Vorkurs Mathematik. Vorlesung 2. Mengen

Größe: px
Ab Seite anzeigen:

Download "Vorkurs Mathematik. Vorlesung 2. Mengen"

Transkript

1 Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Vorkurs Mathematik Vorlesung 2 Mengen Eine Menge ist eine Ansammlung von wohlunterschiedenen Objekten, die die Elemente der Menge heißen. Mit wohlunterschieden meint man, dass es klar ist, welche Objekte als gleich und welche als verschieden angesehen werden. Die Zugehörigkeit eines Elementes x zu einer Menge M wird durch x M ausgedrückt, die Nichtzugehörigkeit durch x M. Für jedes Element(symbol) gilt stets genau eine dieser zwei Möglichkeiten. Georg Cantor ( ) ist der Schöpfer der Mengentheorie. David Hilbert ( ) nannte sie ein Paradies, aus dem die Mathematiker nie mehr vertrieben werden dürfen. Für Mengen gilt das Extensionalitätsprinzip, d.h. eine Menge ist durch die in ihr enthaltenen Elemente eindeutig bestimmt, darüber hinaus bietet sie keine Information. Insbesondere stimmen zwei Mengen überein, wenn beide die gleichen Elemente enthalten. Die Menge, die kein Element besitzt, heißt leere Menge und wird mit bezeichnet. 1

2 2 Eine Menge N heißt Teilmenge einer Menge M, wenn jedes Element aus N auch zu M gehört. Man schreibt dafür N M (manche schreiben dafür N M). Man sagt dafür auch, dass eine Inklusion N M vorliegt. Im Nachweis, dass N M ist, muss man zeigen, dass für ein beliebiges Element x N ebenfalls die Beziehung x M gilt. 1 Dabei darf man lediglich die Eigenschaft x N verwenden. Aufgrund des Extensionalitätsprinzips hat man das folgende wichtige Gleichheitsprinzip für Mengen, dass M = N genau dann, wenn N M und M N gilt. In der mathematischen Praxis bedeutet dies, dass man die Gleichheit von zwei Mengen dadurch nachweist, dass man (in zwei voneinander unabhängigen Teilargumentationen) die beiden Inklusionen zeigt. Dies hat auch den kognitiven Vorteil, dass das Denken eine Zielrichtung bekommt, dass klar die Voraussetzung, die man verwenden darf, von der gewünschten Schlussfolgerung, die man aufzeigen muss, getrennt wird. Hier wiederholt sich das Prinzip, dass die Äquivalenz von zwei Aussagen die wechselseitige Implikation bedeutet, und durch den Beweis der beiden einzelnen Implikationen bewiesen wird. Beschreibungsmöglichkeiten für Mengen Es gibt mehrere Möglichkeiten, eine Menge anzugeben. Die einfachste ist wohl, die zu der Menge gehörenden Elemente aufzulisten, wobei es auf die Reihenfolge der Elemente nicht ankommt. Betrachte die beiden Auflistungen und {Paris, London, Osnabrück} {Paris, London, Osnabrück, die einwohnerreichste Stadt von Frankreich, die Hauptstadt von Großbritannien, Londres, die Stadt in der wir leben}. Handelt es sich um die gleiche Menge? Ein mathematisches Beispiel von dieser Art ist {0, 1, 2, 3} und {0, 0 + 1, 1 + 1, 1 + (0 + 1), der Nachfolger von 1, , 3 1, zwei, 8 6}. Es ist keine triviale Frage, ob es sich um die gleiche Menge handelt oder nicht. Die Beantwortung hängt davon ab, ob wir bei den zweiten Mengen die bezeichneten Objekte oder die bezeichnenden Symbole (also die Wörter, 1 In der Sprache der Quantorenlogik kann man eine Inklusion verstehen als die Aussage x(x N x M).

3 die Wortketten, die Beschreibungen) selbst meinen. Die einwohnerreichste Stadt von Frankreich und Paris sind unterschiedliche Bezeichnungen für die gleiche Stadt. Insofern kann man sagen, dass das Problem nicht auf der Ebene der Mengen besteht, sondern auf der Ebene der Elemente und ihren Bezeichnungen, ob man bspw. mit Paris die zugehörige Stadt meint oder die zugehörige Buchstabenfolge. Von der Menge (bzw. den umgebenden Elementen ) hängt es allerdings schon ab, welcher Kontext erzeugt wird, von dem aus dann auch die einzelnen Elementbezeichner interpretiert werden. In der Menge {Paris, London, Osnabrück} wird man das erste Element vermutlich spontan als die Stadt verstehen, in der Menge {Paris, Parole, Party} wohl eher als Buchstabenfolge. Im Zweifelsfall muss eben der Kontext deutlich gemacht werden. In der Mathematik handelt es sich dabei selten um ein echtes Problem, in aller Regel meint man bei einer Auflistung die durch die Symbole gemeinten mathematischen Zahlen und sonstigen Objekte. In der mathematischen Logik ist zwar eine Menge wie z.b. die Menge aller arithmetisch sinnvollen Ausdrücke wichtig, in der Mathematik selbst aber nicht. Dort sind die Ausdrücke (Terme) zumeist auf eine bestimmte (Zahl)-Menge bezogen und in diesen zu interpretieren. Im mathematischen Kontext gibt es eine Vielzahl von Möglichkeiten, um ein mathematisches Objekt (bspw. eine Zahl) auszudrücken. Wenn zwei unterschiedliche Ausdrücke oder Terme die gleiche Zahl beschreiben, so meint man, dass es sich um das gleiche Element der entsprechenden Zahlmenge handelt. Der Nachweis, dass zwei verschiedene Terme die gleiche Zahl bezeichnen, kann durchaus schwierig sein. Dieser Nachweis wird rechnen genannt, insbesondere dann, wenn die Gleichheit eines mehr oder weniger komplizierten Ausdrucks (wie z.b ) mit einem einfachen Repräsentaten (z.b. 3) nachgewiesen wird. Auflistungen mit Fortsetzung Neben endlichen Auflistungen gibt es auch noch solche Auflistungen, bei denen nach einer endlichen Auflistung eine unendliche Weiterführung durch Punkte (...) angedeutet wird. Damit ist gemeint, dass die ersten Elemente der Auflistung einen Bildungsprozess erkennen lassen, mit dem man alle weiteren Elemente bestimmen kann. Beispiele sind {1, 3, 5, 7, 9,...}, {1, 2, 4, 8, 16,...}, {9, 99, 999, 9999, 99999,...} und ähnliche. Dies ist grundsätzlich problematisch, da es für jede endliche Liste a 1, a 2,..., a n von n Zahlen ein Polynom vom Grad d n gibt mit P(k) = c 0 + c 1 k + c 2 k 2 + c 3 k c d k d P(1) = a 1, P(2) = a 2,...,P(n) = a n. 3

