Spannungs- und Stromquellen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Spannungs- und Stromquellen"

Transkript

1 Elektrotechnik Grundlagen Spannungs- und Stromquellen Andreas Zbinden Gewerblich- Industrielle Berufsschule Bern Inhaltsverzeichnis 1 Ideale Quellen 2 2 Reale Quellen 2 3 Quellenersatzschaltbilder 4 4 Einfacher Stromkreis mit realer Quelle 5 5 Quellenkennlinie 5 6 Abgegebene Leistung 6 7 Der Reflexionsfaktor (Leistungsverlust bei Fehlanpassung) 7 8 Zusammenschalten von Quellen Serie- und Parallelschaltung Zusammenwirken mehrerer Quellen Ersatzquellen Ersatzspannungsquelle Ersatzstromquelle

2 1 Ideale Quellen 1 Ideale Quellen Eine Spannungsquelle ist ideal, wenn an ihren Klemmen eine konstante Spannung besteht. Dies unabhängig vom Strom, der über ihre Klemmen fliesst. Zwischen zwei Anschlussklemmen besteht ein idealer Leerlauf, wenn über diese Klemmen kein Strom fliesst. Dies unabhängig von der Spannung, die zwischen diesen Klemmen besteht. Abbildung 1: Symbol und UI-Kennlinie einer idealen Spannungsquelle Eine Stromquelle ist ideal, wenn über ihre Klemmen ein konstanter Strom fliesst. Dies gilt unabhängig von der Spannung, die über ihren Klemmen besteht. Zwischen zwei Anschlussklemmen besteht ein idealer Kurzschluss, wenn zwischen diesen Klemmen keine Spannung vorhanden ist. Dies gilt unabhängig vom Strom, der über diese Klemmen fliesst. Abbildung 2: Symbol und UI-Kennlinie einer idealen Spannungsquelle 2 Reale Quellen Elektrische Quellen sind Energiewandler. Zwischen den Klemmen einer realen Quelle besteht eine Spannung U L. Wird ein Widerstand zwischen die Klemmen geschaltet, das heisst wird die Quelle belastet, dann fliesst ein Strom I L durch diesen Widerstand R L. Unabhängig von der praktischen Ausführung können wir bei einer realen Quelle weder von einer Spannungsquelle, noch von einer Stromquelle sprechen. 2

3 2 Reale Quellen Abbildung 3: Messanordnung für U L und I L Die grösste Spannung U L wird bei R = gemessen, das heisst, wenn die Quelle leer läuft. Diese Spannung wird Leerlaufspannung U 0 genannt. Mit R = 0 wird der grösste Strom I K gemessen, das heisst, wenn die Quelle kurzgeschlossen wird. Dieser Strom wird Kurzschlussstrom I K genannt. Dieses Verhalten kann nur erklärt werden, wenn in der Quelle noch ein Widerstand R i wirkt. Aus den beiden Kurven nach Abbildung 3 mit der unabhängigen Variablen R L kann die Funktion U = U (I) und I = I (U) gebildet werden. Abbildung 4: Widerstandskurven von realen Quellen Die Funktion U (I) ist bei vielen Quellen über den ganzen Bereich linear und kann angeschrieben werden als: U L = U 0 I K I L + U 0 (1) I L = I K U 0 U L + I K (2) Für die praktische Anwendung, das heisst für das Berechnen von Schaltkreisen führen wir ein Modell der realen Quelle ein. Als Ersatzschaltbilder ergeben sich eine ideale 3

4 3 Quellenersatzschaltbilder Spannungsquelle, in Serie geschaltet mit einem Widerstand und eine ideale Stromquelle, parallel geschaltet mit einem Widerstand. Der Widerstand in beiden Ersatzschaltungen heisst Innenwiderstand der Quelle R i. Der Innenwiderstand wird R i = U 0 I K (3) Der Innenleitwert wird 3 Quellenersatzschaltbilder G i = I K U 0 (4) Abbildung 5: Ersatzschaltbilder von Quellen Von links nach rechts (Abb.5): Reale Quelle Ideale Spannungsquelle mit Seriewiderstand (hat immer gleiche Spannung). Ideale Stromquelle mit Parallelwiderstand (gibt immer gleichen Strom). Mit R i wird die Formel 1 und 2 zu: U L = R i I L + U 0 (5) I L = G i U L + I K (6) Die beiden Ersatzschaltbilder zur realen Quelle sind identisch. Der Innenwiderstand beziehungsweise der Innenleitwert ist in beiden Ersatzschaltungen gleich gross. Der Quellen- Innenwiderstand/leitwert ist mit der idealen Spannungs/Stromquelle untrennbar verbunden! Sie bilden zusammen eine Ganzheit. Dagegen sind die Spannung am Innenwiderstand/leitwert und der Strom durch den Innenwiderstand/leitwert in den beiden Ersatzschaltbildern verschieden gross. Allerdings können diese Spannung und der Strom durch R i bzw. G i weder gemessen, noch getrennt von der Leerlaufspannung oder dem Kurzschlussstrom beschrieben werden. 4

5 4 Einfacher Stromkreis mit realer Quelle 4 Einfacher Stromkreis mit realer Quelle Spannung und Strom durch den Lastwiderstand R L : Abbildung 6: Reale Spannungsquelle Spannungsteiler: U L = U 0 R i + R L : R L (7) U L 1 = I L = U 0 R L R i + R L (8) R L Abbildung 7: Reale Stromquelle R i R L Parallelschaltung von R i und R L U L = I K : R L (9) R i + R L 5 Quellenkennlinie U L R i = I L = I K (10) R L R i + R L Die Darstellung nach Abbildung 8 nennen wir die Quellenkennlinie. Darin sind die Grössen U L, I K und R i, G i die Kenngrössen der Quelle. Die Quellenkennlinie entsteht aus der Aufnahme von U L und I L mit einer Messanordnung nach Abbildung 3 für 0 < R L < 5

6 6 Abgegebene Leistung Wird die reale Quelle nacheinander mit zwei oder mehr verschiedenen Lastwiderständen belastet, ergeben sich zwei oder mehr Arbeitspunkte, die auf der Quellekennlinie liegen. R i = U Ln+1 U Ln I Ln I Ln+1 (11) Abbildung 8: Quellenkennlinien mit Arbeitspunkten 6 Abgegebene Leistung Wir betrachten die von einer realen Quelle an einen Lastwiderstand abgegebene Leistung. Die Energie ist gleich dem Produkt aus Leistung und der Zeit, während der diese Leistung wirksam ist. Mit der Messanordnung nach Bild 9 ermitteln wir die Leistung P L im Lastwiderstand. Die Grösse des Lastwiderstandes sei einstellbar. Abbildung 9: Messanordnung Mit P L = I L U L wird: (12) 1 R L P L = U 0 U 0 = U 2 R L 0 R L + R i R L + R i (R L + R i ) 2 (13) 6

