2 Homogene Halbleiterbauelemente

Größe: px
Ab Seite anzeigen:

Download "2 Homogene Halbleiterbauelemente"

Transkript

1 Homogene Halbleiterbauelemente. Grundbegriffe der Halbleiter Halbleiter sind in der Regel kristalline Werkstoffe, deren Leitfähigkeit niedriger ist als die Leitfähigkeit der Metalle, aber höher als die Leitfähigkeit der Nichtleiter. Dazu gehören Germanium, Silizium, Selen sowie eine Reihe von Verbindungshalbleitern wie Bleisulfid, Indiumantimonid und Siliziumkarbid. Die halbleitenden Stoffe können als Einkristall mit regelmäßiger Struktur (Monokristall) oder als Polykristall mit unregelmäßiger Struktur aufgebaut sein. Ein reiner Germanium- oder Siliziumeinkristall ist nach Bild aufgebaut. Jedes Atom besteht aus einem Atomrumpf (als große Kugeln dargestellt) und 4 Bindungselektronen in der äußeren Schale (kleine Kugeln), die jeweils Bindungen zu Nachbaratomen herstellen. Da es beim ungestörten Kristallaufbau (technisch nicht realisierbar) keine freien Elektronen gibt, wäre ein solcher Kristall ein idealer Isolator. Durch Einwirkung von Wärme oder Licht können jedoch Bindungen aufbrechen. Es kommt zur Paarbildung von Ladungsträgern (Bild ), wobei jeweils ein freibewegliches Elektron und eine Fehlstelle (Defektelektron, Loch) im Gitterverband entstehen. Die Fehlstelle wirkt wie eine positive Elementarladung. Von Nachbarbindungen können Elektronen in die Fehlstelle einspringen (Rekombination). Die Fehlstelle oder das Loch verlagert sich so an die Stelle der neu aufgebrochenen Bindung. Löcher sind also durch einen solchen Platzwechsel mit Bindungselektronen beweglich, wobei ein äußeres elektrisches Feld auf die Bewegung beschleunigend wirkt. Ohne Einfluss eines elektrischen Feldes führen die freien Elektronen und Löcher nur wilde Schwirrbewegungen aus, deren Stärke mit der emperatur steigt. Unter dem Einfluss eines äußeren elektrischen Feldes kommt es zu einer geordneten Ladungsträgerströmung, die sich im Halbleiter nach Bild 3 stets aus den beiden Komponenten Löcherstrom (p-leitung) und Elektronenstrom (n-leitung) zusammensetzt. Im metallischen Verbindungsdraht zwischen Quelle und Halbleiter fließen nur Elektronen. Die Leitfähigkeit des reinen Kristalls ist relativ gering und stark abhängig von der emperatur (Eigenleitung, Intrinsic-Leitung). Beträchtlich erhöht werden kann die Leitfähigkeit eines Halbleiters durch Dotieren mit Fremdstoffen wie Arsen und Indium (Störstellenleitung, Bild 4). Arsen wirkt mit 5 Elektronen in der äußeren Schale als Elektronenspender (Donator), während Indium mit nur 3 Elektronen in der äußeren Schale eine Bindungslücke einbringt (Akzeptor). Durch geeignete Beimengungen in der Kristallschmelze zum Beispiel ist es also möglich, die n- oder p-leitfähigkeit je nach Art der Dotierung gegenüber der Eigenleitfähigkeit des reinen Kristalls wesentlich zu steigern. Bei stark überwiegender Löcherleitung spricht man dann, wie durch Bild 5 erläutert wird, von einem p-leitenden Material, im anderen Fall von einem n-leitenden Material. Die jeweils überwiegenden Ladungsträger bezeichnet man als die Majoritätsträger. Zu Bild 5 ist anzumerken, dass Materialstücke vom p- oder n-leitenden yp insgesamt elektrisch neutral sind, da den beweglichen Ladungsträgern an die Atome gebundene Ladungen des anderen Vorzeichens gegenüberstehen (siehe Bild 4). Gegenüber Metallen weisen Halbleiter folgende Besonderheiten auf:. Starke Abhängigkeit der Leitfähigkeit von der emperatur und Strahlungseinwirkungen.. Hohe rägerbeweglichkeit und rägergeschwindigkeit im elektrischen Feld. 3. Leitfähigkeit durch Elektronen (n-leitung) und Löcher (p-leitung). Die erste Eigenschaft wird ausgenutzt, um temperaturempfindliche und lichtempfindliche Bauelemente herzustellen, z.b. Heißleiter und Fotowiderstände. Die zweite Eigenschaft wird bei den sog. galvanomagnetischen Bauelementen Feldplatte und Hallgenerator genutzt. In diesen Beispielen ist der Halbleiterkörper in sich homogen, einkristallin oder auch polykristallin aufgebaut. Daneben gibt es Bauelemente, die zwei- oder mehrschichtig aufgebaut sind mit abwechselnden p- und n-zonen, z.b. Dioden und ransistoren. Ihre Struktur ist normalerweise einkristallin. Bevorzugtes Material ist heute dafür das Silizium. In den letzten Jahren ist allerdings auch der Verbindungshalbleiter Galliumarsenid (GaAs) zunehmend in Erscheinung getreten. Dieses Material zeichnet sich durch eine besonders hohe rägerbeweglichkeit aus und eignet sich deshalb gleichermaßen für die Herstellung von Hallsonden, Dioden und ransistoren, vorzugsweise für den Hochfrequenzbereich. Literatur: [], [4] DIN-Normen:

2 Bild Gitterstruktur eines Germaniumkristalls Bild Paarbildung von Ladungsträgern Eektronenstrom Löcherstrom Bild 3 Elektrischer Strom im Halbleiter Bild 4 Flächenmodell eines Kristalls mit Störstellenleitung p-material: Löcher in der Mehrheit (Majorität), Elektronen in der Minderheit (Minorität), reine p-leitung (nur Löcher) praktisch nicht möglich. n-material: Elektronen in der Mehrheit (Majorität), Löcher in der Minderheit (Minorität), reine n-leitung (nur Elektronen) praktisch nicht möglich. Bild 5 Schematische Darstellung der Materialarten durch bewegliche Ladungen*) *) Besonders stark dotierte Kristallbereiche, die an relativ schwach dotierte Zonen des gleichen Leitungstyps grenzen, werden mit n + bzw. p + gekennzeichnet. 5