4 4 Es gibt also stets ein mehr oder weniger einfaches polynomiales Bildungsgesetz, das aber oben nur im linken Beispiel die vermutlich gemeinte Vorschrift ist. Die wichtigste Menge, die man zumeist als eine fortgesetzte Auflistung einführt, ist die Menge der natürlichen Zahlen N = {0, 1, 2, 3,...}. Hier wird eine bestimmte Zahlmenge durch die Anfangsglieder von erlaubten Zifferfolgen angedeutet. Wir werden diese Menge erstmal so akzeptieren und später noch eine Axiomatik dafür angeben. 2 Wichtig ist aber, dass mit N nicht eine Menge von bestimmten Ziffern gemeint ist, sondern die durch die Ziffern repräsentierten Zahlwerte. Eine natürliche Zahl hat viele Darstellungsarten, die Ziffernrepräsentation im Zehnersystem ist nur eine davon, wenn auch eine besonders übersichtliche. Mengenbeschreibung durch Eigenschaften Es sei eine Menge M gegeben. In ihr gibt es gewisse Elemente, die gewisse Eigenschaften E (Prädikate) erfüllen können oder aber nicht. Zu einer Eigenschaft E gehört innerhalb von M die Teilmenge bestehend aus allen Elementen aus M, die diese Eigenschaft erfüllen. Man beschreibt eine durch eine Eigenschaft definierte Teilmenge meist als {x M : E(x)} = {x M : x besitzt die Eigenschaft E}. Dies geht natürlich nur mit solchen Eigenschaften, für die die Aussage E(x) eine wohldefinierte Bedeutung hat. Wenn man eine solche Teilmenge einführt, so gibt man ihr häufig sofort einen Namen (in dem auf die Eigenschaft E Bezug genommen werden kann, aber nicht muss). Z.B. kann man einführen G = {x N : x ist gerade}, U = {x N : x ist ungerade}, Q = {x N : x ist eine Quadratzahl}, P = {x N : x ist eine Primzahl}. Für die Mengen in der Mathematik sind meist eine Vielzahl an mathematischen Eigenschaften relevant und daher gibt es meist auch eine Vielzahl an relevanten Teilmengen. Aber auch bei alltäglichen Mengen, wie etwa die Menge K der Studierenden in einem Kurs, gibt es viele wichtige Eigenschaften, die gewisse Teilmengen festlegen, wie etwa O = {x K : x kommt aus Osnabrück}, P = {x K : x studiert im Nebenfach Physik}, D = {x K : x hat im Dezember Geburtstag}. 2 Und zwar werden wir später die natürlichen Zahlen mittels der Peano-Axiome axiomatisieren, bis dahin verwenden wir sie aber schon manchmal, vor allem in Beispielen, ebenso wie die Menge der ganzen Zahlen Z, die Menge der rationalen Zahlen Q und die Menge der reellen Zahlen R.

5 5 Die Menge K ist dabei selbst durch eine Eigenschaft festgelegt, es ist ja K = {x : x ist Studierender in diesem Kurs}. Mengenoperationen So, wie man Aussagen zu neuen Aussagen verknüpfen kann, gibt es Operationen, mit denen aus Mengen neue Mengen enstehen. Vereinigung A B := {x : x A oder x B}, Durchschnitt Differenzmenge A B := {x : x A und x B}, A \ B := {x : x A und x B}. Diese Operationen ergeben nur dann einen Sinn, wenn die beteiligten Mengen als Teilmengen in einer gemeinsamen Grundmenge gegeben sind. Dies sichert, dass man über die gleichen Elemente spricht. Häufig wird diese Grundmenge nicht explizit angegeben, dann muss man sie aus dem Kontext erschließen. Ein Spezialfall der Differenzmenge bei einer gegebenen Grundmenge ist das Komplement einer Teilmenge A G, das durch CA = G \ A = {x G : x A} definiert ist. Wenn zwei Mengen einen leeren Schnitt haben, also A B = gilt, so nennen wir sie disjunkt. Mengendiagramme Eine Möglichkeit, Mengen oder vielmehr die zwischen verschiedenen Mengen möglichen oder existierenden Verhältnisse zueinander abzubilden, liefern Mengendiagramme (oder Venn-Diagramme). In ihnen werden Mengen durch gewisse Flächenstücke in der Ebene repräsentiert. Die Flächenstücke sollten eine möglichst einfache Form besitzen. Sie sind zumeist zusammenhängend (d.h. je zwei Punkte des Stückes sind durch einen stetigen Weg miteinander verbindbar). Die Flächenstücke können sich überlappen, und der Überlappungsbereich repräsentiert die Schnittmenge. Idealerweise sind die auftretenden Überlappungsbereiche selbst wieder zusammenhängend. Die verschiedenen Flächenstücke werden häufig in unterschiedlichen Farben oder Schraffuren gezeichnet, wobei dann die Überlappungsbereiche durch die zugehörigen Farbmischungen bzw. Mischschraffuren wiedergegeben werden. Sie werden aber oft auch nur durch ihre Begrenzung wiedergegeben, wobei dann bei Überschneidungen der Grenzlinien das Problem auftritt, wie die Grenzlinien weiterlaufen. Hier gilt zumeist die (unausgesprochene) Konvention,

6 6 dass die geraden bzw. glatten Kurven die Ränder der beteiligten Einzelmengen sind, während sich für die Schnittmengen eckige Ränder ergeben können. Einige Beispiele für abstrakte Mengendiagramme Diese Diagramme sind vollständig in dem Sinne, dass sie alle möglichen Schnitteigenschaften der beteiligten Mengen repräsentieren. In den folgenden Diagrammen wird nicht jede mögliche Schnitteigenschaft repräsentiert.

