Spannungs- und Stromquellen

Größe: px
Ab Seite anzeigen:

Download "Spannungs- und Stromquellen"

Transkript

1 Elektrotechnik Grundlagen Spannungs- und Stromquellen Andreas Zbinden Gewerblich- Industrielle Berufsschule Bern Inhaltsverzeichnis 1 Ideale Quellen 2 2 Reale Quellen 2 3 Quellenersatzschaltbilder 4 4 Einfacher Stromkreis mit realer Quelle 5 5 Quellenkennlinie 5 6 Abgegebene Leistung 6 7 Der Reflexionsfaktor (Leistungsverlust bei Fehlanpassung) 7 8 Zusammenschalten von Quellen Serie- und Parallelschaltung Zusammenwirken mehrerer Quellen Ersatzquellen Ersatzspannungsquelle Ersatzstromquelle

2 1 Ideale Quellen 1 Ideale Quellen Eine Spannungsquelle ist ideal, wenn an ihren Klemmen eine konstante Spannung besteht. Dies unabhängig vom Strom, der über ihre Klemmen fliesst. Zwischen zwei Anschlussklemmen besteht ein idealer Leerlauf, wenn über diese Klemmen kein Strom fliesst. Dies unabhängig von der Spannung, die zwischen diesen Klemmen besteht. Abbildung 1: Symbol und UI-Kennlinie einer idealen Spannungsquelle Eine Stromquelle ist ideal, wenn über ihre Klemmen ein konstanter Strom fliesst. Dies gilt unabhängig von der Spannung, die über ihren Klemmen besteht. Zwischen zwei Anschlussklemmen besteht ein idealer Kurzschluss, wenn zwischen diesen Klemmen keine Spannung vorhanden ist. Dies gilt unabhängig vom Strom, der über diese Klemmen fliesst. Abbildung 2: Symbol und UI-Kennlinie einer idealen Spannungsquelle 2 Reale Quellen Elektrische Quellen sind Energiewandler. Zwischen den Klemmen einer realen Quelle besteht eine Spannung U L. Wird ein Widerstand zwischen die Klemmen geschaltet, das heisst wird die Quelle belastet, dann fliesst ein Strom I L durch diesen Widerstand R L. Unabhängig von der praktischen Ausführung können wir bei einer realen Quelle weder von einer Spannungsquelle, noch von einer Stromquelle sprechen. 2

3 2 Reale Quellen Abbildung 3: Messanordnung für U L und I L Die grösste Spannung U L wird bei R = gemessen, das heisst, wenn die Quelle leer läuft. Diese Spannung wird Leerlaufspannung U 0 genannt. Mit R = 0 wird der grösste Strom I K gemessen, das heisst, wenn die Quelle kurzgeschlossen wird. Dieser Strom wird Kurzschlussstrom I K genannt. Dieses Verhalten kann nur erklärt werden, wenn in der Quelle noch ein Widerstand R i wirkt. Aus den beiden Kurven nach Abbildung 3 mit der unabhängigen Variablen R L kann die Funktion U = U (I) und I = I (U) gebildet werden. Abbildung 4: Widerstandskurven von realen Quellen Die Funktion U (I) ist bei vielen Quellen über den ganzen Bereich linear und kann angeschrieben werden als: U L = U 0 I K I L + U 0 (1) I L = I K U 0 U L + I K (2) Für die praktische Anwendung, das heisst für das Berechnen von Schaltkreisen führen wir ein Modell der realen Quelle ein. Als Ersatzschaltbilder ergeben sich eine ideale 3