7 7 Der Reflexionsfaktor (Leistungsverlust bei Fehlanpassung) Für den Fall, dass R L = R i ist d.h. für den Fall der Leistungsanpassung gelten: U L = U 0 2 und I L = I K 2 mit der Normierung P 0 = U 0 I K wird: (14) P 0 = R i I K I K = I 2 K R i oder: P 0 = U 0 R i U 0 = U 2 0 R i (15) Die normierte Grösse P 0 ist die in der Quelle verbrauchte Leistung, wenn diese kurzgeschlossen wird. Beispiel 6.1. Stellen Sie Leistung P in Abhängigkeit des Lastwiderstandes R L in einem Diagramm dar (mit Excel). Untersuchen Sie die drei Fälle 1. R L >> R i man nennt diesen Fall Spannungsanpassung. 2. R L = R i man nennt diesen Fall Leistungsanpassung. 3. R L << R i man nennt diesen Fall Stromanpassung. 7 Der Reflexionsfaktor (Leistungsverlust bei Fehlanpassung) Wir gehen von folgendem Erklärungsmodell aus: Abbildung 10: Erklärungsmodell Reflexionsfaktor Der reflektierte Strom I r in unserem Denkmodell wird: Reflexionsfaktor R i I r = I L1 I L = I K 2 I K = I K R L + R i 2 RL R i (16) R L + R i r = I r I L1 = R L R i R L + R i = R L R i 1 R L R i + 1 (17) 7

8 8 Zusammenschalten von Quellen 8 Zusammenschalten von Quellen 8.1 Serie- und Parallelschaltung (a) (b) Abbildung 11: Serie- und Parallelschaltung von realen Quellen Serieschaltung: U 0ges = U 01 + U 02 + U 03 (18) R iges = R i1 + R i2 + R i3 (19) Es dürfen nur Quellen mit gleichen Urspannungen parallel geschaltet werden. Parallelschaltung: U 0ges = U 01 = U 02 = U 03 (20) 8.2 Zusammenwirken mehrerer Quellen R iges = R i1 //R i2 //R i3 (21) Parallelschaltung von verschiedenen Quellen (normalerweise nicht erlaubt). Im Beispiel werden zwei Nickel-Cadmium-Zellen mit unterschiedlichem Ladezustand parallelgeschaltet. 8

9 8 Zusammenschalten von Quellen Abbildung 12: Parallelschaltung von unterschiedlichen Quellen Berechnung: 9

10 8 Zusammenschalten von Quellen Die vorherige Schaltung nach Abbildung 12 wird erweitert durch einen gemeinsamen Lastwiderstand R3: Abbildung 13: Parallelschaltung von Quellen mit Laswiderstand Die Berechnung dieses Beispieles kann mit dem Überlagerungssatz (nach Helmholtz) oder mit dem Maschen- und Knotenansatz erfolgen. Vorgehen Helmholtz: 1. Alle Urspannungen bis auf eine, werden gedanklich kurzgeschlossen. 2. Die Teilströme berechnen. 3. Das Verfahren mit allen Quellen wiederholen. 4. Vorzeichenrichtige Addition der Teilströme. 10

11 9 Ersatzquellen 9 Ersatzquellen Bei den bisher behandelten gemischten Schaltungen von Widerständen suchten wir zur Vereinfachung stets nach einer reinen Serie- oder Parallelschaltung. Es gibt Fälle, bei denen dieser Ansatz nicht weiterführt. Als Beispiel nehmen wir eine bekannte Brückenschaltung und erweitern sie mit einem Widerstand R5. Gesucht ist der Strom I5. Abbildung 14: Brückenschaltung Wir versuchen, die gegebene Schaltung (hier die Brückenschaltung) auf eine Quelle zurückzuführen. Dies wird zuerst an einer einfacheren Schaltung, nämlich an einem Spannungsteiler, demonstriert: Abbildung 15: Spannungsteiler Der links eingerahmte Schaltungsteil wird in eine sogenannte Ersatzquelle umgewandelt. Diese Ersatzquelle ist rechts eingerahmt. Wir suchen also eine Quelle mit der Ersatzurspannung Uo und dem Ersatzinnenwiderstand Ri, welche dasselbe Verhalten wie die Ausgangsschaltung aufweist. 11

12 9 Ersatzquellen Welche Überlegungen führen uns zur Ersatzquelle mit den unbekannten Grössen Uo und Ri? Wir zeichnen von der Ausgangsschaltung eine Lastkennlinie I L = f(u L ) und bestimmen daraus Uo und Ri. Lastkennlinie der Ausgangsschaltung: 6 4 IL [ma] U L [V] Abbildung 16: Last-Kennlinie Wir orientieren uns an der Leerlaufspannung der Ausgangsschaltung und erhalten eine Ersatzquelle, welche als Ersatzspannungsquelle bezeichnet wird. Eine typische Anwendung ist die Berechnung unabgeglichener Brückenschaltungen (siehe erstes Beispiel). 9.1 Ersatzspannungsquelle Abbildung 17: Ersatzspannungsquelle Beispiel 9.1. Lösen Sie das Beispiel nach Abbildung 14, also eine unabgeglichene Brückenschaltung, mit Hilfe einer Ersatzspannungsquelle. 12

13 9 Ersatzquellen Falls wir uns am Kurzschlussstrom der Ausgangsschaltung orientieren, erhalten wir eine Ersatzquelle, welche als Ersatzstromquelle bezeichnet wird. Diese hat die gleiche Lastkennlinie wie die Ersatzspannungsquelle. Ersatzstromquellen werden vorzugsweise bei der Berechnung gewisser Transistorschaltungen eingesetzt. 9.2 Ersatzstromquelle Abbildung 18: Ersatzstromquelle Beispiel 9.2. Bestimmen Sie den Strom I4 mit Hilfe einer Ersatzspannungsquelle: Beispiel 9.3. Bestimmen Sie den Strom I6 mit Hilfe einer Ersatzspannungsquelle 13

14 9 Ersatzquellen Beispiel 9.4. UL (Leerlauf) = 7,5V, UL (Last) = 6V, Gesucht: R1, R2 Beispiel 9.5. Bei einem bestimmten Lastwiderstand RL beträgt UL wie eingezeichnet 2V und IL ist 0,6mA. Wird RL verstellt, verändern sich UL um 0,2V auf 1,8V und IL um 0,1mA auf 0,7mA. Gesucht: R1, R2 14

15 Literatur Beispiel 9.6. Literatur 15

1. Gleichstrom 1.2 Aktive und passive Zweipole, Gleichstromschaltkreise

1. Gleichstrom 1.2 Aktive und passive Zweipole, Gleichstromschaltkreise Elektrischer Grundstromkreis Reihenschaltung von Widerständen und Quellen Verzweigte Stromkreise Parallelschaltung von Widerständen Kirchhoffsche Sätze Ersatzquellen 1 2 Leerlauf, wenn I=0 3 4 Arbeitspunkt

Mehr

GRUNDLAGENLABOR CLASSIC LINEARE QUELLEN ERSATZSCHALTUNGEN UND KENNLINIEN

GRUNDLAGENLABOR CLASSIC LINEARE QUELLEN ERSATZSCHALTUNGEN UND KENNLINIEN GRNDLAGENLABOR CLASSIC LINEARE QELLEN ERSATZSCHALTNGEN ND KENNLINIEN Inhalt:. Einleitung und Zielsetzung...2 2. Theoretische Aufgaben - Vorbereitung...2 3. Praktische Messaufgaben...3 Anhang: Theorie Quellen,