7 7 Einige Beispiele für konkrete Mengen-Diagramme In diesem Fall repräsentieren die beteiligten Mengen einen bestimmten Begriff, das Schnittverhalten hängt dann von inhaltlichen Überlegungen ab. Solche Diagramme spielen in der Mathematik keine große Rolle. Wenn man allerdings z. B. verschiedene algebraische Begriffe wie Gruppe, Ring, kommutativer Ring, Divisionsbereich, Körper in ihrer Hierarchie veranschaulichen möchte, so ist ein solches Diagramm durchaus sinnvoll. Konstruktion von Mengen Die meisten Mengen in der Mathematik ergeben sich ausgehend von einigen wenigen Mengen wie bspw. den endlichen Mengen und N (die man sicher

8 8 auch ohne jede tiefere Rechtfertigung als Menge akzeptieren kann) durch bestimmte Konstruktionen von neuen Mengen aus schon bekannten oder schon zuvor konstruierten Mengen. 3 Wir definieren 4 Definition 2.1. Es seien zwei Mengen L und M gegeben. Dann nennt man die Menge L M = {(x, y) : x L, y M} die Produktmenge 5 der beiden Mengen. Die Elemente der Produktmenge nennt man Paare und schreibt (x, y). Dabei kommt es wesentlich auf die Reihenfolge an. Die Produktmenge besteht also aus allen Paarkombinationen, wo in der ersten Komponenten ein Element der ersten Menge und in der zweiten Komponenten ein Element der zweiten Menge steht. Zwei Paare sind genau dann gleich, wenn sie in beiden Komponenten gleich sind. Bei einer Produktmenge können natürlich auch beide Mengen gleich sein. Dann ist es verlockend, die Reihenfolge zu verwechseln, und also besonders wichtig, darauf zu achten, dies nicht zu tun. Wenn es in der ersten Menge n Elemente und in der zweiten Menge k Elemente gibt, so gibt es in der Produktmenge n k Elemente. Wenn eine der beiden Mengen leer ist, so ist auch die Produktmenge leer. Man kann auch für mehr als nur zwei Mengen die Produktmenge bilden, worauf wir bald zurückkommen werden. Beispiel 2.2. Es sei V die Menge aller Vornamen (sagen wir der Vornamen, die in einer bestimmten Grundmenge an Personen wirklich vorkommen) und N die Menge aller Nachnamen. Dann ist V N die Menge aller Namen. Aus einem Namen lässt sich einfach der Vorname und der Nachname herauslesen, indem man entweder auf die erste oder auf die zweite Komponente des Namens schaut. Auch wenn alle Vornamen und Nachnamen für sich genommen vorkommen, so muss natürlich nicht jeder 3 darunter fallen auch der Schnitt und die Vereinigung, doch bleiben diese innerhalb einer vorgegebenen Grundmenge, während es hier um Konstruktionen geht, die darüber hinaus gehen. 4 Definitionen werden in der Mathematik zumeist als solche deutlich herausgestellt und bekommen eine Nummer, damit man auf sie einfach Bezug nehmen kann. Es wird eine Situation beschrieben, bei der die verwendeten Begriffe schon zuvor definiert worden sein mussten, und in dieser Situation wird einem neuen Konzept ein Namen (eine Bezeichnung) gegeben. Dieser Namen wird kursiv gesetzt. Man beachte, dass das Konzept auch ohne den neuen Namen formulierbar ist, der neue Name ist nur eine Abkürzung für das Konzept. Sehr häufig hängen die Begriffe von Eingaben ab, wie den beiden Mengen in dieser Definition. Bei der Namensgebung herrscht eine gewisse Willkür, so dass die Bedeutung der Bezeichnung im mathematischen Kontext sich allein aus der expliziten Definition, aber nicht aus der alltäglichen Wortbedeutung erschließen lässt 5 Man spricht auch vom kartesischen Produkt der beiden Mengen

9 daraus gebastelte mögliche Name wirklich vorkommen. Bei der Produktmenge werden eben alle Kombinationsmöglichkeiten aus den beiden beteiligten Mengen genommen. Beispiel 2.3. Bei zwei reellen Intervallen M = [a, b] und L = [c, d] ist die Produktmenge einfach das Rechteck [a, b] [c, d]. Allerdings muss man bei einem Rechteck im Hinterkopf behalten, welche Seite das erste und welche Seite das zweite Intervall ist. Für R R schreibt man häufig auch R 2. Beispiel 2.4. Häufig werden Paare nicht in der Form (x, y) geschrieben, sondern in einer anderen Form, die aber ebenfalls die Position im Paar, also die Zugehörigkeit zu einer der beteiligten Mengen, ausdrücken muss. Betrachten wir z.b. die Produktmenge Z N + und schreiben die Paare als x/y oder als x y. Bei dieser Schreibweise soll der Zähler (also das oberhalb des Striches) aus der ersten Menge Z sein und der Nenner aus N +. Hier wird also ein Paar als ein formaler Bruch geschrieben. Man beachte aber, dass auf dieser Ebene keine Identifizierung zwischen den beiden Paaren (3, 2) und (6, 4) stattfindet, wie dies bei der inhaltlichen Interpretation als rationale Zahl geschieht. Es gibt aber eine (surjektive, nicht injektive) Abbildung Z N + Q, (x, y) x y. Eine andere wichtige Konstruktion, um aus einer Menge eine neue Menge zu erhalten, ist die Potenzmenge. Definition 2.5. Zu einer Menge M nennt man die Menge aller Teilmengen von M die Potenzmenge von M. Sie wird mit bezeichnet. P (M) Wenn eine Menge n Elemente besitzt, so besitzt ihre Potenzmenge 2 n Elemente. 9

