnittpunkt im Dreieck

Der Höhenschnittpunkt im Dreieck Der Höhenschnittpunkt im Dreieck 1. Beobachte die Lage des Höhenschnittpunktes H. Wo befindet sich H? a) bei einem spitzwinkligen Dreieck, b) bei einem rechtwinkligen Dreieck, c) bei einem stumpfwinkligen

Mehr

Symmetrische Figuren. 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. AOL-Verlag

Symmetrische Figuren. 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. AOL-Verlag Symmetrische Figuren 1 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. Symmetrie 1 2 1 Zeichne die Spiegelachsen ein. Symmetrie 2 3 1 Zeichne die Spiegelachsen

Mehr

Ein Quiz zur Wiederholung geometrischer Grundbegriffe. Ilse Gretenkord, Ahaus. Körper und ihre Eigenschaften Quizkarten

Ein Quiz zur Wiederholung geometrischer Grundbegriffe. Ilse Gretenkord, Ahaus. Körper und ihre Eigenschaften Quizkarten S 1 Ein Quiz zur Wiederholung geometrischer Grundbegriffe Ilse Gretenkord, Ahaus M 1 So geht s Körper und ihre Eigenschaften Quizkarten Bildet Gruppen zu vier bis fünf Schülerinnen bzw. Schülern. Eine

Mehr

Das weiß ich schon! Das will ich wissen?

Das weiß ich schon! Das will ich wissen? Das weiß ich schon! Das will ich wissen? 1 Schreibe zum Thema Längen : 1. Das weiß ich schon: 2. Das will ich wissen: Bringe Material oder Bücher zum Thema für unseren Thementisch mit! Wer ist der Größte?

Mehr

Essen und Trinken Teilen und Zusammenfügen. Schokoladentafeln haben unterschiedlich viele Stückchen.

Essen und Trinken Teilen und Zusammenfügen. Schokoladentafeln haben unterschiedlich viele Stückchen. Essen und Trinken Teilen und Zusammenfügen Vertiefen Brüche im Alltag zu Aufgabe Schulbuch, Seite 06 Schokoladenstücke Schokoladentafeln haben unterschiedlich viele Stückchen. a) Till will von jeder Tafel

Mehr

Download. Mathe an Stationen. Mathe an Stationen SPEZIAL Geometrische Abbildungen. Achsenspiegelung. Jan-Christoph Frühauf

Download. Mathe an Stationen. Mathe an Stationen SPEZIAL Geometrische Abbildungen. Achsenspiegelung. Jan-Christoph Frühauf Download Jan-Christoph Frühauf Mathe an Stationen SPEZIAL Geometrische Abbildungen Downloadauszug aus dem Originaltitel: SPEZIAL Sekundarstufe I Jan-Christoph Frühauf Mathe an Stationen Geometrische Abbildungen

Mehr

Gymnasium OHZ Schul-KC Mathematik Jahrgang 5 eingeführtes Schulbuch: Lambacher Schweizer 5

Gymnasium OHZ Schul-KC Mathematik Jahrgang 5 eingeführtes Schulbuch: Lambacher Schweizer 5 6 Wochen mathematische Sachverhalte, Begriffe, Regeln, Verfahren und Zusammenhänge mit eigenen Worten und geeigneten Fachbegriffen erläutern Lösungswege beschreiben, begründen und Mit symbolischen, formalen

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Punkte mit besonderen Koordinaten 1

Punkte mit besonderen Koordinaten 1 MEXBOX Geraden und Vielecke 2. Punkte mit besonderen Koordinaten 1 Du brauchst: Koordinatensystem (0-20) 1 Dose Stöpsel Gummis Protokollblatt 7.7 Schreibe Dir bei allen Aufgaben die Punkte mit ihren Koordinaten

Mehr

Und so weiter... Annäherung an das Unendliche Lösungshinweise

Und so weiter... Annäherung an das Unendliche Lösungshinweise Stefanie Anzenhofer, Hans-Georg Weigand, Jan Wörler Numerisch und graphisch. Umfang einer Quadratischen Flocke Abbildung : Quadratische Flocke mit Seitenlänge s = 9. Der Umfang U der Figur beträgt aufgrund