3 . Mess- und Kompensationsheißleiter Heißleiter sind elektrische Widerstände mit stark negativem emperaturkoeffizienten (Firmenbezeichnung: NC-Widerstand, hernewid). Sie zählen zur Gruppe der hermistoren (thermal sensitive resistor). Moderne Heißleiter bestehen aus keramischen Widerstandskörpern, die in einem Sinterprozess bei hohen emperaturen aus verschiedenen Metalloxiden als Halbleitermaterialien hergestellt werden. Ausgenutzt wird die starke Abhängigkeit der Leitfähigkeit von der emperatur. Die Formen richten sich nach dem Anwendungszweck. So gibt es stabförmige, scheibenförmige und perlenförmige Heißleiter, wobei letztere als mechanischen Schutz oft eine Glasumhüllung erhalten. Bild zeigt eine solche Ausführung sowie typische Widerstands-emperatur-Kennlinien, die sich angenähert durch die angegebene Gleichung darstellen lassen. Als Kennwerte für einen bestimmten yp (hier K 7) werden vom Hersteller die Werte R 0 (R bei 0 C) und die Steuerkonstante B angegeben, wodurch die Widerstands-emperaturabhängigkeit vollständig bestimmt ist. Die Konstante A lässt sich über R 0 berechnen [Ü]. Im Gegensatz zu normalen linearen Widerständen ist der emperaturkoeffizient stark von der emperatur abhängig (Bild ). Er kann aus der Kennlinie ermittelt werden, lässt sich jedoch auch wie angegeben über die Steuergleichung analytisch bestimmen. Heißleiter werden oft zur emperaturmessung herangezogen. Dazu kann man sie in einen Zweig einer Wheatstone-Brücke einbauen, in deren Diagonale das Anzeigeinstrument geschaltet wird. Bild 3 gibt das Schaltbild mit zugehörigem Ersatzbild an. Die Quellenspannung U q in der Ersatzschaltung ist gleich der Leerlaufspannung U 0 in der Brücke bei offenem Diagonalzweig. Bei R R 3 = R R ist die Brücke abgeglichen. Bei nur geringer Verstimmung infolge einer Widerstandsänderung R des Heißleiters kann man mit der folgenden Näherung rechnen: du0 du0 R3 U0 R K R UB K R. dr dr (R3 R) Für UB 5 V,R R R3,5 k R0,K 0,04 und K folgt : K UB U0 0,04,5 k K 50 m V für C. 4,5 k K Eine wichtige Voraussetzung zur genauen emperaturmessung besteht darin, dass der Heißleiter praktisch nur durch das umgebende Medium und nicht etwa durch den Betriebsstrom I HL erwärmt wird. Die unerwünschte Übertemperatur ergibt sich mit dem thermischen Widerstand R th des Heißleiters wie folgt: ) PRth IHL R R th. Sie erreicht ein Maximum bei Leistungsanpassung (R = R 3 ) ) : UB K max Pmax Rth R th (,5 V), 5 3K. R3,5 k mw Offenbar ist bei der Festlegung der Betriebsspannung darauf zu achten, um den so verursachten Messfehler klein zu halten. Die hier getroffene Wahl R 3 R (veränderlich) führt zu einem Maximum der Messempfindlichkeit und hat daher besondere praktische Bedeutung [Ü]. Heißleiter dienen auch zur Kompensation eines unerwünschten emperaturgangs. Bekanntes Beispiel: Man schaltet in nächster Nähe und in Reihe zur Ablenkspule einer Fernsehbildröhre einen Heißleiter, um so den Widerstandsanstieg des Kupferdrahtes mit der emperatur zu kompensieren. Um den emperaturgang möglichst genau anzupassen und einer eventuellen Überkompensation vorzubeugen, können Heißleiter mit linearen Festwiderständen kombiniert werden (Bild 4). Der resultierende Widerstand wird im Folgenden einfach mit R bezeichnet, der zugehörige emperaturkoeffizient mit K. Dieser ist immer kleiner als der K-Wert K des einzelnen Heißleiters. Die angegebenen Beziehungen für K ergeben sich, wenn man die allgemeine Definition für den emperaturkoeffizienten auf den Widerstand R anwendet. Dabei wird der vergleichsweise geringe K-Wert des Festwiderstandes vernachlässigt. Besonders interessant ist die Parallelschaltung, die auf eine S-förmige R--Kennlinie führt mit einem Wendepunkt im Kreuzungsbereich der ursprünglichen Kennlinien, wodurch sich ein näherungsweise gerades Kennlinienstück ergibt. Durch Vorschalten eines weiteren festen Widerstandes lässt sich die R--Kennlinie nach höheren Widerstandswerten hin verschieben, siehe Anhang B und [Ü]. ) siehe dazu Abschnitt.3 ) siehe dazu Abschnitt.6 Literatur: [3], [ ], [ 3], [Ü] 6 DIN ff.

4 G th = 0,8 mw/k, R th =,5 K/mW Steuergleichung: R B A e A Form- und Materialkonstante B Steuerkonstante (Materialkonstante) absolute emperatur in Kelvin (K) Bild Widerstands-emperatur- Kennlinie des Messheißleiters K 7 emperaturkoeffizient K dr d R B R R B Für Umgebung von P gilt mit = K: R K 0 R 0 0,04,5 k K 00 K Bild emperaturgang des emperaturkoeffizienten R R R R U U U 3 q 0 B (R R) (R3 R) R R R3 R R i R R R R 3 Bild 3 Brückenschaltung mit Heißleiter a) Schaltbild, b) Ersatzspannungsquelle a) Bild 4 Widerstandskombinationen und ihre emperaturabhängigkeit a) Parallelschaltung, b) Reihenschaltung *) Nach DIN 345 wird die Celsiustemperatur mit dem Kurzzeichen bezeichnet, das hinzugefügte Minuszeichen soll auf den negativen K-Wert hindeuten. In diesem Buch wird für die emperatur durchgehend der Buchstabe verwendet. Der Bezug zur Celsius- oder Kelvinskala wird durch die Einheit ( C bzw. K) hergestellt (siehe Bild ). Für emperaturdifferenzen gilt C = K. 7