Mehr

Versuch B2/1: Spannungs- und Stromquellen, Messung von Spannungen und Stromstärken

Versuch B2/1: Spannungs- und Stromquellen, Messung von Spannungen und Stromstärken Versuch B2/1: Spannungs- und Stromquellen, Messung von Spannungen und Stromstärken 1.1 Quellen 1.1.1 Der Begriff des Zweipols (Eintores) Ein Zweipol ist vollständig beschrieben durch zwei Größen: Die Klemmenspannung

Mehr

Lo sung zu UÜ bung 1. I Schaltung Ersatzquellenberechnung. 1.1 Berechnung von R i

Lo sung zu UÜ bung 1. I Schaltung Ersatzquellenberechnung. 1.1 Berechnung von R i Lo sung zu UÜ bung 1 I Schaltung 1 Schaltbild 1: 1.Schaltung mit Spannungsquelle 1. Ersatzquellenberechnung 1.1 Berechnung von R i Zunächst Ersatzschaltbild von den Klemmen aus betrachtet zeichnen: ESB

Mehr

Dieses Buch darf ohne Genehmigung des Autors in keiner Form, auch nicht teilweise, vervielfältig werden.

Dieses Buch darf ohne Genehmigung des Autors in keiner Form, auch nicht teilweise, vervielfältig werden. Netzwerke berechnen mit der Ersatzspannungsquelle von Wolfgang Bengfort ET-Tutorials.de Elektrotechnik verstehen durch VIDEO-Tutorials zum Impressum Rechtlicher Hinweis: Alle Rechte vorbehalten. Dieses

Mehr

Grundlagen der Elektrotechnik 1

Grundlagen der Elektrotechnik 1 Grundlagen der Elektrotechnik Kapitel : Berechnungsverfahren für Netzwerke Berechnungsverfahren für Netzwerken. Überlagerungsprinzip. Maschenstromverfahren. Knotenpotentialverfahren 6. Zweipoltheorie 7.5

Mehr

Aufgabe 1: Emitterfolger als Spannungsquelle (leicht)

Aufgabe 1: Emitterfolger als Spannungsquelle (leicht) Aufgabe 1: Emitterfolger als Spannungsquelle (leicht) Ein Emitterfolger soll in bezug auf den Lastwiderstand R L als Spannungsquelle eingesetzt werden. Verwendet werde ein Transistor mit der angegebenen

Mehr

Lösungen der Übungsaufgaben zur Berechnung von Netzwerken

Lösungen der Übungsaufgaben zur Berechnung von Netzwerken Lösungen der Übungsaufgaben zur Berechnung von Netzwerken W. Kippels 1. Dezember 2013 Inhaltsverzeichnis 1 Allgemeines 2 2 Übungsfragen mit Antworten 2 2.1 Übungsfragen zu Spannungs- und Stromquellen..............

Mehr

Übungsaufgaben GET. Zeichnen Sie qualitativ den Verlauf des Gesamtwiderstandes R ges zwischen den Klemmen A und B als Funktion des Drehwinkels α

Übungsaufgaben GET. Zeichnen Sie qualitativ den Verlauf des Gesamtwiderstandes R ges zwischen den Klemmen A und B als Funktion des Drehwinkels α Übungsaufgaben GET FB Informations- und Elektrotechnik Prof. Dr.-Ing. F. Bittner Gleichstromnetze 1. In der in Bild 1a dargestellten Serienschaltung der Widerstände R 1 und R 2 sei R 1 ein veränderlicher

Mehr

von Alexander Wenk 2005, Alexander Wenk, 5079 Zeihen

von Alexander Wenk 2005, Alexander Wenk, 5079 Zeihen Repetition Elektrotechnik für Elektroniker im 4. Lehrjahr von Aleander Wenk 05, Aleander Wenk, 5079 Zeihen Inhaltsverzeichnis Temperaturabhängigkeit von Widerständen 1 Berechnung der Widerstandsänderung

Mehr

Bundestechnologiezentrum für Elektro- und Informationstechnik e.v.

Bundestechnologiezentrum für Elektro- und Informationstechnik e.v. Lernprogramm Grundlagen der Elektrotechnik 2 Themenübersicht Elektischer Widerstand und deren Schaltungen Linearer Widerstand im Stromkreis Ohmsches Gesetz Ohmsches Gesetz Strom und Spannung am linearen

Mehr

9. Netzwerksätze. Einführende Bemerkung. Der Überlagerungssatz. Satz von der Ersatzspannungsquelle. Satz von der Ersatzstromquelle

9. Netzwerksätze. Einführende Bemerkung. Der Überlagerungssatz. Satz von der Ersatzspannungsquelle. Satz von der Ersatzstromquelle Grundlagen der Elektrotechnik GET 2-387- 9. Netzwerksätze Einführende Bemerkung Der Überlagerungssatz Satz von der Ersatzspannungsquelle Satz von der Ersatzstromquelle [Buch GET 2: Seiten 323-343] Einführende

Mehr

Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2

Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2 Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Prof. Dr.-Ing. E.-P. Meyer Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2 Spannungsteiler Ersatzspannungsquelle

Mehr

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik erbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik ersuch 2 Ersatzspannungsquelle und Leistungsanpassung Teilnehmer: Name orname Matr.-Nr. Datum

Mehr

ELEKTRISCHE GRUNDSCHALTUNGEN

ELEKTRISCHE GRUNDSCHALTUNGEN ELEKTRISCHE GRUNDSCHALTUNGEN Parallelschaltung Es gelten folgende Gesetze: (i) An parallel geschalteten Verbrauchern liegt dieselbe Spannung. (U = U 1 = U 2 = U 3 ) (ii) Bei der Parallelschaltung ist der

Mehr

1 Elektrische Stromkreise und lineare Netzwerke /20

1 Elektrische Stromkreise und lineare Netzwerke /20 Elektrische Stromkreise und lineare Netzwerke /20 Zwei Batterien G und G2 mit unterschiedlichen elektrischen Eigenschaften wurden polrichtig parallel geschaltet und an den Anschlussklemmen A, B mit einem

Mehr

Lineare Quellen. Martin Schlup. 7. Februar 2014

Lineare Quellen. Martin Schlup. 7. Februar 2014 Lineare Quellen Martin Schlup 7. Februar 204. Ideale Quellen Ideale Quellen sind Modelle mit Eigenschaften, die in Wirklichkeit nur näherungsweise realisiert werden können. Ideale Quellen sind z. B. in

Mehr

A1 A2 A3 A4 A5 A6 Summe

A1 A2 A3 A4 A5 A6 Summe 1. Klausur Grundlagen der Elektrotechnik I-A 18. Dezember 2004 Name:............................. Vorname:............................. Matr.-Nr.:............................. Bitte den Laborbeteuer ankreuzen

Mehr

Grundlagen. Stromkreisgesetze. Andreas Zbinden. Gewerblich- Industrielle Berufsschule Bern. 1 Ohmsches Gesetz 2. 2 Reihnenschaltung von Widerständen 6