10

11 Abbildungsverzeichnis Quelle = Georg Cantor.jpg, Autor = Benutzer Geometry guy auf en wikipedia, Lizenz = PD 1 Quelle = David Hilbert 1886.jpg, Autor = Unbekannt (1886), Lizenz = PD 1 Quelle = Absolute complement.svg, Autor = Benutzer BMF81 auf Commons, Lizenz = CC-by-sa Quelle = Set intersection.png, Autor = Benutzer Marcelo Reis auf Commons, Lizenz = CC-by-sa Quelle = Diagrama1.gif, Autor = Benutzer Dante auf Commons, Lizenz = PD 6 Quelle = Venn Diagram ABCD.svg, Autor = Benutzer Johannes Rössel auf Commons, Lizenz = PD 6 Quelle = Edwards-Venn-five.svg, Autor = Benutzer HB auf Commons, Lizenz = CC-by-sa Quelle = Edwards-Venn-six.svg, Autor = Benutzer Interiot auf Commons, Lizenz = CC-by-sa Quelle = Venn6.svg, Autor = Benutzer Kopophex auf en Wikipedia, Lizenz = PD 6 Quelle = Disyunción de clases2.jpg, Autor = Benutzer Monimino auf Commons, Lizenz = CC-by-sa Quelle = Subset.svg, Autor = Benutzer Petr K auf Commons, Lizenz = PD 6 Quelle = Venn diagram of three sets.svg, Autor = Benutzer Oleg Alexandrov auf Commons, Lizenz = PD 6 Quelle = CirclesN4xa.GIF, Autor = Benutzer Thisisbossi auf Commons, Lizenz = PD 7 Quelle = CirclesN4a.GIF, Autor = Benutzer Thisisbossi auf Commons, Lizenz = PD 7 Quelle = Standardsemantik klein.png, Autor = Benutzer Dhanyavaada auf Commons, Lizenz = CC-by-sa Quelle = Amino Acids Venn Diagram (de).svg, Autor = Benutzer Hoffmeier auf Commons, Lizenz = CC-by-sa

12 12 ABBILDUNGSVERZEICHNIS Quelle = British Isles Venn Diagram en.svg, Autor = Benutzer Sony-youth auf Commons, Lizenz = PD 7 Quelle = Geistiges Eigentum und Wettbewerbsrecht.png, Autor = Benutzer 3247 auf Commons, Lizenz = CC-by-sa 3.0 7

Analysis I. Vorlesung 1. Mengen

Analysis I. Vorlesung 1. Mengen Prof. Dr. H. Brenner Osnabrück WS 013/014 Analysis I Vorlesung 1 Mengen Georg Cantor (1845-1918) ist der Schöpfer der Mengentheorie. David Hilbert (186-1943) nannte sie ein Paradies, aus dem die Mathematiker

Mehr

Mathematik I. Vorlesung 1. Mengen

Mathematik I. Vorlesung 1. Mengen Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 1 Mengen Georg Cantor (1845-1918) ist der Schöpfer der Mengentheorie David Hilbert (1862-1943) nannte sie ein Paradies, aus dem die Mathematiker

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen)

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Vorlesung 2. Tilman Bauer. 6. September 2007

Vorlesung 2. Tilman Bauer. 6. September 2007 Vorlesung 2 Universität Münster 6. September 2007 Organisatorisches Meine Koordinaten: Sprechstunden: Di 13:30-14:30 Do 9:00-10:00 tbauer@uni-muenster.de Zimmer 504, Einsteinstr. 62 (Hochhaus) für alle

Mehr

Mengenlehre. Ist M eine Menge und x ein Element von M, so schreiben wir x M. Ist x kein Element von M, so schreiben wir x M.

Mengenlehre. Ist M eine Menge und x ein Element von M, so schreiben wir x M. Ist x kein Element von M, so schreiben wir x M. Mengenlehre Eine Menge ist eine Zusammenfassung bestimmter und unterschiedlicher Objekte. Für jedes Objekt lässt sich eindeutig sagen, ob es zu der Menge gehört. Die Objekte heißen Elemente der Menge.

Mehr

Vorkurs Mathematik. Vorlesung 8. Angeordnete Körper

Vorkurs Mathematik. Vorlesung 8. Angeordnete Körper Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Vorkurs Mathematik Vorlesung 8 Angeordnete Körper Definition 8.1. Ein Körper K heißt angeordnet, wenn es eine totale Ordnung auf K gibt, die die beiden Eigenschaften

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 9 In theory, theory and praxis are the same, in praxis they aren t Die Multiplikation auf den natürlichen Zahlen Zur Definition

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 2 Körper Wir werden nun die Eigenschaften der reellen Zahlen besprechen. Grundlegende Eigenschaften von mathematischen Strukuren

Mehr

Für unseren Gebrauch ist eine Menge bestimmt durch die in ihr enthaltenen Elemente. Ist M eine Menge, so ist ein beliebiges Objekt m wieder so ein

Für unseren Gebrauch ist eine Menge bestimmt durch die in ihr enthaltenen Elemente. Ist M eine Menge, so ist ein beliebiges Objekt m wieder so ein Mengen 1.2 9 1.2 Mengen 7 Der Begriff der Menge wurde am Ende des 19. Jahrhunderts von Georg Cantor wie folgt eingeführt. Definition (Cantor 1895) Eine Menge ist eine Zusammenfassung M von bestimmten,

Mehr

Vorkurs Mathematik. Prof. Dr. H. Brenner Osnabrück WS 2009/2010. Arbeitsblatt 4. auf Injektivität und Surjektivität.