4 3 Quellenersatzschaltbilder Spannungsquelle, in Serie geschaltet mit einem Widerstand und eine ideale Stromquelle, parallel geschaltet mit einem Widerstand. Der Widerstand in beiden Ersatzschaltungen heisst Innenwiderstand der Quelle R i. Der Innenwiderstand wird R i = U 0 I K (3) Der Innenleitwert wird 3 Quellenersatzschaltbilder G i = I K U 0 (4) Abbildung 5: Ersatzschaltbilder von Quellen Von links nach rechts (Abb.5): Reale Quelle Ideale Spannungsquelle mit Seriewiderstand (hat immer gleiche Spannung). Ideale Stromquelle mit Parallelwiderstand (gibt immer gleichen Strom). Mit R i wird die Formel 1 und 2 zu: U L = R i I L + U 0 (5) I L = G i U L + I K (6) Die beiden Ersatzschaltbilder zur realen Quelle sind identisch. Der Innenwiderstand beziehungsweise der Innenleitwert ist in beiden Ersatzschaltungen gleich gross. Der Quellen- Innenwiderstand/leitwert ist mit der idealen Spannungs/Stromquelle untrennbar verbunden! Sie bilden zusammen eine Ganzheit. Dagegen sind die Spannung am Innenwiderstand/leitwert und der Strom durch den Innenwiderstand/leitwert in den beiden Ersatzschaltbildern verschieden gross. Allerdings können diese Spannung und der Strom durch R i bzw. G i weder gemessen, noch getrennt von der Leerlaufspannung oder dem Kurzschlussstrom beschrieben werden. 4

5 4 Einfacher Stromkreis mit realer Quelle 4 Einfacher Stromkreis mit realer Quelle Spannung und Strom durch den Lastwiderstand R L : Abbildung 6: Reale Spannungsquelle Spannungsteiler: U L = U 0 R i + R L : R L (7) U L 1 = I L = U 0 R L R i + R L (8) R L Abbildung 7: Reale Stromquelle R i R L Parallelschaltung von R i und R L U L = I K : R L (9) R i + R L 5 Quellenkennlinie U L R i = I L = I K (10) R L R i + R L Die Darstellung nach Abbildung 8 nennen wir die Quellenkennlinie. Darin sind die Grössen U L, I K und R i, G i die Kenngrössen der Quelle. Die Quellenkennlinie entsteht aus der Aufnahme von U L und I L mit einer Messanordnung nach Abbildung 3 für 0 < R L < 5

6 6 Abgegebene Leistung Wird die reale Quelle nacheinander mit zwei oder mehr verschiedenen Lastwiderständen belastet, ergeben sich zwei oder mehr Arbeitspunkte, die auf der Quellekennlinie liegen. R i = U Ln+1 U Ln I Ln I Ln+1 (11) Abbildung 8: Quellenkennlinien mit Arbeitspunkten 6 Abgegebene Leistung Wir betrachten die von einer realen Quelle an einen Lastwiderstand abgegebene Leistung. Die Energie ist gleich dem Produkt aus Leistung und der Zeit, während der diese Leistung wirksam ist. Mit der Messanordnung nach Bild 9 ermitteln wir die Leistung P L im Lastwiderstand. Die Grösse des Lastwiderstandes sei einstellbar. Abbildung 9: Messanordnung Mit P L = I L U L wird: (12) 1 R L P L = U 0 U 0 = U 2 R L 0 R L + R i R L + R i (R L + R i ) 2 (13) 6

7 7 Der Reflexionsfaktor (Leistungsverlust bei Fehlanpassung) Für den Fall, dass R L = R i ist d.h. für den Fall der Leistungsanpassung gelten: U L = U 0 2 und I L = I K 2 mit der Normierung P 0 = U 0 I K wird: (14) P 0 = R i I K I K = I 2 K R i oder: P 0 = U 0 R i U 0 = U 2 0 R i (15) Die normierte Grösse P 0 ist die in der Quelle verbrauchte Leistung, wenn diese kurzgeschlossen wird. Beispiel 6.1. Stellen Sie Leistung P in Abhängigkeit des Lastwiderstandes R L in einem Diagramm dar (mit Excel). Untersuchen Sie die drei Fälle 1. R L >> R i man nennt diesen Fall Spannungsanpassung. 2. R L = R i man nennt diesen Fall Leistungsanpassung. 3. R L << R i man nennt diesen Fall Stromanpassung. 7 Der Reflexionsfaktor (Leistungsverlust bei Fehlanpassung) Wir gehen von folgendem Erklärungsmodell aus: Abbildung 10: Erklärungsmodell Reflexionsfaktor Der reflektierte Strom I r in unserem Denkmodell wird: Reflexionsfaktor R i I r = I L1 I L = I K 2 I K = I K R L + R i 2 RL R i (16) R L + R i r = I r I L1 = R L R i R L + R i = R L R i 1 R L R i + 1 (17) 7