Grundlagen. Stromkreisgesetze. Andreas Zbinden. Gewerblich- Industrielle Berufsschule Bern. 1 Ohmsches Gesetz 2. 2 Reihnenschaltung von Widerständen 6 Elektrotechnik Grundlagen Stromkreisgesetze Andreas Zbinden Gewerblich- Industrielle Berufsschule Bern Inhaltsverzeichnis 1 Ohmsches Gesetz 2 2 Reihnenschaltung von Widerständen 6 3 Parallelschaltung von

Mehr

c~åüüçåüëåüìäé==açêíãìåç= FB Informations- und Elektrotechnik

c~åüüçåüëåüìäé==açêíãìåç= FB Informations- und Elektrotechnik 1. Allgemeines Spannungsquellen gehören zu den Grundelementen der Elektrotechnik. Sie werden eindeutig beschrieben durch den Innenwiderstand (Quellenwiderstand) und die Leerlaufspannung U 0. 1.1 Ideale

Mehr

Vorlage für Expertinnen und Experten

Vorlage für Expertinnen und Experten 2012 Qualifikationsverfahren Multimediaelektroniker / Multimediaelektronikerin Berufskenntnisse schriftlich Basiswissen: Elektrotechnik Vorlage für Expertinnen und Experten Zeit 120 Minuten für alle 3

Mehr

Aufgabe 1 - Knotenspannungsanalyse

Aufgabe 1 - Knotenspannungsanalyse KLAUSUR Grundlagen der Elektrotechnik 02.03.2011 Prof. Ronald Tetzlaff Dauer: 150 min. Aufgabe 1 2 3 4 5 Σ Punkte 11 7 10 11 11 50 Aufgabe 1 - Knotenspannungsanalyse Gegeben ist das Netzwerk mit den folgenden

Mehr

Ein Glühweinkocher für 230 V hat ein Heizelement aus Chrom-Nickel-Draht mit dem Temperaturkoeffizienten 20 =

Ein Glühweinkocher für 230 V hat ein Heizelement aus Chrom-Nickel-Draht mit dem Temperaturkoeffizienten 20 = Aufgabe MG01 Ein Glühweinkocher für 230 V hat ein Heizelement aus Chrom-Nickel-Draht mit dem Temperaturkoeffizienten 20 =4 10 4 1 C. Um welchen Faktor ist seine Stromaufnahme bei der Anfangstemperatur

Mehr

Elektrotechnisches Grundlagen-Labor I. Netzwerke. Versuch Nr. Anzahl Bezeichnung, Daten GL-Nr.

Elektrotechnisches Grundlagen-Labor I. Netzwerke. Versuch Nr. Anzahl Bezeichnung, Daten GL-Nr. Elektrotechnisches Grundlagen-Labor I Netzwerke Versuch Nr. 1 Erforderliche Geräte Anzahl Bezeichnung, Daten GL-Nr. 2 n (Netzgeräte) 0...30V, 400mA 111/112 2 Vielfachmessgeräte 100kΩ/V 125/126 2 Widerstandsdekaden

Mehr

1 Elektrotechnik. 1.1 Schaltungsbeispiele mit idealen Spannungs- und Stromquellen zur Vereinfachung oder Komplexitätserhöhung von Aufgaben

1 Elektrotechnik. 1.1 Schaltungsbeispiele mit idealen Spannungs- und Stromquellen zur Vereinfachung oder Komplexitätserhöhung von Aufgaben 1 Elektrotechnik 1.1 Schaltungsbeispiele mit idealen Spannungs- und Stromquellen zur Vereinfachung oder Komplexitätserhöhung von Aufgaben 1.1.1 Widerstand parallel zur idealen Spannungsquelle I R1 I R2

Mehr

1. Gleichstrom 1.4 Berechnungsverfahren für die Netzwerke Überlagerungsprinzip Maschenstromverfahren Knotenpotenzialverfahren Zweipoltheorie

1. Gleichstrom 1.4 Berechnungsverfahren für die Netzwerke Überlagerungsprinzip Maschenstromverfahren Knotenpotenzialverfahren Zweipoltheorie Überlagerungsprinzip Maschenstromverfahren Knotenpotenzialverfahren Zweipoltheorie 1 Überlagerungsprinzip (Superposition) Vorgehensweise: Jede Energiequelle wird getrennt betrachtet Resultierende Gesamtwirkung

Mehr

Laboratorium für Grundlagen Elektrotechnik

Laboratorium für Grundlagen Elektrotechnik niversity of Applied Sciences Cologne Fakultät 07: nformations-, Medien- & Elektrotechnik nstitut für Elektrische Energietechnik Laboratorium für Grundlagen Elektrotechnik Versuch 1 1.1 Aufnahme von Widerstandskennlinien

Mehr

Musterloesung. Name:... Vorname:... Matr.-Nr.:...

Musterloesung. Name:... Vorname:... Matr.-Nr.:... 1. Klausur Grundlagen der Elektrotechnik I-A 2. Dezember 2002 berlin Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten rennen Sie den Aufgabensatz nicht auf. Benutzen Sie für die Lösung der

Mehr

Übung Halbleiterschaltungstechnik

Übung Halbleiterschaltungstechnik Übung Halbleiterschaltungstechnik WS 2011/12 Übungsleiter: Hannes Antlinger Martin Heinisch Thomas Voglhuber-Brunnmaier Institut für Mikroelektronik und Mikrosensorik Altenbergerstr. 69, 4040 Linz, Internet:

Mehr

GRUNDLAGEN DER ELEKTROTECHNIK

GRUNDLAGEN DER ELEKTROTECHNIK GRUNDLAGEN DER ELEKTROTECHNIK Versuch 1: Gleichstrommessungen Übersicht In dieser Übung sollen die Vielfachmessgeräte (Multimeter) des Labors kennengelernt werden. In mehreren Aufgaben sollen Spannungen,

Mehr

Name:...Vorname:... Seite 1 von 7. Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:...

Name:...Vorname:... Seite 1 von 7. Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Name:...Vorname:... Seite 1 von 7 FH München, FB 03 Grundlagen der Elektrotechnik SS 2006 Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Zugelassene Hilfsmittel: beliebige eigene A 1 2 3 4 Σ N Aufgabensteller:

Mehr

Technische Grundlagen: Übungssatz 1

Technische Grundlagen: Übungssatz 1 Fakultät Informatik Institut für Technische Informatik Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Lösungen Technische Grundlagen: Übungssatz Aufgabe. Wiederholungsfragen zum Physik-Unterricht:

Mehr

2 Übungen und Lösungen

2 Übungen und Lösungen ST ING Elektrotechnik 0-2 - 2 Übungen und Lösungen 2. Übungen. ELEKTISCHES FELD a b α 2 Zwischen zwei metallischen Platten mit dem bstand a = 5 mm herrsche eine elektrische Feldstärke von E = 500 kvm -.