5 .3 Anlassheißleiter Bei Mess- und Kompensationsheißleitern arbeitet man mit Fremderwärmung. Bei den sog. Anlassheißleitern dagegen nutzt man die Erwärmung durch den eigenen Strom (Eigenerwärmung). Dies geschieht infolge der Wärmeträgheit mit einer gewissen Zeitverzögerung, was die Anwendung in Verzögerungsschaltungen ermöglicht, insbesondere auch zum Zwecke der Einschaltstrombegrenzung. Im Folgenden wird eine Schaltung zur Relaisanzugverzögerung nach Bild behandelt. Zweckmäßig betrachtet man die Betriebsspannung U B als Quellenspannung und den Widerstand R des Relais als Innenwiderstand eines Generators, der mit dem Heißleiter HL belastet wird. Die zugehörige Generatorkennlinie ist in Bild als sog. Widerstandsgerade bzw. Arbeitsgerade eingetragen. Alle zu ihr gehörigen I-U-Werte erfüllen die Gleichung U = U B I R. Ihr Schnittpunkt mit der Lastkennlinie (I-U-Kennlinie des Heißleiters) ergibt den Arbeitspunkt. Im kalten Zustand hat der Heißleiter die in Bild gestrichelte Kaltkennlinie entsprechend einem Widerstand R K. Unmittelbar nach dem Einschalten stellt sich der flüchtige Arbeitspunkt A f in Bild ein. Dieser ist nicht stabil, da aufgrund der jetzt zugeführten elektrischen Leistung der Heißleiter sich erwärmt und sein Widerstand R kleiner wird. Der Arbeitspunkt verschiebt sich entlang der Widerstandsgeraden, wobei die aufgenommene Leistung sogar noch steigt und bei U = 0,5 U B (R = R, Leistungsanpassung) ein Maximum durchläuft. Ein stabiler Betrieb kommt erst im Arbeitspunkt A zustande, entsprechend der Strom-Spannungs-Kennlinie für den stationären Betrieb des Heißleiters. Den Strom-Zeitverlauf zu dem beschriebenen Vorgang zeigt Bild b ). Die dargestellte stark nichtlineare I-U-Kennlinie nach Bild kann man messen, indem man dem Heißleiter einen bestimmten Strom I zuführt und die zugehörige Spannung U misst, nachdem sich ein stabiler Betrieb mit einer bestimmten Endtemperatur eingestellt hat. Die Spannung U durchläuft dabei offenbar ein Maximum, da mit steigender emperatur und sinkendem Widerstand der Spannungsbedarf trotz steigendem Strom fällt. Im Punkt A ergibt sich entsprechend Bild eine Übertemperatur 30 K. Für das kühlere Spannungsmaximum findet man näherungsweise: (U max ) P / G th (4V 4 ma) / 0,4 mw/k 40 K. Entsprechend lassen sich entlang der gesamten Kennlinie aus der jeweiligen Verlustleistung die zugehörigen emperaturwerte ermitteln. Bei schnellen Änderungen von Strom und Spannung verhält sich der Heißleiter wie ein linearer Widerstand. Der Widerstandswert wird bestimmt durch die emperatur im jeweiligen stationären Zustand, von dem die Änderung ausgeht: R A = U A /I A (Bild 3). Bei einer sprunghaften Erhöhung der Betriebsspannung U B um U B springt also der Arbeitspunkt entlang der gestrichelten Geraden (Kennlinie eines linearen Widerstandes R A ) von A nach A f (flüchtiger Arbeitspunkt). Mit der dann einsetzenden emperaturerhöhung verlagert sich der Arbeitspunkt entlang der Widerstandsgeraden bis zum neuen stabilen Punkt A'. Bei einem fortdauernden Schaltwechsel der Betriebsspannung durchläuft der Arbeitspunkt so eine viereckige Hystereseschleife, die aber bei schneller Schaltfolge (> 0 Hz) wegen der Wärmeträgheit des Heißleiters zu einem Geradenstück zwischen den gestrichelten dynamischen I-U-Kennlinien entartet. Nach dem Abschalten sinkt die emperatur des Heißleiters nach einer e-funktion bis zur Umgebungstemperatur U ab (Bild 4). Die Analogie zum Entladevorgang eines Kondensators erlaubt die Definition einer thermischen Zeitkonstante th und erklärt den Abkühlvorgang als Entladung der sog. Wärmekapazität C th über den thermischen Widerstand R th. Der Wiederanstieg der emperatur nach erneutem Einschalten verläuft nur bei konstanter Leistungsaufnahme nach einer e-funktion, was normalerweise nicht der Fall ist. rotzdem bietet die oben definierte Abkühlzeitkonstante auch einen groben Anhalt für die Verzögerungszeit beim Einschalten (vgl. Kondensatorladung und -entladung im Abschnitt 4.). Durch Reihenschaltung des Heißleiters mit einem geeigneten linearen Festwiderstand ist es möglich, die resultierende I-U-Kennlinie für stationären Betrieb beliebig zu versteilern (s. Anhang B und [Ü]). Man erhält dann einen Bereich, in dem sich die Spannung über dem Strom nur wenig ändert, was für Zwecke der Spannungsstabilisierung genutzt werden kann. Das gilt auch für Wechselspannungen, da die stationäre I-U-Kennlinie nach Bild auch gültig ist mit I und U für beliebige Effektivwerte. Voraussetzung ist jedoch eine ausreichende Frequenz (> 0 Hz), wobei sich aufgrund der Wärmeträgheit praktisch eine konstante emperatur einstellt. ) Die Berechnung ist schwierig und nicht geschlossen durchführbar. Vgl. [Ü], 5. Auflage, Einschalten eines Kaltleiters. 8

6 HL A34 /30: G th = 0,4 mw/k, R th =,5 K/mW R 0 = 5 k B 3400 K S geschlossen: U = U B I R Relais C: Widerstand der Wicklung R = 500 a) Anzugstrom I AN = 5 ma Bild Schaltung zur Relaisanzugverzögerung und Strom-Zeitdiagramm a) Heißleiter und Schaltung, b) gemessener Strom-Zeitverlauf Bild Graphische Analyse der Betriebsverhältnisse*) Bild 3 Dynamisches Verhalten des Heißleiters Bild 4 Abkühlvorgang *) Für Umax findet man angenähert (empirisch): max th K U 50 K G R. Der Punkt A k wird erreicht, wenn der Heißleiter kurzgeschlossen wird, beispielsweise durch einen Hilfskontakt des Relais C. 9

Homogene Halbleiter. Bauelemente und Schaltungstechnik, Institut für Mikrosystemtechnik. Prof. Dr. D. Ehrhardt

Homogene Halbleiter. Bauelemente und Schaltungstechnik, Institut für Mikrosystemtechnik. Prof. Dr. D. Ehrhardt Homogene Halbleiter 1 Heißleiter NTC (= negativer Temperaturkoeffizient) 2 Heißleiter auch Thermistor genannt Herstellung Sintern von verschiedenen Metalloxiden Bauformen Scheiben/Stäbe mit/ohne Anschlußdrähte

Mehr

Halbleiter und Transistoren - Prinzip und Funktionsweise

Halbleiter und Transistoren - Prinzip und Funktionsweise Halbleiter und Transistoren - Prinzip und Funktionsweise Reine Halbleitermaterialien, wie Silizium (Si) oder Germanium (Ge) sind bei Zimmertemperatur fast Isolatoren: bzw. bei sinkender Temperatur HL Isolator

Mehr

19 Halbleiterbauelemente ohne pn-übergang (homogene Halbleiterbauelemente)

19 Halbleiterbauelemente ohne pn-übergang (homogene Halbleiterbauelemente) 19 Halbleiterbauelemente ohne pn-übergang (homogene Halbleiterbauelemente) Die speziellen Eigenschaften halbleitender Werkstoffe können in homogen dotierten Bauteilen (Bauelemente ohne pn-übergang) genutzt

Mehr

Elektrizitätsleitung in Halbleitern

Elektrizitätsleitung in Halbleitern Elektrizitätsleitung in Halbleitern Halbleiter sind chemische Elemente, die elektrischen Strom schlecht leiten. Germanium, Silicium und Selen sind die technisch wichtigsten Halbleiterelemente; aber auch

Mehr

Originaldokument enthält an dieser Stelle eine Grafik! Original document contains a graphic at this position!

Originaldokument enthält an dieser Stelle eine Grafik! Original document contains a graphic at this position! FUNKTIONSWEISE Thema : HALBLEITERDIODEN Die Eigenschaften des PN-Überganges werden in Halbleiterdioden genutzt. Die p- und n- Schicht befinden sich einem verschlossenen Gehäuse mit zwei Anschlussbeinen.