8 8 Zusammenschalten von Quellen 8 Zusammenschalten von Quellen 8.1 Serie- und Parallelschaltung (a) (b) Abbildung 11: Serie- und Parallelschaltung von realen Quellen Serieschaltung: U 0ges = U 01 + U 02 + U 03 (18) R iges = R i1 + R i2 + R i3 (19) Es dürfen nur Quellen mit gleichen Urspannungen parallel geschaltet werden. Parallelschaltung: U 0ges = U 01 = U 02 = U 03 (20) 8.2 Zusammenwirken mehrerer Quellen R iges = R i1 //R i2 //R i3 (21) Parallelschaltung von verschiedenen Quellen (normalerweise nicht erlaubt). Im Beispiel werden zwei Nickel-Cadmium-Zellen mit unterschiedlichem Ladezustand parallelgeschaltet. 8

9 8 Zusammenschalten von Quellen Abbildung 12: Parallelschaltung von unterschiedlichen Quellen Berechnung: 9

10 8 Zusammenschalten von Quellen Die vorherige Schaltung nach Abbildung 12 wird erweitert durch einen gemeinsamen Lastwiderstand R3: Abbildung 13: Parallelschaltung von Quellen mit Laswiderstand Die Berechnung dieses Beispieles kann mit dem Überlagerungssatz (nach Helmholtz) oder mit dem Maschen- und Knotenansatz erfolgen. Vorgehen Helmholtz: 1. Alle Urspannungen bis auf eine, werden gedanklich kurzgeschlossen. 2. Die Teilströme berechnen. 3. Das Verfahren mit allen Quellen wiederholen. 4. Vorzeichenrichtige Addition der Teilströme. 10

11 9 Ersatzquellen 9 Ersatzquellen Bei den bisher behandelten gemischten Schaltungen von Widerständen suchten wir zur Vereinfachung stets nach einer reinen Serie- oder Parallelschaltung. Es gibt Fälle, bei denen dieser Ansatz nicht weiterführt. Als Beispiel nehmen wir eine bekannte Brückenschaltung und erweitern sie mit einem Widerstand R5. Gesucht ist der Strom I5. Abbildung 14: Brückenschaltung Wir versuchen, die gegebene Schaltung (hier die Brückenschaltung) auf eine Quelle zurückzuführen. Dies wird zuerst an einer einfacheren Schaltung, nämlich an einem Spannungsteiler, demonstriert: Abbildung 15: Spannungsteiler Der links eingerahmte Schaltungsteil wird in eine sogenannte Ersatzquelle umgewandelt. Diese Ersatzquelle ist rechts eingerahmt. Wir suchen also eine Quelle mit der Ersatzurspannung Uo und dem Ersatzinnenwiderstand Ri, welche dasselbe Verhalten wie die Ausgangsschaltung aufweist. 11

12 9 Ersatzquellen Welche Überlegungen führen uns zur Ersatzquelle mit den unbekannten Grössen Uo und Ri? Wir zeichnen von der Ausgangsschaltung eine Lastkennlinie I L = f(u L ) und bestimmen daraus Uo und Ri. Lastkennlinie der Ausgangsschaltung: 6 4 IL [ma] U L [V] Abbildung 16: Last-Kennlinie Wir orientieren uns an der Leerlaufspannung der Ausgangsschaltung und erhalten eine Ersatzquelle, welche als Ersatzspannungsquelle bezeichnet wird. Eine typische Anwendung ist die Berechnung unabgeglichener Brückenschaltungen (siehe erstes Beispiel). 9.1 Ersatzspannungsquelle Abbildung 17: Ersatzspannungsquelle Beispiel 9.1. Lösen Sie das Beispiel nach Abbildung 14, also eine unabgeglichene Brückenschaltung, mit Hilfe einer Ersatzspannungsquelle. 12

13 9 Ersatzquellen Falls wir uns am Kurzschlussstrom der Ausgangsschaltung orientieren, erhalten wir eine Ersatzquelle, welche als Ersatzstromquelle bezeichnet wird. Diese hat die gleiche Lastkennlinie wie die Ersatzspannungsquelle. Ersatzstromquellen werden vorzugsweise bei der Berechnung gewisser Transistorschaltungen eingesetzt. 9.2 Ersatzstromquelle Abbildung 18: Ersatzstromquelle Beispiel 9.2. Bestimmen Sie den Strom I4 mit Hilfe einer Ersatzspannungsquelle: Beispiel 9.3. Bestimmen Sie den Strom I6 mit Hilfe einer Ersatzspannungsquelle 13