Mehr

2 Netze an Gleichspannung

2 Netze an Gleichspannung Carl Hanser Verlag München 2 Netze an Gleichspannung Aufgabe 2.13 Die Reihenschaltung der Widerstände R 1 = 100 Ω und R 2 liegt an der konstanten Spannung U q = 12 V. Welchen Wert muss der Widerstand R

Mehr

1. Ablesen eines Universalmessgerätes und Fehlerberechnung

1. Ablesen eines Universalmessgerätes und Fehlerberechnung Laborübung 1 1-1 1. Ablesen eines Universalmessgerätes und Fehlerberechnung Wie groß ist die angezeigte elektrische Größe in den Bildern 1 bis 6? Mit welchem relativen Messfehler muss in den sechs Ableseübungen

Mehr

2 Gleichstrom-Schaltungen

2 Gleichstrom-Schaltungen für Maschinenbau und Mechatronik Carl Hanser Verlag München 2 Gleichstrom-Schaltungen Aufgabe 2.1 Berechnen Sie die Kenngrößen der Ersatzquellen. Aufgabe 2.5 Welchen Wirkungsgrad hätte die in den Aufgaben

Mehr

Geschrieben von: Volker Lange-Janson Montag, den 09. März 2015 um 07:46 Uhr - Aktualisiert Montag, den 09. März 2015 um 08:11 Uhr

Geschrieben von: Volker Lange-Janson Montag, den 09. März 2015 um 07:46 Uhr - Aktualisiert Montag, den 09. März 2015 um 08:11 Uhr // // // Spannungs-Stabilisierung mit einer Z-Diode - Berechnung Diese Grundschaltung einer Spannungsstabilisierung stellt die einfachste Anwendung einer Zenerdiode dar. Die Schaltung wandelt eine schwankende

Mehr

Diplomvorprüfung SS 2010 Fach: Grundlagen der Elektrotechnik Dauer: 90 Minuten

Diplomvorprüfung SS 2010 Fach: Grundlagen der Elektrotechnik Dauer: 90 Minuten Diplomvorprüfung Grundlagen der Elektrotechnik Seite 1 von 8 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2010 Fach: Grundlagen

Mehr

Grundstromkreis. Praktikum. Grundlagen der Elektrotechnik. Versuch: Versuchsanleitung. 0. Allgemeines

Grundstromkreis. Praktikum. Grundlagen der Elektrotechnik. Versuch: Versuchsanleitung. 0. Allgemeines HOCHSCHULE FÜR TECHNIK UND WIRTSCHFT DRESDEN (FH) University of pplied Sciences Fachbereich Elektrotechnik Praktikum Grundlagen der Elektrotechnik Versuch: Grundstromkreis Versuchsanleitung 0. llgemeines

Mehr

Übungsserie: Diode 1

Übungsserie: Diode 1 7. März 2016 Elektronik 1 Martin Weisenhorn Übungsserie: Diode 1 1 Vorbereitung Eine Zenerdiode ist so gebaut, dass der Betrieb im Durchbruchbereich sie nicht zerstört. Ihre Kennlinie ist in Abb. 1 dargestellt.

Mehr

Labor Einführung in die Elektrotechnik

Labor Einführung in die Elektrotechnik Laborleiter: Ostfalia Hochschule für angewandte Wissenschaften Fakultät Elektrotechnik Labor Einführung in die Elektrotechnik Prof. Dr. M. Prochaska Laborbetreuer: Versuch 2: Erstellen technischer Berichte,

Mehr

Elektronik- und Messtechniklabor, Messbrücken. A) Gleichstrom-Messbrücken. gespeist. Die Brücke heisst unbelastet, weil zwischen den Klemmen von U d

Elektronik- und Messtechniklabor, Messbrücken. A) Gleichstrom-Messbrücken. gespeist. Die Brücke heisst unbelastet, weil zwischen den Klemmen von U d A) Gleichstrom-Messbrücken 1/6 1 Anwendung und Eigenschaften Im Wesentlichen werden Gleichstrommessbrücken zur Messung von Widerständen eingesetzt. Damit können indirekt alle physikalischen Grössen erfasst

Mehr

TR Transformator. Blockpraktikum Herbst Moritz Stoll, Marcel Schmittfull (Gruppe 2b) 25. Oktober 2007

TR Transformator. Blockpraktikum Herbst Moritz Stoll, Marcel Schmittfull (Gruppe 2b) 25. Oktober 2007 TR Transformator Blockpraktikum Herbst 2007 (Gruppe 2b) 25 Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 11 Unbelasteter Transformator 2 12 Belasteter Transformator 3 13 Leistungsanpassung 3 14 Verluste

Mehr

Grundlagen der Elektrotechnik 2 Seminaraufgaben

Grundlagen der Elektrotechnik 2 Seminaraufgaben ampus Duisburg Grundlagen der Elektrotechnik 2 Allgemeine und Theoretische Elektrotechnik Prof. Dr. sc. techn. Daniel Erni Version 2005.10 Trotz sorgfältiger Durchsicht können diese Unterlagen noch Fehler

Mehr

Übungsaufgaben zur Vorlesung Elektrotechnik 1

Übungsaufgaben zur Vorlesung Elektrotechnik 1 Fachhochschule Esslingen - Hochschule für Technik Fachbereich Informationstechnik Übungsaufgaben zur Vorlesung Elektrotechnik 1 Fachhochschule Esslingen - Hochschule für Technik Fachbereich Informationstechnik

Mehr

Lineare elektrische Netze

Lineare elektrische Netze Lineare elektrische Netze Energiegewinn &-verlust Energiegewinn, Erzeugung Energieverlust, Verbrauch ds E ds E, U I U I F= m g d s F= m g U I Drei Beispiele aus der Mechanik und aus der Elektrotechnik

Mehr

NTB Druckdatum: ELA I

NTB Druckdatum: ELA I GLEICHSTROMLEHRE Einführende Grundlagen - Teil 1 Elektrische Ladung Elektrische Stromdichte N elektrische Ladung Stromstärke Anzahl Elektronen Elementarladung elektrische Stromdichte Querschnittsfläche

Mehr

6. Ideale und reale Spannungsquellen

6. Ideale und reale Spannungsquellen 6.1 Ideale Spannungsquelle Unter einer idealen Spannungsquelle versteht man eine Spannungsquelle deren usgangsspannung sich nicht verringert, egal wie groß der usgangsstrom wird. Sie kann also theoretisch

Mehr

Elektrische Nachrichtentechnik Grundlagen der Elektrotechnik Versuch M-4 im Fachbereich Technik an der HS Emden-Leer

Elektrische Nachrichtentechnik Grundlagen der Elektrotechnik Versuch M-4 im Fachbereich Technik an der HS Emden-Leer 1. Versuchsanleitung Ziel des Versuchs M-4 ist das VerstÄndnis der Eigenschaften von Spannungsquellen får Gleichspannung und Wechselspannung sowie Signalquellen allgemein. Der Versuch geht auf die Beschreibung

Mehr

1. Laboreinheit - Hardwarepraktikum SS 2005

1. Laboreinheit - Hardwarepraktikum SS 2005 1. Versuch: Gleichstromnetzwerk Ohmsches Gesetz Kirchhoffsche Regeln Gleichspannungsnetzwerke Widerstand Spannungsquelle Maschen A B 82 Ohm Abbildung 1 A1 Berechnen Sie für die angegebene Schaltung alle