Mehr

Gleichstromkreis. 2.2 Messgeräte für Spannung, Stromstärke und Widerstand. Siehe Abschnitt 2.4 beim Versuch E 1 Kennlinien elektronischer Bauelemente

Gleichstromkreis. 2.2 Messgeräte für Spannung, Stromstärke und Widerstand. Siehe Abschnitt 2.4 beim Versuch E 1 Kennlinien elektronischer Bauelemente E 5 1. Aufgaben 1. Die Spannungs-Strom-Kennlinie UKl = f( I) einer Spannungsquelle ist zu ermitteln. Aus der grafischen Darstellung dieser Kennlinie sind Innenwiderstand i, Urspannung U o und Kurzschlussstrom

Mehr

6/2 Halbleiter Ganz wichtige Bauteile

6/2 Halbleiter Ganz wichtige Bauteile Elektronik 6/2 Seite 1 6/2 Halbleiter Ganz wichtige Bauteile Erforderlicher Wissensstand der Schüler Begriffe: Widerstand, Temperatur, elektrisches Feld, Ionen, Isolator Lernziele der Unterrichtssequenz

Mehr

Mikroprozessor - und Chiptechnologie

Mikroprozessor - und Chiptechnologie Mikroprozessor - und Chiptechnologie I 1 1 Halbleiterfunktionen 2 8 Halbleiterbauelemente 8 Halbleiterbauelemente 8.1 Grundlagen 8.2 Dioden 8.3 Transistoren 8.4 Einfache Grundschaltungen Als halbleitend

Mehr

Vorbereitung zum Versuch Transistorschaltungen

Vorbereitung zum Versuch Transistorschaltungen Vorbereitung zum Versuch Transistorschaltungen Armin Burgmeier (47488) Gruppe 5 9. Dezember 2007 0 Grundlagen 0. Halbleiter Halbleiter bestehen aus Silizium- oder Germanium-Gittern und haben im allgemeinen

Mehr

Freie Elektronen bilden ein Elektronengas. Feste positive Aluminiumionen. Abb. 1.1: Metallbindung: Feste Atomrümpfe und freie Valenzelektronen

Freie Elektronen bilden ein Elektronengas. Feste positive Aluminiumionen. Abb. 1.1: Metallbindung: Feste Atomrümpfe und freie Valenzelektronen 1 Grundlagen 1.1 Leiter Nichtleiter Halbleiter 1.1.1 Leiter Leiter sind generell Stoffe, die die Eigenschaft haben verschiedene arten weiterzuleiten. Im Folgenden steht dabei die Leitfähigkeit des elektrischen

Mehr

Halbleiter, Dioden. wyrs, Halbleiter, 1

Halbleiter, Dioden. wyrs, Halbleiter, 1 Halbleiter, Dioden Halbleiter, 1 Inhaltsverzeichnis Aufbau & physikalische Eigenschaften von Halbleitern Veränderung der Eigenschaften mittels Dotierung Vorgänge am Übergang von dotierten Materialen Verhalten

Mehr

4. Dioden Der pn-übergang

4. Dioden Der pn-übergang 4.1. Der pn-übergang Die Diode ist ein Halbleiterbauelement mit zwei Anschlüssen: Eine Diode besteht aus einem Halbleiterkristall, der auf der einen Seite p- und auf der anderen Seite n-dotiert ist. Die

Mehr

Diplomvorprüfung WS 2010/11 Fach: Elektronik, Dauer: 90 Minuten

Diplomvorprüfung WS 2010/11 Fach: Elektronik, Dauer: 90 Minuten Diplomvorprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung WS 2010/11 Fach: Elektronik,

Mehr

Festkörperelektronik 2008 Übungsblatt 6

Festkörperelektronik 2008 Übungsblatt 6 Lichttechnisches Institut Universität Karlsruhe (TH) Prof. Dr. rer. nat. Uli Lemmer Dipl.-Phys. Alexander Colsmann Engesserstraße 13 76131 Karlsruhe Festkörperelektronik 6. Übungsblatt 10. Juli 2008 Die

Mehr

Professur für Leistungselektronik und Messtechnik

Professur für Leistungselektronik und Messtechnik Aufgabe 1: Diode I (leicht) In dieser Aufgabe sollen verschiedene Netzwerke mit Dioden analysiert werden. I = 1 A R = 2 Ω T = 25 C Diodenkennlinie: Abbildung 5 Abbildung 1: Stromteiler mit Diode a) Ermitteln

Mehr

Halbleiterphysik. 1. Physikalische Definition des elektrischen Stromes

Halbleiterphysik. 1. Physikalische Definition des elektrischen Stromes Halbleiterphysik 1. Physikalische Definition des elektrischen Stromes Nach dem Bohr schen Atommodell sind Atome aus positiven und negativen Ladungsträgern aufgebaut. Die positiven Ladungsträger (Protonen)

Mehr

Bundestechnologiezentrum für Elektro- und Informationstechnik e.v.

Bundestechnologiezentrum für Elektro- und Informationstechnik e.v. Lernprogramm Grundlagen der Elektrotechnik 2 Themenübersicht Elektischer Widerstand und deren Schaltungen Linearer Widerstand im Stromkreis Ohmsches Gesetz Ohmsches Gesetz Strom und Spannung am linearen

Mehr

Spezifischer Widerstand fester Körper. Leiter Halbleiter Isolatoren. Kupferoxid

Spezifischer Widerstand fester Körper. Leiter Halbleiter Isolatoren. Kupferoxid R. Brinkmann http://brinkmann-du.de Seite 1 26.11.2013 Halbleiter Widerstandsbestimmung durch Strom - Spannungsmessung Versuch: Widerstandsbestimmung durch Strom und Spannungsmessung. 1. Leiter : Wendel

Mehr

Lufthansa B1 Lehrgang Unterrichtsmitschrift Modul M4 Electronic Fundamentals

Lufthansa B1 Lehrgang Unterrichtsmitschrift Modul M4 Electronic Fundamentals Halbleiter Halbleiter sind stark abhängig von : - der mechanischen Kraft (beeinflusst die Beweglichkeit der Ladungsträger) - der Temperatur (Zahl und Beweglichkeit der Ladungsträger) - Belichtung (Anzahl

Mehr

Mikroprozessor - und Chiptechnologie

Mikroprozessor - und Chiptechnologie Mikroprozessor - und Chiptechnologie I 1 1 Halbleiterfunktionen 2 8 Halbleiterbauelemente 8 Halbleiterbauelemente 8.1 Grundlagen 8.2 Dioden 8.3 Transistoren 8.4 Einfache Grundschaltungen Als halbleitend

Mehr

Technische Universität Chemnitz Professur für Hochfrequenztechnik und Theoretische Elektrotechnik Prof. Dr. rer. nat. M. Chandra

Technische Universität Chemnitz Professur für Hochfrequenztechnik und Theoretische Elektrotechnik Prof. Dr. rer. nat. M. Chandra echnische niversität Chemnitz Professur für Hochfrequenztechnik und heoretische Elektrotechnik Prof. Dr. rer. nat. M. Chandra Praktikum Grundlagen der Elektrotechnik Versuch: G3 ichtlineare Bauelemente

Mehr

Technische Grundlagen der Informatik

Technische Grundlagen der Informatik Technische Grundlagen der Informatik WS 2008/2009 2. Vorlesung Klaus Kasper WS 2008/2009 Technische Grundlagen der Informatik Inhalt Wiederholung Strom und Spannung Ohmscher Widerstand und Ohmsches Gesetz

Mehr

E 2 Temperaturabhängigkeit elektrischer Widerstände

E 2 Temperaturabhängigkeit elektrischer Widerstände E 2 Temperaturabhängigkeit elektrischer Widerstände 1. Aufgaben 1. Für die Stoffe - Metall (Kupfer) - Legierung (Konstantan) - Halbleiter (Silizium, Galliumarsenid) ist die Temperaturabhängigkeit des elektr.