14 9 Ersatzquellen Beispiel 9.4. UL (Leerlauf) = 7,5V, UL (Last) = 6V, Gesucht: R1, R2 Beispiel 9.5. Bei einem bestimmten Lastwiderstand RL beträgt UL wie eingezeichnet 2V und IL ist 0,6mA. Wird RL verstellt, verändern sich UL um 0,2V auf 1,8V und IL um 0,1mA auf 0,7mA. Gesucht: R1, R2 14

15 Literatur Beispiel 9.6. Literatur 15

1. Gleichstrom 1.2 Aktive und passive Zweipole, Gleichstromschaltkreise

1. Gleichstrom 1.2 Aktive und passive Zweipole, Gleichstromschaltkreise Elektrischer Grundstromkreis Reihenschaltung von Widerständen und Quellen Verzweigte Stromkreise Parallelschaltung von Widerständen Kirchhoffsche Sätze Ersatzquellen 1 2 Leerlauf, wenn I=0 3 4 Arbeitspunkt

Mehr

Aufgabe 1: Emitterfolger als Spannungsquelle (leicht)

Aufgabe 1: Emitterfolger als Spannungsquelle (leicht) Aufgabe 1: Emitterfolger als Spannungsquelle (leicht) Ein Emitterfolger soll in bezug auf den Lastwiderstand R L als Spannungsquelle eingesetzt werden. Verwendet werde ein Transistor mit der angegebenen

Mehr

Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2

Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2 Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Prof. Dr.-Ing. E.-P. Meyer Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2 Spannungsteiler Ersatzspannungsquelle

Mehr

1. Gleichstrom 1.4 Berechnungsverfahren für die Netzwerke Überlagerungsprinzip Maschenstromverfahren Knotenpotenzialverfahren Zweipoltheorie

1. Gleichstrom 1.4 Berechnungsverfahren für die Netzwerke Überlagerungsprinzip Maschenstromverfahren Knotenpotenzialverfahren Zweipoltheorie Überlagerungsprinzip Maschenstromverfahren Knotenpotenzialverfahren Zweipoltheorie 1 Überlagerungsprinzip (Superposition) Vorgehensweise: Jede Energiequelle wird getrennt betrachtet Resultierende Gesamtwirkung

Mehr

c~åüüçåüëåüìäé==açêíãìåç= FB Informations- und Elektrotechnik

c~åüüçåüëåüìäé==açêíãìåç= FB Informations- und Elektrotechnik 1. Allgemeines Spannungsquellen gehören zu den Grundelementen der Elektrotechnik. Sie werden eindeutig beschrieben durch den Innenwiderstand (Quellenwiderstand) und die Leerlaufspannung U 0. 1.1 Ideale

Mehr

A1 A2 A3 A4 A5 A6 Summe

A1 A2 A3 A4 A5 A6 Summe 1. Klausur Grundlagen der Elektrotechnik I-A 18. Dezember 2004 Name:............................. Vorname:............................. Matr.-Nr.:............................. Bitte den Laborbeteuer ankreuzen

Mehr

2 Gleichstrom-Schaltungen

2 Gleichstrom-Schaltungen für Maschinenbau und Mechatronik Carl Hanser Verlag München 2 Gleichstrom-Schaltungen Aufgabe 2.1 Berechnen Sie die Kenngrößen der Ersatzquellen. Aufgabe 2.5 Welchen Wirkungsgrad hätte die in den Aufgaben

Mehr

Übung Halbleiterschaltungstechnik

Übung Halbleiterschaltungstechnik Übung Halbleiterschaltungstechnik WS 2011/12 Übungsleiter: Hannes Antlinger Martin Heinisch Thomas Voglhuber-Brunnmaier Institut für Mikroelektronik und Mikrosensorik Altenbergerstr. 69, 4040 Linz, Internet:

Mehr

2 Netze an Gleichspannung

2 Netze an Gleichspannung Carl Hanser Verlag München 2 Netze an Gleichspannung Aufgabe 2.13 Die Reihenschaltung der Widerstände R 1 = 100 Ω und R 2 liegt an der konstanten Spannung U q = 12 V. Welchen Wert muss der Widerstand R