Mehr

Vorbereitung zum Versuch

Vorbereitung zum Versuch Vorbereitung zum Versuch elektrische Messverfahren Armin Burgmeier (347488) Gruppe 5 2. Dezember 2007 Messungen an Widerständen. Innenwiderstand eines µa-multizets Die Schaltung wird nach Schaltbild (siehe

Mehr

Grundlagen der Elektrotechnik III

Grundlagen der Elektrotechnik III 1 Vordiplomprüfung Grundlagen der Elektrotechnik III 06. April 2006 Name:... Vorname:... Mat.Nr.:... Studienfach:... Abgegebene Arbeitsblätter:... Bitte unterschreiben Sie, wenn Sie mit der Veröffentlichung

Mehr

Prof. Dr.-Ing. Rainer Ose Elektrotechnik für Ingenieure Grundlagen 4. Auflage, Lösung der Übungsaufgabe ÜA_1_6.4.B:

Prof. Dr.-Ing. Rainer Ose Elektrotechnik für Ingenieure Grundlagen 4. Auflage, Lösung der Übungsaufgabe ÜA_1_6.4.B: Prof. Dr.-ng. Rainer Ose Elektrotechnik für ngenieure Grundlagen 4. Auflage, 2008 Fachhochschule Braunschweig/Wolfenbüttel -niversity of Applied Sciences- Lösung der Übungsaufgabe ÜA_1_6.4.B: Für die Glühlampe

Mehr

Physikalisches Praktikum

Physikalisches Praktikum MI2AB Prof. Ruckelshausen Versuch 4.3: Innerer Widerstand von Messinstrumenten, Gruppe 2, Mittwoch: Patrick Lipinski, Sebastian Schneider Patrick Lipinski, Sebastian Schneider Seite 1 von 5 Inhaltsverzeichnis

Mehr

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik Projekt 2HEA 2005/06 Formelzettel Elektrotechnik Teilübung: Spule im Gleichspannungskreis Gruppenteilnehmer: Asanin, Budjevac Abgabedatum: 24.02.2006 Asanin;Budjevac Inhaltsverzeichnis 2HEA INHALTSVERZEICHNIS

Mehr

ELEKTRISCHE SPANNUNGSQUELLEN

ELEKTRISCHE SPANNUNGSQUELLEN Physikalisches Grundpraktikum I Versuch: (Versuch durchgeführt am 17.10.2000) ELEKTRISCHE SPANNUNGSQUELLEN Denk Adelheid 9955832 Ernst Dana Eva 9955579 Linz, am 22.10.2000 1 I. PHYSIKALISCHE GRUNDLAGEN

Mehr

Professur für Leistungselektronik und Messtechnik

Professur für Leistungselektronik und Messtechnik Aufgabe 1: Diode I (leicht) In dieser Aufgabe sollen verschiedene Netzwerke mit Dioden analysiert werden. I = 1 A R = 2 Ω T = 25 C Diodenkennlinie: Abbildung 5 Abbildung 1: Stromteiler mit Diode a) Ermitteln

Mehr

Übungsaufgaben Elektrotechnik (ab WS2011)

Übungsaufgaben Elektrotechnik (ab WS2011) Flugzeug- Elektrik und Elektronik Prof. Dr. Ing. Günter Schmitz Aufgabe 1 Übungsaufgaben Elektrotechnik (ab WS2011) Gegeben sei eine Zusammenschaltung einiger Widerstände gemäß Bild. Bestimmen Sie den

Mehr

Basiswissen Gleich- und Wechselstromtechnik

Basiswissen Gleich- und Wechselstromtechnik Marlene Marinescu Jürgen Winter Basiswissen Gleich- und Wechselstromtechnik Mit ausführlichen Beispielen Mit 217 Abbildungen Studium Technik vieweg VII Inhaltsverzeichnis I. Grundlegende Begriffe 1 1.

Mehr

Übungsaufgaben Elektrotechnik

Übungsaufgaben Elektrotechnik Flugzeug- Elektrik und Elektronik Prof. Dr. Ing. Günter Schmitz Aufgabe 1 Übungsaufgaben Elektrotechnik Gegeben sei eine Zusammenschaltung einiger Widerstände gemäß Bild. Bestimmen Sie den Gesamtwiderstand

Mehr

Lösungen zu Kapitel 2

Lösungen zu Kapitel 2 Elektrotechnik für Studium und Praxis: Lösungen Lösungen zu Kapitel Aufgabe.1 Aus der Maschengleichung ergibt sich: I 4 = U q1 + U q R 1 I 1 R I R I R 4 I 4 = 4 V + 1 V Ω 5 A Ω, A 5 Ω 4 A Ω I 4 = (4 +

Mehr

Grundlagen der Elektrotechnik 3

Grundlagen der Elektrotechnik 3 Grundlagen der Elektrotechnik 3 Kapitel 4 Ortskurven S. 1 4 Ortskurven Eine Ortskurve ist die Kurve, welche alle Endpunkte von eigern verbindet Eine Ortskurve kann Verlauf in Abhängigkeit von der Frequenz

Mehr

14 Elektrische Messtechnik

14 Elektrische Messtechnik für Maschinenbau und Mechatronik Carl Hanser Verlag München 14 Elektrische Messtechnik Aufgabe 14.1 Der Strom einer linearen Quelle wird mit einem Amperemeter gemessen, das in jedem Messbereich bei Vollausschlag

Mehr

PrÄfung Wintersemester 2015/16 Grundlagen der Elektrotechnik Dauer: 90 Minuten

PrÄfung Wintersemester 2015/16 Grundlagen der Elektrotechnik Dauer: 90 Minuten PrÄfung GET Seite 1 von 8 Hochschule MÄnchen FK 03 Zugelassene Hilfsmittel: Taschenrechner, 1 DIN-A4-Blatt PrÄfung Wintersemester 2015/16 Grundlagen der Elektrotechnik Dauer: 90 Minuten Matr.-Nr.: HÅrsaal:

Mehr

Grundlagen der ET. Gleichstrom

Grundlagen der ET. Gleichstrom Grundlagen der ET Gleichstrom Gleichstrom Gleichstrom Gleichspannungsquelle - Gleichstrom - Widerstand I = U P=UI=I =U / Erzeuger/ Verbraucher Kichhoffsche Gleichungen/Maschengleichung Wir erinnern uns:

Mehr

1 Gemischte Schaltung Wie gross ist der Gesamtwiderstand? (A) (B) (C) (D) (F) keiner. Begründen Sie Ihren Lösungsvorschlag!

1 Gemischte Schaltung Wie gross ist der Gesamtwiderstand? (A) (B) (C) (D) (F) keiner. Begründen Sie Ihren Lösungsvorschlag! 1 Gemischte Schaltung Wie gross ist der Gesamtwiderstand? (A) (B) (C) (D) 1,00kΩ 1,48kΩ 1,71kΩ 6,80kΩ (E) 7,36 kω (F) keiner U 1 I 1 2 3 = 1, 20kΩ 1 2 = 560Ω = 5, 60kΩ 3 Begründen Sie Ihren Lösungsvorschlag!