Mehr

Diplomvorprüfung SS 2011 Fach: Elektronik, Dauer: 90 Minuten

Diplomvorprüfung SS 2011 Fach: Elektronik, Dauer: 90 Minuten Diplomvorprüfung Elektronik Seite 1 von 9 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2011 Fach: Elektronik,

Mehr

Elektrotechnik: Übungsblatt 2 - Der Stromkreis

Elektrotechnik: Übungsblatt 2 - Der Stromkreis Elektrotechnik: Übungsblatt 2 - Der Stromkreis 1. Aufgabe: Was zeichnet elektrische Leiter gegenüber Nichtleitern aus? In elektrischen Leitern sind die Ladungen leicht beweglich, in Isolatoren können sie

Mehr

1 Leitfähigkeit in Festkörpern

1 Leitfähigkeit in Festkörpern 1 Leitfähigkeit in Festkörpern Elektrische Leitfähigkeit ist eine physikalische Größe, die die Fähigkeit eines Stoffes angibt, elektrischen Strom zu leiten. Bändermodell Die Leitfähigkeit verschiedener

Mehr

Diplomvorprüfung SS 2010 Fach: Elektronik, Dauer: 90 Minuten

Diplomvorprüfung SS 2010 Fach: Elektronik, Dauer: 90 Minuten Diplomvorprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2010 Fach: Elektronik,

Mehr

-Q 1 Nach Aufladen C 1

-Q 1 Nach Aufladen C 1 Verschaltung von Kondensatoren a) Parallelschaltung C 2 Knotensatz: Q 2 -Q 2 Q 1 -Q 1 Nach Aufladen C 1 U Die Kapazitäten addieren sich b) Reihenschaltung C 1 C 2 Q -Q Q -Q Maschenregel: U Die reziproken

Mehr

Inhaltsverzeichnis Elektrischer Strom Der unverzweigte Gleichstromkreis Lineare Bauelemente im Gleichstromkreis

Inhaltsverzeichnis Elektrischer Strom Der unverzweigte Gleichstromkreis Lineare Bauelemente im Gleichstromkreis 1 Elektrischer Strom................................... 1 1.1 Grundwissen kurz und bündig........................ 1 1.1.1 Stoffe................................... 1 1.1.2 Atombau, elektrischer Strom....................

Mehr

Aktivierungsenergie und TK R -Wert von Halbleiterwerkstoffen

Aktivierungsenergie und TK R -Wert von Halbleiterwerkstoffen Fachbereich 1 Laborpraktikum Physikalische Messtechnik/ Werkstofftechnik Aktivierungsenergie und TK R -Wert von Halbleiterwerkstoffen Bearbeitet von Herrn M. Sc. Christof Schultz christof.schultz@htw-berlin.de

Mehr

Elektrotechnik Protokoll - Nichtlineare Widerstände

Elektrotechnik Protokoll - Nichtlineare Widerstände Elektrotechnik Protokoll - Nichtlineare Widerstände André Grüneberg Andreas Steffens Versuch: 17. Januar 1 Protokoll: 8. Januar 1 Versuchsdurchführung.1 Vorbereitung außerhalb der Versuchszeit.1.1 Eine

Mehr

1. Teil: ANALOGELEKTRONIK

1. Teil: ANALOGELEKTRONIK 1. Teil: ANALOGELEKTRONIK 1. ELEKTRISCHE EIGENSCHAFTEN DER FESTEN MATERIE 1.1. EINLEITUNG Um zu verstehen, wie Halbleiter als Bauteile der Elektronik funktionieren, ist es nützlich, sich mit dem Aufbau

Mehr

Aufgabensammlung zur Elektrotechnik und Elektronik

Aufgabensammlung zur Elektrotechnik und Elektronik Leonhard Stiny Aufgabensammlung zur Elektrotechnik und Elektronik Übungsaufgaben mit ausführlichen Musterlösungen 3., überarbeitete und erweiterte Auflage Mit 560 Aufgaben und 517 Abbildungen Inhaltsverzeichnis

Mehr

Technische Grundlagen der Informatik

Technische Grundlagen der Informatik Technische Grundlagen der Informatik WS 2008/2009 3. Vorlesung Klaus Kasper WS 2008/2009 Technische Grundlagen der Informatik Inhalt Wiederholung Kapazität, Induktivität Halbleiter, Halbleiterdiode Wechselspannung

Mehr

NTB Druckdatum: ELA I

NTB Druckdatum: ELA I GLEICHSTROMLEHRE Einführende Grundlagen - Teil 1 Elektrische Ladung Elektrische Stromdichte N elektrische Ladung Stromstärke Anzahl Elektronen Elementarladung elektrische Stromdichte Querschnittsfläche

Mehr

2 Das elektrostatische Feld

2 Das elektrostatische Feld Das elektrostatische Feld Das elektrostatische Feld wird durch ruhende elektrische Ladungen verursacht, d.h. es fließt kein Strom. Auf die ruhenden Ladungen wirken Coulomb-Kräfte, die über das Coulombsche

Mehr

Physikalisches Grundpraktikum E7 Diodenkennlinie und PLANCK-Konstante

Physikalisches Grundpraktikum E7 Diodenkennlinie und PLANCK-Konstante E7 Diodenkennlinie und PLANCK-Konstante Aufgabenstellung: Bestimmen e die Schleusenspannungen verschiedenfarbiger Leuchtdioden aus den Strom- Spannungs-Kennlinien. Bestimmen e anhand der Emissionswellenlängen

Mehr

Prof. Dr.-Ing. Rainer Ose Elektrotechnik für Ingenieure Grundlagen 4. Auflage, Lösung der Übungsaufgabe ÜA_1_6.4.B:

Prof. Dr.-Ing. Rainer Ose Elektrotechnik für Ingenieure Grundlagen 4. Auflage, Lösung der Übungsaufgabe ÜA_1_6.4.B: Prof. Dr.-ng. Rainer Ose Elektrotechnik für ngenieure Grundlagen 4. Auflage, 2008 Fachhochschule Braunschweig/Wolfenbüttel -niversity of Applied Sciences- Lösung der Übungsaufgabe ÜA_1_6.4.B: Für die Glühlampe

Mehr

Strom und Spannungsmessung, Addition von Widerständen, Kirchhoffsche Regeln, Halbleiter, p-n-übergang, Dioden, fotovoltaischer Effekt

Strom und Spannungsmessung, Addition von Widerständen, Kirchhoffsche Regeln, Halbleiter, p-n-übergang, Dioden, fotovoltaischer Effekt Versuch 27: Solarzellen Seite 1 Aufgaben: Vorkenntnisse: Lehrinhalt: Literatur: Messung von Kurzschlussstrom und Leerlaufspannung von Solarzellen, Messung der I-U-Kennlinien von Solarzellen, Bestimmung

Mehr

Physikalisches Grundpraktikum V13 PLANCKsches Wirkungsquantum & LED

Physikalisches Grundpraktikum V13 PLANCKsches Wirkungsquantum & LED Aufgabenstellung: Bestimmen e die Schleusenspannungen verschiedenfarbiger Leuchtdioden aus den Strom- Spannungs-Kennlinien. Bestimmen e anhand der Emissionswellenlängen das PLANCKsche Wirkungsquantum h.