Vorkurs Mathematik. Prof. Dr. H. Brenner Osnabrück WS 2009/2010. Arbeitsblatt 4. auf Injektivität und Surjektivität. Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Vorkurs Mathematik Arbeitsblatt 4 Injektivität und Surjektivität Aufgabe 4.1. Eine Funktion f : R R, x f(x), heißt streng wachsend, wenn für alle x 1, x 2 R

Mehr

1.1 Mengen und Abbildungen

1.1 Mengen und Abbildungen Lineare Algebra I WS 2015/16 c Rudolf Scharlau 3 1.1 Mengen und Abbildungen In diesem Abschnitt stellen wir die grundlegende mathematische Sprache und Notation zusammen, die für jede Art von heutiger Mathematik

Mehr

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Saskia Klaus 07.10.016 1 Motivation In den ersten beiden Vorträgen des Vorkurses haben wir gesehen, wie man aus schon bekannten Wahrheiten

Mehr

1 Mengen und Aussagen

1 Mengen und Aussagen $Id: mengen.tex,v 1.2 2010/10/25 13:57:01 hk Exp hk $ 1 Mengen und Aussagen Der wichtigste Grundbegriff der Mathematik ist der Begriff einer Menge, und wir wollen damit beginnen die klassische, 1878 von

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 2 Körper Wir werden nun die Eigenschaften der reellen Zahlen besprechen. Grundlegende Eigenschaften von mathematischen Strukuren

Mehr

Vorkurs Mathematik. Vorlesung 5. Cauchy-Folgen

Vorkurs Mathematik. Vorlesung 5. Cauchy-Folgen Prof. Dr. H. Brenner Osnabrück WS 2014/2015 Vorkurs Mathematik Vorlesung 5 Cauchy-Folgen Ein Problem des Konvergenzbegriffes ist, dass zur Formulierung der Grenzwert verwendet wird, den man unter Umständen

Mehr

Analysis I. Vorlesung 4. Angeordnete Körper

Analysis I. Vorlesung 4. Angeordnete Körper Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 4 Angeordnete Körper Zwei reelle Zahlen kann man ihrer Größe nach vergleichen, d.h. die eine ist größer als die andere oder es handelt sich

Mehr

Mathematik III. Vorlesung 61. Abzählbare Mengen

Mathematik III. Vorlesung 61. Abzählbare Mengen Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 61 Abzählbare Mengen Wir erinnern daran, dass zwei Mengen M und N gleichmächtig heißen, wenn es eine bijektive Abbildung zwischen ihnen

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen (Teil I) Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents Mengen und ihre Darstellung Darstellung endlicher Mengen Darstellung unendlicher

Mehr

Mathematik I. Vorlesung 7. Folgen in einem angeordneten Körper

Mathematik I. Vorlesung 7. Folgen in einem angeordneten Körper Prof. Dr. H. Brenner Osnabrück WS 009/010 Mathematik I Vorlesung 7 Folgen in einem angeordneten Körper Wir beginnen mit einem motivierenden Beispiel. Beispiel 7.1. Wir wollen die Quadratwurzel einer natürlichen

Mehr

1 Mengen. 1.1 Elementare Definitionen. Einige mathematische Konzepte

1 Mengen. 1.1 Elementare Definitionen. Einige mathematische Konzepte Einige mathematische Konzepte 1 Mengen 1.1 Elementare Definitionen Mengendefinition Die elementarsten mathematischen Objekte sind Mengen. Für unsere Zwecke ausreichend ist die ursprüngliche Mengendefinition

Mehr

Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen.

Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen. Kapitel 1 - Mathematische Grundlagen Seite 1 1 - Mengen Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen. Definition 1.1 (G. Cantor.

Mehr

Vorlesung 3: Logik und Mengenlehre

Vorlesung 3: Logik und Mengenlehre 28102013 Erinnerung: Zeilen-Stufen-Form (ZSF) eines LGS 0 0 1 c 1 0 0 0 1 0 0 1 c r 0 0 0 c r+1 0 0 0 0 0 0 0 0 0 c m Erinnerung: Information der Zeilen-Stufen-Form Aus der ZSF liest man ab: Folgerung

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

2 Mengen. Menge. Die Summenformel. Die leere Menge. Das kartesische Produkt. Die Produktformel. Die Potenzmenge. Die Binomialzahlen.

2 Mengen. Menge. Die Summenformel. Die leere Menge. Das kartesische Produkt. Die Produktformel. Die Potenzmenge. Die Binomialzahlen. 2 Mengen Menge Die Summenformel Die leere Menge Das kartesische Produkt Die Produktformel Die Potenzmenge Die Binomialzahlen Der Binomialsatz Unendliche Mengen Springer Fachmedien Wiesbaden 2016 A. Beutelspacher,

Mehr

2 Mengenlehre. 2.1 Grundlagen Definition

2 Mengenlehre. 2.1 Grundlagen Definition 2 Mengenlehre 2.1 Grundlagen Einer der wichtigsten Grundbegriffe in der Mathematik ist der Mengenbegriff. Die zugehörige Theorie - die Mengenlehre - bildet die Grundlage für die gesamte Mathematik. Nur

Mehr

Grundlagen der Mengenlehre

Grundlagen der Mengenlehre mathe plus Grundlagen der Mengenlehre Seite 1 1 Grundbegriffe Grundlagen der Mengenlehre Def 1 Mengenbegriff nach Georg Cantor (1845-1918) Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener

Mehr

Mathematik I. Vorlesung 19. Metrische Räume

Mathematik I. Vorlesung 19. Metrische Räume Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 19 Metrische Räume Euklidische Räume besitzen nach Definition ein Skalarprodukt. Darauf aufbauend kann man einfach die Norm eines Vektors

Mehr

2.1 Definitionen Sätze und Beweise Erklärungen zu den Definitionen... 15

2.1 Definitionen Sätze und Beweise Erklärungen zu den Definitionen... 15 Mengen Übersicht.1 Definitionen................................................. 11. Sätze und Beweise............................................ 14.3 Erklärungen zu den Definitionen...............................