Mehr

2.4 Numerisches Lösungsverfahren: Iteration 100 C 50 C / A I 2 / V. 2 Diode 2.4. Numerisches Lösungsverfahren: Iteration 12

2.4 Numerisches Lösungsverfahren: Iteration 100 C 50 C / A I 2 / V. 2 Diode 2.4. Numerisches Lösungsverfahren: Iteration 12 2 Diode 2.4. Numerisches Lösungsverfahren: Iteration 12 Aufgabe 6 Serienschaltung von Dioden Geg.: Diodenkennlinien für T =5 C und T =1 C U =1.2V Ges.: U 1,min und U 1,max für gegebenen Temperaturbereich

Mehr

2.5 an einer Spannungsquelle mit U0 12V

2.5 an einer Spannungsquelle mit U0 12V lausur Elektrotechnik Maschinenbau & Mechatronik (B.Eng.) 4.4.3 Hinweise zur Bearbeitung: Lesen Sie die Aufgaben gründlich durch. Fertigen Sie bei Bedarf Skizzen an und machen Sie Ihre Ansätze deutlich.

Mehr

Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009

Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009 Name:...Vorname:... Seite 1 von 8 Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009 Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Zugelassene Hilfsmittel: beliebige eigene A

Mehr

Übungsaufgaben zum 5. Versuch 13. Mai 2012

Übungsaufgaben zum 5. Versuch 13. Mai 2012 Übungsaufgaben zum 5. Versuch 13. Mai 2012 1. In der folgenden Schaltung wird ein Transistor als Schalter betrieben (Kennlinien s.o.). R b I b U b = 15V R c U e U be Damit der Transistor möglichst schnell

Mehr

2.) Grundlagen der Netzwerkberechnung / Gleichstrombetrieb

2.) Grundlagen der Netzwerkberechnung / Gleichstrombetrieb HS EL / Fachb. Technik / Studiengang Medientechnik 13.04.14 Seite 2-1 2.) Grundlagen der Netzwerkberechnung / Gleichstrombetrieb 2.1 Quellen 2.1.1 Grundlagen, Modelle, Schaltsymbole Eine elektrische Spannungsquelle

Mehr

Schaltungen mit mehreren Widerständen

Schaltungen mit mehreren Widerständen Grundlagen der Elektrotechnik: WIDERSTANDSSCHALTUNGEN Seite 1 Schaltungen mit mehreren Widerständen 1) Parallelschaltung von Widerständen In der rechten Schaltung ist eine Spannungsquelle mit U=22V und

Mehr

Grundlagen der ET. Gleichstrom

Grundlagen der ET. Gleichstrom Grundlagen der ET Gleichstrom Gleichstrom Gleichstrom Gleichspannungsquelle - Gleichstrom - Widerstand I = U P=UI=I =U / Erzeuger/ Verbraucher Kichhoffsche Gleichungen/Maschengleichung Wir erinnern uns:

Mehr

1 Die Brückenschaltung mit komplexen Widerständen

1 Die Brückenschaltung mit komplexen Widerständen Elektrotechnik - Brückenschaltung 1 Die Brückenschaltung mit komplexen Widerständen 1.1 Aufbau der Brückenschaltung mit Belastung Z2 Z4 1.2 Lösung bei abgeglichener Brückenschaltung Wenn die Brücke abgeglichen

Mehr

Grundlagenwissen Elektrotechnik

Grundlagenwissen Elektrotechnik Marlene Marinescu I Jürgen Winter Grundlagenwissen Elektrotechnik Gleich-, Wechsel- und Drehstrom 3., bearbeitete und erweiterte Auflage Mit 281 Abbildungen und ausführlichen Beispielen STUDIUM 11 VIEWEG+

Mehr

3) Lösungen ET1, Elektrotechnik(Grundlagen), Semester 13/13 4) Beuth-Hochschule, Prof. Aurich, Semester 1-1/6-

3) Lösungen ET1, Elektrotechnik(Grundlagen), Semester 13/13 4) Beuth-Hochschule, Prof. Aurich, Semester 1-1/6- 3 Lösungen ET1, Elektrotechnik(Grundlagen, Semester 13/13 4 Beuth-Hochschule, Prof. Aurich, Semester 1-1/6- Prüfungstag: 30.9.2013 Studiengang: Raum: D136-H5 Haus Bauwesen 2. Wiederholung (letzter Versuch?

Mehr

Klausurvorbereitung Elektrotechnik für Maschinenbau. Thema: Gleichstrom

Klausurvorbereitung Elektrotechnik für Maschinenbau. Thema: Gleichstrom Klausurvorbereitung Elektrotechnik für Maschinenbau 1. Grundbegriffe / Strom (5 Punkte) Thema: Gleichstrom Auf welchem Bild sind die technische Stromrichtung und die Bewegungsrichtung der geladenen Teilchen

Mehr

16 Übungen gemischte Schaltungen

16 Übungen gemischte Schaltungen 6 Übungen gemischte Schaltungen 6. Aufgabe Gemischt (Labor) a) Berechne alle Ströme und Spannungen und messe diese nach! 3 = Rges = + 3 = 4,39kΩ 3 =,939kΩ Iges= Rges =2,46mA=I U = * I = 5,32V = U3 = U

Mehr

I. Bezeichnungen und Begriffe

I. Bezeichnungen und Begriffe UniversitätPOsnabrück Fachbereich Physik Vorlesung Elektronik 1 Dr. W. Bodenberger 1. Einige Bezeichnungen und Begriffe I. Bezeichnungen und Begriffe Spannung: Bezeichnung: u Signalspannung U Versorgungsspannung

Mehr

Vorlage für Expertinnen und Experten

Vorlage für Expertinnen und Experten 2011 Qualifikationsverfahren Multimediaelektroniker / Multimediaelektronikerin Berufskenntnisse schriftlich Basiswissen Elektrotechnik Vorlage für Expertinnen und Experten Zeit 120 Minuten für alle 3 Positionen

Mehr

Praktikum Grundlagen der Elektrotechnik

Praktikum Grundlagen der Elektrotechnik Praktikum Grundlagen der Elektrotechnik 1 Versuch GET 1: Vielfachmesser, Kennlinien und Netzwerke Fakultät für Elektrotechnik und Informationstechnik Institut für Informationstechnik Fachgebiet Grundlagen

Mehr

Physikalisches Praktikum. Grundstromkreis, Widerstandsmessung

Physikalisches Praktikum. Grundstromkreis, Widerstandsmessung Grundstromkreis, Widerstandsmessung Stichworte zur Vorbereitung Informieren Sie sich zu den folgenden Begriffen: Widerstand, spezifischer Widerstand, OHMsches Gesetz, KIRCHHOFFsche Regeln, Reihenund Parallelschaltung,

Mehr

1. Grundlagen! 2. Netzwerke bei Gleichstrom. 2.2 Bezugspfeile. 2.3 Passive Zweipole Ohmsches Gesetz: 2.4 Aktive Zweipole. Stromstärke: Spannung:

1. Grundlagen! 2. Netzwerke bei Gleichstrom. 2.2 Bezugspfeile. 2.3 Passive Zweipole Ohmsches Gesetz: 2.4 Aktive Zweipole. Stromstärke: Spannung: Elektrotechnik - Zusammenfassung. Grundlagen Stromstärke: Stromdichte: 𝐽, 𝐽 𝐴 Spannung: 𝑈" " 𝐸 𝑙" 2. Netzwerke bei Gleichstrom 2.2 Bezugspfeile Erzeuger- Pfeilsystem: Verbraucher- Pfeilsystem: Spannungs-

Mehr

Strom - Spannungscharakteristiken

Strom - Spannungscharakteristiken Strom - Spannungscharakteristiken 1. Einführung Legt man an ein elektrisches Bauelement eine Spannung an, so fließt ein Strom. Den Zusammenhang zwischen beiden Größen beschreibt die Strom Spannungscharakteristik.