Mehr

Halbleiterbauelemente

Halbleiterbauelemente Halbleiterbauelemente Martin Adam 9. November 2005 Inhaltsverzeichnis 1 Versuchsbeschreibung 2 1.1 Ziel................................... 2 1.2 Aufgaben............................... 2 2 Vorbetrachtungen

Mehr

Halbleiter. Das Herz unserer multimedialen Welt. Bastian Inselmann - LK Physik

Halbleiter. Das Herz unserer multimedialen Welt. Bastian Inselmann - LK Physik Halbleiter Das Herz unserer multimedialen Welt Inhalt Bisherig Bekanntes Das Bändermodell Halbleiter und ihre Eigenschaften Dotierung Anwendungsbeispiel: Funktion der Diode Bisher Bekanntes: Leiter Isolatoren

Mehr

Diplomprüfung SS 2012 Elektronik/Mikroprozessortechnik

Diplomprüfung SS 2012 Elektronik/Mikroprozessortechnik Diplomprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Maschinenbau Dauer: 90 Minuten Zugelassene Hilfsmittel: alle eigenen Diplomprüfung SS 2012 Elektronik/Mikroprozessortechnik Matr.-Nr.: Hörsaal:

Mehr

Nichtlineare Bauelemente - Protokoll zum Versuch

Nichtlineare Bauelemente - Protokoll zum Versuch Naturwissenschaft Jan Hoppe Nichtlineare Bauelemente - Protokoll zum Versuch Praktikumsbericht / -arbeit Anfängerpraktikum, SS 08 Jan Hoppe Protokoll zum Versuch: GV Nichtlineare Bauelemente (16.05.08)

Mehr

Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2

Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2 Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Prof. Dr.-Ing. E.-P. Meyer Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2 Spannungsteiler Ersatzspannungsquelle

Mehr

Potential und Spannung

Potential und Spannung Potential und Spannung Arbeit bei Ladungsverschiebung: Beim Verschieben einer Ladung q im elektrischen Feld E( r) entlang dem Weg C wird Arbeit geleistet: W el = F C d s = q E d s Vorzeichen: W el > 0

Mehr

Geschrieben von: Volker Lange-Janson Montag, den 09. März 2015 um 07:46 Uhr - Aktualisiert Montag, den 09. März 2015 um 08:11 Uhr

Geschrieben von: Volker Lange-Janson Montag, den 09. März 2015 um 07:46 Uhr - Aktualisiert Montag, den 09. März 2015 um 08:11 Uhr // // // Spannungs-Stabilisierung mit einer Z-Diode - Berechnung Diese Grundschaltung einer Spannungsstabilisierung stellt die einfachste Anwendung einer Zenerdiode dar. Die Schaltung wandelt eine schwankende

Mehr

Physik 4 Praktikum Auswertung Hall-Effekt

Physik 4 Praktikum Auswertung Hall-Effekt Physik 4 Praktikum Auswertung Hall-Effekt Von J.W., I.G. 2014 Seite 1. Kurzfassung......... 2 2. Theorie.......... 2 2.1. Elektrischer Strom in Halbleitern..... 2 2.2. Hall-Effekt......... 3 3. Durchführung.........

Mehr

Stromdichten in Halbleitermaterialien

Stromdichten in Halbleitermaterialien Stromdichten in Halbleitermaterialien Berechnung der Leitfähigkeit: j = qnµ E ρ(w), ρ(w), Mögliche Sprachverwirrungen und Fallstricke: Energien: E bzw. W Bandindizies: C bzw. L Zustandsdichten: N(W), ρ(w),

Mehr

rtllh Grundlagen der Elektrotechnik Gert Hagmann AULA-Verlag

rtllh Grundlagen der Elektrotechnik Gert Hagmann AULA-Verlag Gert Hagmann Grundlagen der Elektrotechnik Das bewährte Lehrbuch für Studierende der Elektrotechnik und anderer technischer Studiengänge ab 1. Semester Mit 225 Abbildungen, 4 Tabellen, Aufgaben und Lösungen

Mehr

5. Anwendungen von Dioden in Stromversorgungseinheiten

5. Anwendungen von Dioden in Stromversorgungseinheiten in Stromversorgungseinheiten Stromversorgungseinheiten ( Netzgeräte ) erzeugen die von elektronischen Schaltungen benötigten Gleichspannungen. Sie bestehen oft aus drei Blöcken: Transformator Gleichrichter

Mehr

Physikalisches Anfängerpraktikum Teil 2 Elektrizitätslehre. Protokollant: Versuch 27 Solarzellen

Physikalisches Anfängerpraktikum Teil 2 Elektrizitätslehre. Protokollant: Versuch 27 Solarzellen Physikalisches Anfängerpraktikum Teil 2 Elektrizitätslehre Protokoll Versuch 27 Solarzellen Harald Meixner Sven Köppel Matr.-Nr. 3794465 Matr.-Nr. 3793686 Physik Bachelor 2. Semester Physik Bachelor 2.

Mehr

-Dioden- -Strom- und Spannungsmessung bei einer Halbleiterdiode-

-Dioden- -Strom- und Spannungsmessung bei einer Halbleiterdiode- -Dioden- Dioden sind Bauelemente, durch die der Strom nur in eine Richtung fliessen kann. Sie werden daher häufig in Gleichrichterschaltungen eingesetzt. Die Bezeichnung Diode ist aus der griechischen

Mehr

Versuch P1-50,51,52 - Transistorgrundschaltungen. Vorbereitung. Von Jan Oertlin. 4. November 2009

Versuch P1-50,51,52 - Transistorgrundschaltungen. Vorbereitung. Von Jan Oertlin. 4. November 2009 Versuch P1-50,51,52 - Transistorgrundschaltungen Vorbereitung Von Jan Oertlin 4. November 2009 Inhaltsverzeichnis 0. Funktionsweise eines Transistors...2 1. Transistor-Kennlinien...2 1.1. Eingangskennlinie...2

Mehr

Vorlesung 3: Elektrodynamik

Vorlesung 3: Elektrodynamik Vorlesung 3: Elektrodynamik, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed georg.steinbrueck@desy.de 1 WS 2015/16 Der elektrische Strom Elektrodynamik:

Mehr

TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA

TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA Inhaltsverzeichnis 1. Einleitung... 1 2. Messverfahren... 1 3. Bemerkung zur Fehlerrechnung... 1 4. Stromverstärkungsfaktor... 2 5. Eingangskennlinie...

Mehr

5. Kennlinien elektrischer Leiter

5. Kennlinien elektrischer Leiter KL 5. Kennlinien elektrischer Leiter 5.1 Einleitung Wird an einen elektrischen Leiter eine Spannung angelegt, so fliesst ein Strom. Als Widerstand des Leiters wird der Quotient aus Spannung und Strom definiert:

Mehr

Protokoll zum Versuch Nichtlineare passive Zweipole

Protokoll zum Versuch Nichtlineare passive Zweipole Protokoll zum Versuch Nichtlineare passive Zweipole Chris Bünger/Christian Peltz 2005-01-13 1 Versuchsbeschreibung 1.1 Ziel Kennenlernen spannungs- und temperaturabhängiger Leitungsmechanismen und ihrer

Mehr

Aktivierungsenergie und TK R -Wert von Halbleiterwerkstoffen

Aktivierungsenergie und TK R -Wert von Halbleiterwerkstoffen Fachbereich 1 Laborpraktikum Physikalische Messtechnik/ Werkstofftechnik Aktivierungsenergie und TK R -Wert von Halbleiterwerkstoffen Bearbeitet von Herrn M. Sc. Christof Schultz christof.schultz@htw-berlin.de

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Dielektrika - auf atomarem Niveau lektrischer Strom Stromdichte Driftgeschwindigkeit i i = dq dt = JdA J = nev D Widerstand