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 15. Oktober 2015 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage veröffentlicht

Mehr

Mengen (siehe Teschl/Teschl 1.2)

Mengen (siehe Teschl/Teschl 1.2) Mengen (siehe Teschl/Teschl 1.2) Denition nach Georg Cantor (1895): Eine Menge ist eine Zusammenfassung von bestimmten und wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens zu einem

Mehr

Mathematik für Anwender II

Mathematik für Anwender II Prof. Dr. H. Brenner Osnabrück SS 2012 Mathematik für Anwender II Vorlesung 32 Metrische Räume Euklidische Räume besitzen nach Definition ein Skalarprodukt. Darauf aufbauend kann man einfach die Norm eines

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 3.2 Induktion und Rekursion 3.3 Boolsche Algebra Peer Kröger (LMU München) Einführung in die Programmierung WS 14/15 48 / 155 Überblick

Mehr

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

Mengen und Abbildungen

Mengen und Abbildungen 1 Mengen und bbildungen sind Hilfsmittel ( Sprache ) zur Formulierung von Sachverhalten; naive Vorstellung gemäß Georg Cantor (1845-1918) (Begründer der Mengenlehre). Definition 1.1 Eine Menge M ist eine

Mehr

1.1 Mengen und Abbildungen

1.1 Mengen und Abbildungen Lineare Algebra 2005-2013 c Rudolf Scharlau 3 1.1 Mengen und Abbildungen In diesem Abschnitt stellen wir die grundlegende mathematische Sprache und Notation zusammen, die für jede Art von heutiger Mathematik

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 3 Gruppen In der linearen Algebra wird im Allgemeinen ein Grundkörper K zugrunde gelegt, über den sich

Mehr

Mengen, Funktionen und Logik

Mengen, Funktionen und Logik Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Mengen, Funktionen und Logik Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

0 Mengen und Abbildungen, Gruppen und Körper

0 Mengen und Abbildungen, Gruppen und Körper 0 Mengen und Abbildungen, Gruppen und Körper In diesem Paragrafen behandeln wir einige für die Lineare Algebra und für die Analysis wichtige Grundbegriffe. Wir beginnen mit dem Begriff der Menge. Auf Cantor

Mehr

Mathematik I. Vorlesung 2. Hintereinanderschaltung und Umkehrabbildung

Mathematik I. Vorlesung 2. Hintereinanderschaltung und Umkehrabbildung Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 2 Hintereinanderschaltung und Umkehrabbildung Lemma 2.1. Es seien L und M Mengen und es sei F :L M eine Abbildung. Dann sind folgende

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Algebraische Kurven - Vorlesung 29. Projektion weg von einem Punkt

Algebraische Kurven - Vorlesung 29. Projektion weg von einem Punkt Algebraische Kurven - Vorlesung 29 Definition 1. Die Abbildung P n K Projektion weg von einem Punkt {(1, 0,..., 0)} Pn 1 K, (x 0, x 1...,x n ) (x 1,..., x n ), heißt die Projektion weg vom Punkt (1, 0,...,

Mehr

2 Mengenlehre. Definition: Unter einer Menge M versteht man die Zusammenfassung von unterscheidbaren Objekten (den Elementen) zu einem Ganzen.

2 Mengenlehre. Definition: Unter einer Menge M versteht man die Zusammenfassung von unterscheidbaren Objekten (den Elementen) zu einem Ganzen. Mengenlehre 2 Mengenlehre Definition: Unter einer Menge M versteht man die Zusammenfassung von unterscheidbaren Objekten (den Elementen) zu einem Ganzen. Üblicherweise werden Mengen mit Großbuchstaben

Mehr

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } }

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } } Mengen Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor) Notation 1. Aufzählung aller Elemente: { 1,

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 6 Vektorräume Die Addition von zwei Pfeilen a und b, ein typisches Beispiel für Vektoren. Der zentrale

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 19. Oktober 2017 1/27 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage

Mehr

Vorlesung Diskrete Strukturen Die Sprache der modernen Mathematik

Vorlesung Diskrete Strukturen Die Sprache der modernen Mathematik Vorlesung Diskrete Strukturen Die Sprache der modernen Mathematik Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen

Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen Susanna Pohl Vorkurs Mathematik TU Dortmund 10.03.2015 Mengen und Relationen Mengen Motivation Beschreibung von Mengen Mengenoperationen

Mehr

Mathematik III. Prof. Dr. H. Brenner Osnabrück WS 2010/2011. Vorlesung 62 In diesem Kurs beschäftigen wir uns mit dem

Mathematik III. Prof. Dr. H. Brenner Osnabrück WS 2010/2011. Vorlesung 62 In diesem Kurs beschäftigen wir uns mit dem Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 62 In diesem Kurs beschäftigen wir uns mit dem Flächeninhalt von ebenen Gebilden und den Volumina von räumlichen Gebilden. Für ein Rechteck

Mehr

Analysis III. Vorlesung 61

Analysis III. Vorlesung 61 Prof. Dr. H. Brenner Osnabrück WS 2014/2015 Analysis III Vorlesung 61 In diesem Kurs beschäftigen wir uns mit dem Flächeninhalt von ebenen Gebilden und den Volumina von räumlichen Gebilden. Für ein Rechteck

Mehr

Vorkurs Mathematik. JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer. September/Oktober Lennéstraße 43, 1. OG

Vorkurs Mathematik. JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer. September/Oktober Lennéstraße 43, 1. OG Vorkurs Mathematik JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer Lennéstraße 43, 1. OG pinger@uni-bonn.de September/Oktober 2017 JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer Vorkurs Mathematik September/Oktober

Mehr

HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016

HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016 HM I Tutorium 1 Lucas Kunz 27. Oktober 2016 Inhaltsverzeichnis 1 Theorie 2 1.1 Logische Verknüpfungen............................ 2 1.2 Quantoren.................................... 3 1.3 Mengen und ihre

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Auf dem R n gibt es sehr viele verschiedene Normen, allerdings hängen sehr viele wichtige Begriffe wie die Konvergenz

Mehr

Mathematik I. Zusammenhängende Räume

Mathematik I. Zusammenhängende Räume Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 21 Die beiden nächsten Vorlesungen kann man unter dem Aspekt sehen, welche topologischen Eigenenschaften die reellen Zahlen gegenüber

Mehr

Mathematik I. Vorlesung 24. Reihen

Mathematik I. Vorlesung 24. Reihen Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 24 Reihen Wir betrachten Reihen von komplexen Zahlen. Definition 24.1. Sei ( ) k N eine Folge von komplexen Zahlen. Unter der Reihe versteht