Mehr

Station Von Zuckerwürfeln und Schwimmbecken Teil 1

Station Von Zuckerwürfeln und Schwimmbecken Teil 1 Schule Station Von Zuckerwürfeln und Teil 1 Klasse Tischnummer Arbeitsheft Teilnehmercode Mathematik-Labor Station Von Zuckerwürfeln und Liebe Schülerinnen und Schüler! Was haben ein Zuckerwürfel und

Mehr

Karolinen Gymnasium 9 A P4 Daniela Reinecke eigenverantwortlich 4. Std. (10.40 Uhr),

Karolinen Gymnasium 9 A P4 Daniela Reinecke eigenverantwortlich 4. Std. (10.40 Uhr), Karolinen Gymnasium 9 A P4 Daniela Reinecke eigenverantwortlich 4. Std. (10.40 Uhr), 12.01.11 Thema: Der Satz des Pythagoras (Einführung) Lernziele Groblernziel Die Schülerinnen und Schüler entdecken anhand

Mehr

Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg

Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg Serie 1 Klasse 10 1. Berechne. 1 a) 4 3 b) 0,64 : 8 c) 4 6 d) ³. Vereinfache. 1x²y a) (4a 5b) b) 4xy 3. Rechne um. a) 456 m =... km b) 7,4 t =... kg 4. Ermittle. a) 50 % von 30 sind... b) 4 kg von 480

Mehr

16. Platonische Körper kombinatorisch

16. Platonische Körper kombinatorisch 16. Platonische Körper kombinatorisch Ein Würfel zeigt uns, daß es Polyeder gibt, wo in jeder Ecke gleich viele Kanten zusammenlaufen, und jede Fläche von gleich vielen Kanten berandet wird. Das Tetraeder

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A 2012

Sekundarschulabschluss für Erwachsene. Geometrie A 2012 SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2012 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

3 Mit geometrischen. Figuren arbeiten. der Drachen. der Baseball. das Hüpfkästchen. das Gummiseil

3 Mit geometrischen. Figuren arbeiten. der Drachen. der Baseball. das Hüpfkästchen. das Gummiseil Mit geometrischen Figuren arbeiten der aseball der Drachen das Hüpfkästchen das Gummiseil Was machen die Kinder auf dem ild? Schreibe drei bis fünf Sätze in dein Heft. Welche geometrischen Figuren siehst

Mehr

Bruchteile vergleichen

Bruchteile vergleichen Station Bruchteile vergleichen Aufgaben. Male die angegebenen Bruchteile farbig an.. Entscheide, ob sie größer ( ), kleiner ( ) o gleich (=) sind. Setze die Zeichen, o = ein. Das Krokodil frisst die große

Mehr

mathbu.ch 7 Aufgabensammlung 8 Parallelogramme untersuchen

mathbu.ch 7 Aufgabensammlung 8 Parallelogramme untersuchen 1. Für die gezeichneten Parallelogramme gelten die Masse: I s = 7.5 cm II a = 3 cm b = 5 cm h = 2 cm III c = 8.6 cm d = 47 mm IV s = 28 mm t = 6.5 cm Beantworte zu jeder Figur die folgenden Fragen. A Wie

Mehr

Mathematischen Phänomenen auf der Spur

Mathematischen Phänomenen auf der Spur Mathematischen Phänomenen auf der Spur mit Stephanie Jünemann Grundschule am Koppenplatz, Berlin, 2009/10 Wir stellen Dreiecke aus drei gleichlangen Strohhalmen her, indem wir die Strohhalme auf dünnen

Mehr

Übungen zum Verbessern der Raumvorstellung. Josef Molnár

Übungen zum Verbessern der Raumvorstellung. Josef Molnár ROMOTE MSc UIT DESCRITOR MATHEMATIK 3 Titel der Einheit Stoffgebiet ame und Email des Einsenders Ziel der Einheit Inhalt Voraussetzungen Übungen zum Verbessern der Raumvorstellung Geometrie Josef Molnár