Mehr

TG TECHNOLOGISCHE GRUNDLAGEN 7 ELEKTROTECHNISCHE GRUNDLAGEN REPETITIONEN 1 GRUNDLAGEN 1 DER ELEKTRISCHE STROMKREIS

TG TECHNOLOGISCHE GRUNDLAGEN 7 ELEKTROTECHNISCHE GRUNDLAGEN REPETITIONEN 1 GRUNDLAGEN 1 DER ELEKTRISCHE STROMKREIS TECHNOLOGISCHE GRUNDLAGEN 101 Welche elementaren Aufbauteile sind für einen Stromkreis notwendig? 102 Nenne die Bedingungen, damit ein Stromkreis funktionieren kann? 103 Welches ist die Ursache, dass in

Mehr

Versuch 2: Kennlinienaufnahme einer pn-diode in Abhängigkeit der Temperatur

Versuch 2: Kennlinienaufnahme einer pn-diode in Abhängigkeit der Temperatur Bergische Universität Wuppertal Praktikum Fachbereich E Werkstoffe und Grundschaltungen Bachelor Electrical Engineering Univ.-Prof. Dr. T. Riedl WS 20... / 20... Hinweis: Zu Beginn des Praktikums muss

Mehr

3. Halbleiter und Elektronik

3. Halbleiter und Elektronik 3. Halbleiter und Elektronik Halbleiter sind Stoe, welche die Eigenschaften von Leitern sowie Nichtleitern miteinander vereinen. Prinzipiell sind die Elektronen in einem Kristallgitter fest eingebunden

Mehr

Die Diode. Roland Küng, 2009

Die Diode. Roland Küng, 2009 Die Diode Roland Küng, 2009 Halbleiter Siliziumgitter Halbleiter Eine aufgebrochene kovalente Bindung (Elektronenpaar) produziert ein Elektron und ein Loch Halbleiter Typ n z.b. Phosphor Siliziumgitter

Mehr

AUSWERTUNG: ELEKTRISCHE WIDERSTÄNDE

AUSWERTUNG: ELEKTRISCHE WIDERSTÄNDE AUSWERTUNG: ELEKTRISCHE WIDERSTÄNDE TOBIAS FREY, FREYA GNAM 1. R(T)-ABHÄNGIGKEIT EINES HALBLEITERWIDERSTANDES Mit Hilfe einer Wheatstoneschen Brückenschaltung wurde die Temperaturbhängigkeit eines Halbleiterwiderstandes

Mehr

Halbleiter und Nanostrukturen - Fragen zum Bipolartransistor, Praktikum, Prof. Förster

Halbleiter und Nanostrukturen - Fragen zum Bipolartransistor, Praktikum, Prof. Förster Halbleiter und Nanostrukturen - Fragen zum Bipolartransistor, Praktikum, Prof. Förster Christoph Hansen chris@university-material.de Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht.

Mehr

Hochschule für angewandte Wissenschaften Hamburg, Department F + F

Hochschule für angewandte Wissenschaften Hamburg, Department F + F 1 Versuchsdurchführung 1.1 Bestimmung des Widerstands eines Dehnungsmessstreifens 1.1.1 Messung mit industriellen Messgeräten Der Widerstandswert R0 eines der 4 auf dem zunächst unbelasteten Biegebalken

Mehr

Stabilisierungsschaltung mit Längstransistor

Stabilisierungsschaltung mit Längstransistor Stabilisierungsschaltung mit Längstransistor Eine Stabilisierung für ein Netzteil entsprechend nebenstehender Schaltung soll aufgebaut und dimensioniert werden. Bestimmen Sie: 1. die erforderliche Z-Dioden-Spannung

Mehr

Grundlagen der Elektrotechnik LF-2

Grundlagen der Elektrotechnik LF-2 Grundbildung IT-Systemelektroniker Grundlagen der Elektrotechnik LF-2 Mitschriften der Ausbildung Jörg Schumann 13. Februar 2016 Inhaltsverzeichnis Inhaltsverzeichnis 1 Ladungsträger 3 2 elektrische Spannung

Mehr

Q t U I R = Wiederholung: Stromstärke: Einheit 1 Ampere, C = A s. Elektrischer Widerstand: Einheit 1 Ohm, Ω = V/A

Q t U I R = Wiederholung: Stromstärke: Einheit 1 Ampere, C = A s. Elektrischer Widerstand: Einheit 1 Ohm, Ω = V/A 1 Wiederholung: Stromstärke: I = Q t Einheit 1 Ampere, C = A s Elektrischer Widerstand: R = U I U = R I Einheit 1 Ohm, Ω = V/A Standard Widerstände: 2 Aber auch dies sind Widerstände: Verstellbare Widerstände

Mehr

Halbleiter, Dioden. wyrs, Halbleiter, 1

Halbleiter, Dioden. wyrs, Halbleiter, 1 Halbleiter, Dioden Halbleiter, 1 Inhaltsverzeichnis Aufbau & physikalische Eigenschaften von Halbleitern Veränderung der Eigenschaften mittels Dotierung Vorgänge am Übergang von dotierten Materialen Verhalten

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2009

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2009 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 009 VL #6 am 7.05.009 Vladimir Dyakonov / Volker Drach Leistungsbeträge 00 W menschlicher Grundumsatz

Mehr

Dielektrizitätskonstante

Dielektrizitätskonstante Dielektrizitätskonstante Spannung am geladenen Plattenkondensator sinkt, wenn nichtleitendes Dielektrikum eingeschoben wird Ladung bleibt konstant : Q = C 0 U 0 = C D U D Q + + + + + + + + + + + - - -

Mehr

(Operationsverstärker - Grundschaltung)

(Operationsverstärker - Grundschaltung) Universität Stuttgart Institut für Leistungselektronik und Elektrische Antriebe Abt. Elektrische Energiewandlung Prof. Dr.-Ing. N. Parspour Übung 5 Aufgabe 5.1 ( - Grundschaltung) Im Bild 5.1 ist eine

Mehr

2. Parallel- und Reihenschaltung. Resonanz

2. Parallel- und Reihenschaltung. Resonanz Themen: Parallel- und Reihenschaltungen RLC Darstellung auf komplexen Ebene Resonanzerscheinungen // Schwingkreise Leistung bei Resonanz Blindleistungskompensation 1 Reihenschaltung R, L, C R L C U L U

Mehr

Elektrische Nachrichtentechnik Grundlagen der Elektrotechnik Versuch M-4 im Fachbereich Technik an der HS Emden-Leer

Elektrische Nachrichtentechnik Grundlagen der Elektrotechnik Versuch M-4 im Fachbereich Technik an der HS Emden-Leer 1. Versuchsanleitung Ziel des Versuchs M-4 ist das VerstÄndnis der Eigenschaften von Spannungsquellen får Gleichspannung und Wechselspannung sowie Signalquellen allgemein. Der Versuch geht auf die Beschreibung

Mehr

Spannungs- und Stromquellen

Spannungs- und Stromquellen Elektrotechnik Grundlagen Spannungs- und Stromquellen Andreas Zbinden Gewerblich- Industrielle Berufsschule Bern Inhaltsverzeichnis 1 Ideale Quellen 2 2 Reale Quellen 2 3 Quellenersatzschaltbilder 4 4

Mehr

Bild 1.4 Wärmeschwingung des Kristallgitters bei T > 0K

Bild 1.4 Wärmeschwingung des Kristallgitters bei T > 0K Bild 1.2 Das ideale Silizium-Gitter (Diamantgitterstruktur). Die großen Kugeln sind die Atomrümpfe; die kleinen Kugeln stellen die Valenzelektronen dar, von denen je zwei eine Elektronenpaarbrücke zwischen