Mehr

Elektronik- und Messtechniklabor, Messbrücken. A) Gleichstrom-Messbrücken. gespeist. Die Brücke heisst unbelastet, weil zwischen den Klemmen von U d

Elektronik- und Messtechniklabor, Messbrücken. A) Gleichstrom-Messbrücken. gespeist. Die Brücke heisst unbelastet, weil zwischen den Klemmen von U d A) Gleichstrom-Messbrücken 1/6 1 Anwendung und Eigenschaften Im Wesentlichen werden Gleichstrommessbrücken zur Messung von Widerständen eingesetzt. Damit können indirekt alle physikalischen Grössen erfasst

Mehr

Labor Einführung in die Elektrotechnik

Labor Einführung in die Elektrotechnik Laborleiter: Ostfalia Hochschule für angewandte Wissenschaften Fakultät Elektrotechnik Labor Einführung in die Elektrotechnik Prof. Dr. M. Prochaska Laborbetreuer: Versuch 2: Erstellen technischer Berichte,

Mehr

Übungsaufgaben Elektrotechnik (ab WS2011)

Übungsaufgaben Elektrotechnik (ab WS2011) Flugzeug- Elektrik und Elektronik Prof. Dr. Ing. Günter Schmitz Aufgabe 1 Übungsaufgaben Elektrotechnik (ab WS2011) Gegeben sei eine Zusammenschaltung einiger Widerstände gemäß Bild. Bestimmen Sie den

Mehr

Übungsaufgaben zur Vorlesung Elektrotechnik 1

Übungsaufgaben zur Vorlesung Elektrotechnik 1 Fachhochschule Esslingen - Hochschule für Technik Fachbereich Informationstechnik Übungsaufgaben zur Vorlesung Elektrotechnik 1 Fachhochschule Esslingen - Hochschule für Technik Fachbereich Informationstechnik

Mehr

1. Ablesen eines Universalmessgerätes und Fehlerberechnung

1. Ablesen eines Universalmessgerätes und Fehlerberechnung Laborübung 1 1-1 1. Ablesen eines Universalmessgerätes und Fehlerberechnung Wie groß ist die angezeigte elektrische Größe in den Bildern 1 bis 6? Mit welchem relativen Messfehler muss in den sechs Ableseübungen

Mehr

Schaltungen mit mehreren Widerständen

Schaltungen mit mehreren Widerständen Grundlagen der Elektrotechnik: WIDERSTANDSSCHALTUNGEN Seite 1 Schaltungen mit mehreren Widerständen 1) Parallelschaltung von Widerständen In der rechten Schaltung ist eine Spannungsquelle mit U=22V und

Mehr

Übungsaufgaben zum 5. Versuch 13. Mai 2012

Übungsaufgaben zum 5. Versuch 13. Mai 2012 Übungsaufgaben zum 5. Versuch 13. Mai 2012 1. In der folgenden Schaltung wird ein Transistor als Schalter betrieben (Kennlinien s.o.). R b I b U b = 15V R c U e U be Damit der Transistor möglichst schnell

Mehr

Grundlagen der Elektrotechnik Praktikum Teil 2 Versuch B2/1. Spannungs- und Stromquellen, Messung von Spannungen und Stromstärken

Grundlagen der Elektrotechnik Praktikum Teil 2 Versuch B2/1. Spannungs- und Stromquellen, Messung von Spannungen und Stromstärken Grundlagen der Elektrotechnik Praktikum Teil 2 ersuch B2/ Spannungs- und Stromquellen, Messung von Spannungen und Stromstärken Allgemeine und Theoretische Elektrotechnik (ATE) Elektrotechnik und nformationstechnik

Mehr

1. Laboreinheit - Hardwarepraktikum SS 2005

1. Laboreinheit - Hardwarepraktikum SS 2005 1. Versuch: Gleichstromnetzwerk Ohmsches Gesetz Kirchhoffsche Regeln Gleichspannungsnetzwerke Widerstand Spannungsquelle Maschen A B 82 Ohm Abbildung 1 A1 Berechnen Sie für die angegebene Schaltung alle