Mehr

Tafelbild zum Einstieg

Tafelbild zum Einstieg Tafelbild zum Einstieg 69 Name: Symbol: Stammgruppenfarbe: Definition: Kissing Number Das Kissing Number Problem Figur / Körper Kreise Quadrate gleichseitige Dreiecke Kugeln Kissing Number Skizze der Anordnung

Mehr

Didaktik der Geometrie

Didaktik der Geometrie Marianne Franke Didaktik der Geometrie Spektrum Akademischer Verlag Heidelberg Berlin Inhaltsverzeichnis Einleitung 1 1 Geometrie in der Grundschule 7 1.1 Entwicklung des Geometrieunterrichts 8 1.2 Überlegungen

Mehr

Symmetrien und Winkel

Symmetrien und Winkel Eigenschaften der Achsenspiegelung Alle Punkte werden an der Symmetrieachse gespiegelt. Die Verbindungslinien stehen senkrecht zur Symmetrieachse. Original- und Bildpunkte haben je den gleichen Abstand

Mehr

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2.

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2. GEOMETRIE PRÜFUNGSVORBEREITUNG Seite 1 Geometrie Winkel und Vierecke PRÜFUNG 02 Name: Klasse: Datum: : Note: Ausgabe: 2. Mai 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

Tag der Mathematik 2006

Tag der Mathematik 2006 Tag der Mathematik 2006 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner

Mehr

Mein Tipp: Das stimmt.

Mein Tipp: Das stimmt. Station P: Prismen aus Netzen bauen 1 a) Gib einen Tipp ab. Ergeben die folgenden Netze ein Prisma? Trage deine Meinung in die folgende Liste ein. Stelle dir gedanklich vor, wie die Netze geklappt werden

Mehr

Würfelverdopplung. Michael Schmitz

Würfelverdopplung. Michael Schmitz www.mathegami.de März 2010 Würfelverdopplung Michael Schmitz Zusammenfassung Im folgenden Beitrag geht es um die Verdopplung eines Würfels mit Hilfe von Zirkel und Lineal. Da eine solche Konstruktion nicht

Mehr

MUSTERmusterMUSTERmuster

MUSTERmusterMUSTERmuster MUSTERmusterMUSTERmuster Toni spielt gerne Nicht auf Fugen treten!. Er versucht, beim Gehen über gepflasterte Wege nur auf die Steine und nicht auf die Fugen dazwischen zu treten. Kannst du das auch? 1.

Mehr

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck.

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. Beweise 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. (a) Gib Satz und Kehrsatz in der Wenn-dann-Form an! (b) Ist die Voraussetzung des Satzes notwendig,

Mehr

(4) in Sachsituationen mathematische Problemstellungen und Zusammenhänge erkennen, geeignete Hilfsmittel und Strategien

(4) in Sachsituationen mathematische Problemstellungen und Zusammenhänge erkennen, geeignete Hilfsmittel und Strategien Mathematik 5. Klasse Grundschule Die Schülerin, der Schüler kann (1) mit den natürlichen Zahlen schriftlich und im Kopf rechnen (2) geometrische Objekte der Ebene und des Raumes erkennen, beschreiben und

Mehr

(a) 2 Punkte, (b) 2 Punkte (a) 1 Punkt, (b) 1 Punkt, (c) 2 Punkte (a) 1 Punkt, (b) 3 Punkte

(a) 2 Punkte, (b) 2 Punkte (a) 1 Punkt, (b) 1 Punkt, (c) 2 Punkte (a) 1 Punkt, (b) 3 Punkte Mathematik Aufnahmeprüfung 015 Aufgabe 1 3 4 5 6 7 8 9 10 11 1 Summe Punkte 4 4 3 3 3 3 4 4 4 4 40 Punkte für die Teilaufgaben: (a) Punkte, (b) Punkte (a) 1 Punkt, (b) 1 Punkt, (c) Punkte (a) 1 Punkt,

Mehr