Mehr

Aufgabe 1: Emitterfolger als Spannungsquelle (leicht)

Aufgabe 1: Emitterfolger als Spannungsquelle (leicht) Aufgabe 1: Emitterfolger als Spannungsquelle (leicht) Ein Emitterfolger soll in bezug auf den Lastwiderstand R L als Spannungsquelle eingesetzt werden. Verwendet werde ein Transistor mit der angegebenen

Mehr

von Alexander Wenk 2005, Alexander Wenk, 5079 Zeihen

von Alexander Wenk 2005, Alexander Wenk, 5079 Zeihen Repetition Elektrotechnik für Elektroniker im 4. Lehrjahr von Aleander Wenk 05, Aleander Wenk, 5079 Zeihen Inhaltsverzeichnis Temperaturabhängigkeit von Widerständen 1 Berechnung der Widerstandsänderung

Mehr

F02. Bandabstand von Germanium

F02. Bandabstand von Germanium F02 Bandabstand von Germanium Im Versuch wird der elektrische Widerstand eines Halbleiterstücks aus Germanium in Abhängigkeit von der Temperatur gemessen. Mit höherer Temperatur werden gemäß Gleichung

Mehr

Versuch E21 - Transistor als Schalter. Abgabedatum: 24. April 2007

Versuch E21 - Transistor als Schalter. Abgabedatum: 24. April 2007 Versuch E21 - Transistor als Schalter Sven E Tobias F Abgabedatum: 24. April 2007 Inhaltsverzeichnis 1 Thema des Versuchs 3 2 Physikalischer Kontext 3 2.1 Halbleiter und ihre Eigenschaften..................

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #19 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #19 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 007 VL #9 am 30.05.007 Vladimir Dyakonov Leistungsbeträge 00 W menschlicher Grundumsatz 00 kw PKW-Leistung

Mehr

ELEKTRISCHE SPANNUNGSQUELLEN

ELEKTRISCHE SPANNUNGSQUELLEN Physikalisches Grundpraktikum I Versuch: (Versuch durchgeführt am 17.10.2000) ELEKTRISCHE SPANNUNGSQUELLEN Denk Adelheid 9955832 Ernst Dana Eva 9955579 Linz, am 22.10.2000 1 I. PHYSIKALISCHE GRUNDLAGEN

Mehr

Labor Elektrotechnik. Versuch: Temperatur - Effekte

Labor Elektrotechnik. Versuch: Temperatur - Effekte Studiengang Elektrotechnik Labor Elektrotechnik Laborübung 5 Versuch: Temperatur - Effekte 13.11.2001 3. überarbeitete Version Markus Helmling Michael Pellmann Einleitung Der elektrische Widerstand ist

Mehr

6.2.6 Ohmsches Gesetz ******

6.2.6 Ohmsches Gesetz ****** 6..6 ****** Motivation Das Ohmsche Gesetz wird mithilfe von verschiedenen Anordnungen von leitenden Drähten untersucht. Experiment 6 7 8 9 0 Abbildung : Versuchsaufbau. Die Ziffern bezeichnen die zehn

Mehr

Elektronische Eigenschaften von Halbleitern

Elektronische Eigenschaften von Halbleitern Elektronische Eigenschaften von Halbleitern In der Vorlesung Elektronische Schaltungen lernen Sie das Verhalten verschiedener Halbleiterbauelemente kennen: Dioden, Bipolare Transistoren, Feldeffekttransistoren

Mehr

2 Elektrische Ladung, Strom, Spannung

2 Elektrische Ladung, Strom, Spannung 2 Elektrische Ladung, Strom, Spannung In diesem Kapitel lernen Sie, ein Grundverständnis der Elektrizität zur Beschäftigung mit Elektronik, welche physikalischen Grundgrößen in der Elektronik verwendet

Mehr

Lineare Quellen. Martin Schlup. 7. Februar 2014

Lineare Quellen. Martin Schlup. 7. Februar 2014 Lineare Quellen Martin Schlup 7. Februar 204. Ideale Quellen Ideale Quellen sind Modelle mit Eigenschaften, die in Wirklichkeit nur näherungsweise realisiert werden können. Ideale Quellen sind z. B. in

Mehr

GRUNDLAGENLABOR CLASSIC LINEARE QUELLEN ERSATZSCHALTUNGEN UND KENNLINIEN

GRUNDLAGENLABOR CLASSIC LINEARE QUELLEN ERSATZSCHALTUNGEN UND KENNLINIEN GRNDLAGENLABOR CLASSIC LINEARE QELLEN ERSATZSCHALTNGEN ND KENNLINIEN Inhalt:. Einleitung und Zielsetzung...2 2. Theoretische Aufgaben - Vorbereitung...2 3. Praktische Messaufgaben...3 Anhang: Theorie Quellen,

Mehr

Dotierter Halbleiter

Dotierter Halbleiter FH München FK 03 Maschinenbau Diplomprüfung Elektronik SS 007 Freitag, 0.7.007 Prof. Dr. Höcht (Prof. Dr. Kortstock) Zugelassene Hilfsmittel: Alle eigenen Dauer der Prüfung: 90 Minuten 1 Homogene Halbleiter

Mehr

Elektrische Messverfahren

Elektrische Messverfahren Vorbereitung Elektrische Messverfahren Carsten Röttele 20. Dezember 2011 Inhaltsverzeichnis 1 Messungen bei Gleichstrom 2 1.1 Innenwiderstand des µa-multizets...................... 2 1.2 Innenwiderstand

Mehr

Abschlussprüfung an Fachoberschulen im Schuljahr 2001/2002

Abschlussprüfung an Fachoberschulen im Schuljahr 2001/2002 Abschlussprüfung an Fachoberschulen im Schuljahr 2001/2002 Haupttermin: Nach- bzw. Wiederholtermin: 08.0.2002 Fachrichtung: Technik Fach: Physik Prüfungsdauer: 210 Minuten Hilfsmittel: Formelsammlung/Tafelwerk

Mehr

Laboratorium für Grundlagen Elektrotechnik

Laboratorium für Grundlagen Elektrotechnik niversity of Applied Sciences Cologne Fakultät 07: nformations-, Medien- & Elektrotechnik nstitut für Elektrische Energietechnik Laboratorium für Grundlagen Elektrotechnik Versuch 1 1.1 Aufnahme von Widerstandskennlinien

Mehr

Laborübung, Diode. U Ri U F

Laborübung, Diode. U Ri U F 8. März 2017 Elektronik 1 Martin Weisenhorn Laborübung, Diode 1 Diodenkennlinie dynamisch messen Die Kennlinie der Diode kann auch direkt am Oszilloskop dargestellt werden. Das Oszilloskop bietet nämlich

Mehr

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung.

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Nullter und Erster Hauptsatz der Thermodynamik. Thermodynamische

Mehr

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik erbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik ersuch 2 Ersatzspannungsquelle und Leistungsanpassung Teilnehmer: Name orname Matr.-Nr. Datum

Mehr

Lage des Ferminiveaus beim intrinsischen HL

Lage des Ferminiveaus beim intrinsischen HL 9.1 Lage des Ferminiveaus beim intrinsischen HL n W L W F = NL exp exp kt B kt B W V W F = p = NV exp exp kt B kt B Auflösen nach der exp-funktion: Mit Auflösen nach W F : 3 * N 2 V m h = * NL me 2W F

Mehr