Mehr

2.4 Numerisches Lösungsverfahren: Iteration 100 C 50 C / A I 2 / V. 2 Diode 2.4. Numerisches Lösungsverfahren: Iteration 12

2.4 Numerisches Lösungsverfahren: Iteration 100 C 50 C / A I 2 / V. 2 Diode 2.4. Numerisches Lösungsverfahren: Iteration 12 2 Diode 2.4. Numerisches Lösungsverfahren: Iteration 12 Aufgabe 6 Serienschaltung von Dioden Geg.: Diodenkennlinien für T =5 C und T =1 C U =1.2V Ges.: U 1,min und U 1,max für gegebenen Temperaturbereich

Mehr

AFu-Kurs nach DJ4UF. Technik Klasse E 03 Ohmsches Gesetz, Leistung & Arbeit. Amateurfunkgruppe der TU Berlin. Stand

AFu-Kurs nach DJ4UF. Technik Klasse E 03 Ohmsches Gesetz, Leistung & Arbeit. Amateurfunkgruppe der TU Berlin.  Stand Technik Klasse E 03 Ohmsches, & Amateurfunkgruppe der TU Berlin http://www.dk0tu.de Stand 27.10.2015 This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License. Amateurfunkgruppe

Mehr

Klausurvorbereitung Elektrotechnik für Maschinenbau. Thema: Gleichstrom

Klausurvorbereitung Elektrotechnik für Maschinenbau. Thema: Gleichstrom Klausurvorbereitung Elektrotechnik für Maschinenbau 1. Grundbegriffe / Strom (5 Punkte) Thema: Gleichstrom Auf welchem Bild sind die technische Stromrichtung und die Bewegungsrichtung der geladenen Teilchen

Mehr

Inhalt. 2.2.9 Leistungsanpassung...63 2.2.10 Die Ersatzspannungsquelle...65

Inhalt. 2.2.9 Leistungsanpassung...63 2.2.10 Die Ersatzspannungsquelle...65 1 Physikalische Größen, Einheiten, Gleichungen...1 1.1 Physikalische Größen...1 1.2 Das internationale Einheitensystem...1 1.3 Gleichungen...5 2 Gleichstromkreise...6 2.1 Grundbegriffe der elektrischen

Mehr

Modul. Elektrotechnik. Grundlagen. Kurs 1

Modul. Elektrotechnik. Grundlagen. Kurs 1 Berner Fachhochschule BFH Hochschule für Technik und Informatik HTI Fachbereich Elektro- und Kommunikationstechnik EKT Modul Elektrotechnik Grundlagen Kurs 1 Inhaltsverzeichnis und Sachwortregister STR

Mehr

16 Übungen gemischte Schaltungen

16 Übungen gemischte Schaltungen 6 Übungen gemischte Schaltungen 6. Aufgabe Gemischt (Labor) a) Berechne alle Ströme und Spannungen und messe diese nach! 3 = Rges = + 3 = 4,39kΩ 3 =,939kΩ Iges= Rges =2,46mA=I U = * I = 5,32V = U3 = U

Mehr

Physikalisches Praktikum

Physikalisches Praktikum MI2AB Prof. Ruckelshausen Versuch 4.3: Innerer Widerstand von Messinstrumenten, Gruppe 2, Mittwoch: Patrick Lipinski, Sebastian Schneider Patrick Lipinski, Sebastian Schneider Seite 1 von 5 Inhaltsverzeichnis

Mehr

Aufgabe 1 Berechne den Gesamtwiderstand dieses einfachen Netzwerkes. Lösung Innerhalb dieser Schaltung sind alle Widerstände in Reihe geschaltet.

Aufgabe 1 Berechne den Gesamtwiderstand dieses einfachen Netzwerkes. Lösung Innerhalb dieser Schaltung sind alle Widerstände in Reihe geschaltet. Widerstandsnetzwerke - Grundlagen Diese Aufgaben dienen zur Übung und Wiederholung. Versucht die Aufgaben selbständig zu lösen und verwendet die Lösungen nur zur Überprüfung eurer Ergebnisse oder wenn

Mehr

Station 1 A (Reihenschaltung)

Station 1 A (Reihenschaltung) Station 1 A (Reihenschaltung) (a) Die Reihenschaltung von Widerständen aus einem 100 Ω und einem 500 Ω Widerstand liegt an einer Spannungsquelle. An welchem Widerstand liegt die gröÿere Spannung? Was lässt

Mehr

Strom - Spannungscharakteristiken

Strom - Spannungscharakteristiken Strom - Spannungscharakteristiken 1. Einführung Legt man an ein elektrisches Bauelement eine Spannung an, so fließt ein Strom. Den Zusammenhang zwischen beiden Größen beschreibt die Strom Spannungscharakteristik.