Mehr

3 Mengen und Abbildungen

3 Mengen und Abbildungen $Id: mengen.tex,v 1.2 2008/11/07 08:11:14 hk Exp hk $ 3 Mengen und Abbildungen 3.1 Mengen Eine Menge fasst eine Gesamtheit mathematischer Objekte zu einem neuen Objekt zusammen. Die klassische informelle

Mehr

Vorkurs Mathematik. Vorlesung 2. Primzahlen

Vorkurs Mathematik. Vorlesung 2. Primzahlen Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Vorkurs Mathematik Vorlesung 2 Primzahlen Das Sieb des Eratosthenes liefert eine einfache Methode, eine Liste von Primzahlen unterhalb einer bestimmten Größe

Mehr

1 Mengen. 1.1 Definition

1 Mengen. 1.1 Definition 1 Mengen 1.1 Definition Eine Menge M ist nach dem Begründer der Mengenlehre Georg Cantor eine Zusammenfassung von wohlunterschiedenen(verschiedenen) Elementen. Eine Menge lässt sich durch verschiedene

Mehr

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit Mengen! Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor)! Notation 1. Aufzählung aller Elemente: {

Mehr

Elementare Mengenlehre

Elementare Mengenlehre Vorkurs Mathematik, PD Dr. K. Halupczok WWU Münster Fachbereich Mathematik und Informatik 5.9.2013 Ÿ2 Elementare Mengenlehre Der grundlegendste Begri, mit dem Objekte und Strukturen der Mathematik (Zahlen,

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 20 Multiplikative Systeme Wir wollen zeigen, dass es zu jedem Integritätsbereich R einen Körper K gibt derart, dass R ein Unterring

Mehr

1 Mengenlehre. 1.1 Grundbegriffe

1 Mengenlehre. 1.1 Grundbegriffe Dieses Kapitel behandelt Grundlagen der Mengenlehre, die in gewisser Weise am nfang der Mathematik steht und eine Sprache bereitstellt, die zur weiteren Formulierung der Mathematik sehr hilfreich ist.

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 24.11.2016 (Teil 2) 23. November 2016 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler 23. November 2016

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 7 Sprachen erster Sufe Die in der letzten Vorlesung erwähnten Konstruktionsmöglichkeiten für Aussagen sind im Wesentlichen

Mehr

Mathematik für Ökonomen 1

Mathematik für Ökonomen 1 Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstemester 2008 Mengen, Funktionen und Logik Inhalt: 1. Mengen 2. Funktionen 3. Logik Teil 1 Mengen

Mehr

Mengenlehre. Begriff der Mengenzugehörigkeit x M, x Ê M >x : x { a 1. e e x = a n. } 2 x = a 1. >x : x { y P(y) } 2 P(x) Begriff der leeren Menge

Mengenlehre. Begriff der Mengenzugehörigkeit x M, x Ê M >x : x { a 1. e e x = a n. } 2 x = a 1. >x : x { y P(y) } 2 P(x) Begriff der leeren Menge Mengenlehre Grundbegriff ist die Menge Definition (Naive Mengenlehre). Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor) Notation 1. Aufzählung

Mehr

Mathematik 1 für Informatik Inhalt Grundbegrie

Mathematik 1 für Informatik Inhalt Grundbegrie Mathematik 1 für Informatik Inhalt Grundbegrie Mengen, speziell Zahlenmengen Aussagenlogik, Beweistechniken Funktionen, Relationen Kombinatorik Abzählverfahren Binomialkoezienten Komplexität von Algorithmen

Mehr

Mathematik III. Produkt-Präringe

Mathematik III. Produkt-Präringe Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 66 Es ist unser Ziel zu zeigen, dass auf der Produktmenge von Maßräumen unter recht allgemeinen Voraussetzungen ein Maß definiert ist,

Mehr

Analysis I. Vorlesung 13. Gleichmäßige Stetigkeit

Analysis I. Vorlesung 13. Gleichmäßige Stetigkeit Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 13 Gleichmäßige Stetigkeit Die Funktion f: R + R +, x 1/x, ist stetig. In jedem Punkt x R + gibt es zu jedem ǫ > 0 ein δ > 0 mit f(u (x,δ))

Mehr

1. Gruppen. 1. Gruppen 7

1. Gruppen. 1. Gruppen 7 1. Gruppen 7 1. Gruppen Wie schon in der Einleitung erläutert wollen wir uns in dieser Vorlesung mit Mengen beschäftigen, auf denen algebraische Verknüpfungen mit gewissen Eigenschaften definiert sind.

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Grundlagen der Mathematik Lösungsskizzen 2 Präsenzaufgaben (P2) Wir betrachten drei Teilmengen der natürlichen Zahlen: - A = {n

Mehr

Mathematik I. Vorlesung 9. Die eulersche Zahl e

Mathematik I. Vorlesung 9. Die eulersche Zahl e Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 9 Die eulersche Zahl e Wir besprechen eine Beschreibung der sogenannten eulerschen Zahl e. Lemma 9.1. Die Intervalle I n = [a n,b n ],

Mehr

Mengen und Abbildungen

Mengen und Abbildungen Mengen und Abbildungen Der Mengenbegriff Durchschnitt, Vereinigung, Differenzmenge Kartesisches Produkt Abbildungen Prinzip der kleinsten natürlichen Zahl Vollständige Induktion Mengen und Abbildungen

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mathematische Sprache und naive Mengenlehre Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johann-von-Neumann-Haus Fachschaft Menge aller Studenten eines Institutes

Mehr

2 Mengen und Abbildungen

2 Mengen und Abbildungen 2.1 Mengen Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen. Die Objekte heiÿen Elemente. Ist M eine Menge und x ein Element von M so schreiben wir x M. Wir sagen auch:

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 17 Potenzreihen Definition 17.1. Es sei (c n ) n N eine Folge von reellen Zahlen und x eine weitere reelle Zahl. Dann heißt