Mehr

3 Lineare elektrische Gleichstromkreise

3 Lineare elektrische Gleichstromkreise 3. Eigenschaften elektrischer Stromkreise 7 3 Lineare elektrische Gleichstromkreise 3. Eigenschaften elektrischer Stromkreise Lineare elektrische Stromkreise bestehen aus auelementen mit einer linearen

Mehr

Praktikum Elektrotechnik

Praktikum Elektrotechnik Fachhochschule Konstanz Verfahrens- und mwelttechnik - - Praktikum Elektrotechnik Versuch 4 Spannungsteiler und Brückenschaltung (Schaltungstechik und Messtechnik) Christian Mayr, VB3 4..005 - - Einführung

Mehr

Inhalt. 2.2.9 Leistungsanpassung...63 2.2.10 Die Ersatzspannungsquelle...65

Inhalt. 2.2.9 Leistungsanpassung...63 2.2.10 Die Ersatzspannungsquelle...65 1 Physikalische Größen, Einheiten, Gleichungen...1 1.1 Physikalische Größen...1 1.2 Das internationale Einheitensystem...1 1.3 Gleichungen...5 2 Gleichstromkreise...6 2.1 Grundbegriffe der elektrischen

Mehr

Station 1 A (Reihenschaltung)

Station 1 A (Reihenschaltung) Station 1 A (Reihenschaltung) (a) Die Reihenschaltung von Widerständen aus einem 100 Ω und einem 500 Ω Widerstand liegt an einer Spannungsquelle. An welchem Widerstand liegt die gröÿere Spannung? Was lässt

Mehr

Praktikum II TR: Transformator

Praktikum II TR: Transformator Praktikum II TR: Transformator Betreuer: Dr. Torsten Hehl Hanno Rein praktikum2@hanno-rein.de Florian Jessen florian.jessen@student.uni-tuebingen.de 30. März 2004 Made with L A TEX and Gnuplot Praktikum

Mehr

AFu-Kurs nach DJ4UF. Technik Klasse E 03 Ohmsches Gesetz, Leistung & Arbeit. Amateurfunkgruppe der TU Berlin. Stand

AFu-Kurs nach DJ4UF. Technik Klasse E 03 Ohmsches Gesetz, Leistung & Arbeit. Amateurfunkgruppe der TU Berlin.  Stand Technik Klasse E 03 Ohmsches, & Amateurfunkgruppe der TU Berlin http://www.dk0tu.de Stand 27.10.2015 This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License. Amateurfunkgruppe

Mehr

Gleichstromkreis. 2.2 Messgeräte für Spannung, Stromstärke und Widerstand. Siehe Abschnitt 2.4 beim Versuch E 1 Kennlinien elektronischer Bauelemente

Gleichstromkreis. 2.2 Messgeräte für Spannung, Stromstärke und Widerstand. Siehe Abschnitt 2.4 beim Versuch E 1 Kennlinien elektronischer Bauelemente E 5 1. Aufgaben 1. Die Spannungs-Strom-Kennlinie UKl = f( I) einer Spannungsquelle ist zu ermitteln. Aus der grafischen Darstellung dieser Kennlinie sind Innenwiderstand i, Urspannung U o und Kurzschlussstrom

Mehr

Spannungsquellen. Grundpraktikum I. Mittendorfer Stephan Matr. Nr Übungsdatum: Abgabetermin:

Spannungsquellen. Grundpraktikum I. Mittendorfer Stephan Matr. Nr Übungsdatum: Abgabetermin: Grundpraktikum I Spannungsquellen 1/5 Übungsdatum: 7.11. Abgabetermin: 3.1. Grundpraktikum I Spannungsquellen stephan@fundus.org Mittendorfer Stephan Matr. Nr. 9956335 Grundpraktikum I Spannungsquellen

Mehr

Elektrotechnik Protokoll - Nichtlineare Widerstände

Elektrotechnik Protokoll - Nichtlineare Widerstände Elektrotechnik Protokoll - Nichtlineare Widerstände André Grüneberg Andreas Steffens Versuch: 17. Januar 1 Protokoll: 8. Januar 1 Versuchsdurchführung.1 Vorbereitung außerhalb der Versuchszeit.1.1 Eine

Mehr

Klasse : Name : Datum :

Klasse : Name : Datum : Elektrischer Stromkreis eihenschaltung und Parallelschaltung Elektrischer Stromkreis eihenschaltung und Parallelschaltung Klasse : Name : Datum : Wir wollen zunächst einige rundlagen wiederholen. Elektrischer

Mehr

rtllh Grundlagen der Elektrotechnik Gert Hagmann AULA-Verlag

rtllh Grundlagen der Elektrotechnik Gert Hagmann AULA-Verlag Gert Hagmann Grundlagen der Elektrotechnik Das bewährte Lehrbuch für Studierende der Elektrotechnik und anderer technischer Studiengänge ab 1. Semester Mit 225 Abbildungen, 4 Tabellen, Aufgaben und Lösungen

Mehr

Elektrotechnische Grundlagen, WS 00/01. Musterlösung Übungsblatt 1. Hieraus läßt sich der Strom I 0 berechnen:

Elektrotechnische Grundlagen, WS 00/01. Musterlösung Übungsblatt 1. Hieraus läßt sich der Strom I 0 berechnen: Elektrotechnische Grundlagen, WS 00/0 Prof. aitinger / Lammert esprechung: 06..000 ufgabe Widerstandsnetzwerk estimmen Sie die Werte der Spannungen,, 3 und 4 sowie der Ströme, I, I, I 3 und I 4 in der

Mehr

Elektrische Messverfahren

Elektrische Messverfahren Vorbereitung Elektrische Messverfahren Carsten Röttele 20. Dezember 2011 Inhaltsverzeichnis 1 Messungen bei Gleichstrom 2 1.1 Innenwiderstand des µa-multizets...................... 2 1.2 Innenwiderstand

Mehr

Grundlagen der Elektrotechnik. Übungsaufgaben

Grundlagen der Elektrotechnik. Übungsaufgaben Grundlagen der Elektrotechnik Sönke Carstens-Behrens Wintersemester 2009/2010 RheinAhrCampus 1 Grundlagen der Elektrotechnik, WiSe 2009/2010 Aufgabe 1: Beantworten Sie folgende Fragen: a) Wie viele Elektronen

Mehr