Mehr

4. Vortrag - Garben. Ling Lin, Kristijan Cule Datum: 26. April 2009

4. Vortrag - Garben. Ling Lin, Kristijan Cule Datum: 26. April 2009 4. Vortrag - Garben Datum: 26. April 2009 1 Graduierte Ringe Definition 4.1.1. Eine k-algebra R heißt graduiert, wenn sie dargestellt werden kann als eine direkte Summe R = R n, wobei die R n als k-unterräume

Mehr

2 ZAHLEN UND VARIABLE

2 ZAHLEN UND VARIABLE Zahlen und Variable 2 ZAHLEN UND VARIABLE 2.1 Grundlagen der Mengenlehre Unter einer Menge versteht man die Zusammenfassung von unterscheidbaren Objekten zu einem Ganzen. Diese Objekte bezeichnet man als

Mehr

Skript und Übungen Teil II

Skript und Übungen Teil II Vorkurs Mathematik Herbst 2009 M. Carl E. Bönecke Skript und Übungen Teil II Das erste Semester wiederholt die Schulmathematik in einer neuen axiomatischen Sprache; es ähnelt damit dem nachträglichen Erlernen

Mehr

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird.

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird. Thomas Studer Relationale Datenbanken: Von den theoretischen Grundlagen zu Anwendungen mit PostgreSQL Springer, 2016 ISBN 978-3-662-46570-7 Dieser Foliensatz darf frei verwendet werden unter der Bedingung,

Mehr

MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/ OKTOBER 2016

MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/ OKTOBER 2016 MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/17 MARK HAMILTON LMU MÜNCHEN 1.1. Grundbegriffe zu Mengen. 1. 17. OKTOBER 2016 Definition 1.1 (Mengen und Elemente). Eine Menge ist die Zusammenfassung

Mehr

Mathematischen Grundlagen und Notationen

Mathematischen Grundlagen und Notationen Mathematischen Grundlagen und Notationen Susanne Schimpf Juni 008 Es geht in dieser Lerneinheit darum, mathematische Notationen besser zu verstehen und auch selbst korrekt zu benutzen. Außerdem sollen

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 17 Isomorphie und elementare Äquivalenz im endlichen Fall Beispiel 17.1. Das Symbolalphabet S bestehe (neben Variablen)

Mehr

Mengenlehre. Mengenlehre. Vorkurs Informatik WS 2013/ September Vorkurs Informatik - WS2013/14

Mengenlehre. Mengenlehre. Vorkurs Informatik WS 2013/ September Vorkurs Informatik - WS2013/14 Mengenlehre Mengenlehre Vorkurs Informatik WS 2013/14 30. September 2013 Mengen Mengen Definition (Menge) Unter einer Menge verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 23 Die Gradformel Satz 1. Seien K L und L M endliche Körperweiterungen. Dann ist auch K M eine endliche Körpererweiterung und

Mehr

Kapitel 2 MENGENLEHRE

Kapitel 2 MENGENLEHRE Kapitel 2 MENGENLEHRE In diesem Kapitel geben wir eine kurze Einführung in die Mengenlehre, mit der man die ganze Mathematik begründen kann. Wir werden sehen, daßjedes mathematische Objekt eine Menge ist.

Mehr

Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert werden durch

Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert werden durch 1.2 Mengenlehre Grundlagen der Mathematik 1 1.2 Mengenlehre Definition: Menge, Element, Variablenraum Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr,

Mehr

Diskrete Strukturen WiSe 2012/13 in Trier

Diskrete Strukturen WiSe 2012/13 in Trier Diskrete Strukturen WiSe 2012/13 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 8. November 2012 1 Diskrete Strukturen Gesamtübersicht Organisatorisches und Einführung Mengenlehre Relationen

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2016 Einführung in die mathematische Logik Vorlesung 12 Wir haben bisher nur von Axiomensystemen im Sinne einer beliebigen Ausdrucksmenge Γ L S gesprochen, die im Allgemeinen

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 7 Die Lösungsmenge eines homogenen linearen Gleichungssystems in n Variablen über einem Körper K ist ein Untervektorraum

Mehr

Analysis I. Prof. Dr. H. Brenner Osnabrück WS 2013/2014. Arbeitsblatt 7. Übungsaufgaben. Aufgabe 7.1. Zeige, dass das Quadrieren

Analysis I. Prof. Dr. H. Brenner Osnabrück WS 2013/2014. Arbeitsblatt 7. Übungsaufgaben. Aufgabe 7.1. Zeige, dass das Quadrieren Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Arbeitsblatt 7 Übungsaufgaben Aufgabe 7.1. Zeige, dass das Quadrieren R 0 R 0, x x 2, eine wachsende Funktion ist. Man folgere daraus, dass auch die

Mehr

Grundlegendes der Mathematik

Grundlegendes der Mathematik Kapitel 2 Grundlegendes der Mathematik (Prof. Udo Hebisch) 2.1 Logik Unter einer Aussage versteht man in der Mathematik einen in einer natürlichen oder formalen Sprache formulierten Satz, für den eindeutig

Mehr

Elemente der Algebra

Elemente der Algebra Prof. Dr. H. Brenner Osnabrück SS 2015 Elemente der Algebra Vorlesung 1 Der Gruppenbegriff Definition 1.1. Eine Verknüpfung auf einer Menge M ist eine Abbildung : M M M, (x,y) (x,y) = x y. Statt (x,y)

Mehr

3 Mengen, Logik. 1 Naive Mengenlehre

3 Mengen, Logik. 1 Naive Mengenlehre 3 Mengen, Logik Jörn Loviscach Versionsstand: 21. September 2013, 15:53 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html This work is

Mehr

DIE SPRACHE DER WAHRSCHEINLICHKEITEN

DIE SPRACHE DER WAHRSCHEINLICHKEITEN KAPITEL 1 DIE SPRACHE DER WAHRSCHEINLICHKEITEN Es ist die Aufgabe der ersten drei Kapitel, eine vollständige Beschreibung des grundlegenden Tripels (Ω, A, P) und seiner Eigenschaften zu geben, das heutzutage

Mehr