Mehr

Daniell-Element. Eine graphische Darstellung des Daniell-Elementes finden Sie in der Abbildung 1.

Daniell-Element. Eine graphische Darstellung des Daniell-Elementes finden Sie in der Abbildung 1. Dr. Roman Flesch Physikalisch-Chemische Praktika Fachbereich Biologie, Chemie, Pharmazie Takustr. 3, 14195 Berlin rflesch@zedat.fu-berlin.de Physikalisch-Chemische Praktika Daniell-Element 1 Grundlagen

Mehr

Klasse : Name : Datum :

Klasse : Name : Datum : Elektrischer Stromkreis eihenschaltung und Parallelschaltung Elektrischer Stromkreis eihenschaltung und Parallelschaltung Klasse : Name : Datum : Wir wollen zunächst einige rundlagen wiederholen. Elektrischer

Mehr

Aufgabe 2 Nichtlineares Zweitor

Aufgabe 2 Nichtlineares Zweitor Name:.................................. Matrikel-Nr.:................... 5 Aufgabe 2 Nichtlineares Zweitor (16 Punkte) Gegeben sei die Hybridbeschreibung eines nichtlinearen ZweitorsH: ] u 1 = i 2 U T

Mehr

Tutorium Laboreinführung TET_1 Elektrische Quellen

Tutorium Laboreinführung TET_1 Elektrische Quellen HOCHSCHLE OSTFL Fakultät Elektrotechnik Prof. Dr. Ose Version 5 03.09.09 Labor Elektrotechnik Teilnehmer 1: Matrikel-Nr.: Teilnehmer 2: Matrikel-Nr.: Datum: Gruppenkennzeichen: Testat: Tutorium Laboreinführung

Mehr

3. Verschaltung von Bauteilen

3. Verschaltung von Bauteilen 3. Die eihenschaltung n einer eihenschaltung sind alle Bauteile hintereinander (in einer eihe) geschaltet. Das heißt der Strom fließt von einem Bauteil zum Nächsten. Beispiel einer eihenschaltung: m Versuch

Mehr

Gisela-Realschule Passau-Niedernburg Physik 10II, Dic,Dez 2006. Übungsblatt E-Lehre

Gisela-Realschule Passau-Niedernburg Physik 10II, Dic,Dez 2006. Übungsblatt E-Lehre Übungsblatt E-Lehre Arbeit, Energie, Leistung, Wirkungsgrad. Ein Wasserkocher trägt die Aufschrift 30 V /, kw. a) Welche Stromstärke fließt, wenn der Wasserkocher eingeschaltet ist? b) Welchen Widerstand

Mehr

Der elektrische Widerstand R

Der elektrische Widerstand R Der elektrische Widerstand R Auswirkung im Stromkreis Definition Ohmsches Gesetz Definition des Widerstandes Der elektrischer Widerstand R eines Leiters ist der Quotient aus der am Leiter anliegenden Spannung

Mehr

Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch. Münster, den 06.11.2000

Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch. Münster, den 06.11.2000 E1 Gleich- und Wechselstrom Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch Münster, den 6.11. INHALTSVERZEICHNIS 1. Einleitung. Theoretische Grundlagen.1 Das OHMsche Gesetz. DIE KIRCHHOFFschen Gesetze..1

Mehr

Grundlagen und Bauelemente der Elektrotechnik

Grundlagen und Bauelemente der Elektrotechnik Heinz Josef Bauckholt Grundlagen und Bauelemente der Elektrotechnik ISBN-10: 3-446-41257-3 ISBN-13: 978-3-446-41257-6 Leseprobe Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41257-6

Mehr

2. GLEICHSTROMSCHALTUNGEN MIT LINEAREN BAUELEMENTEN. 2.1 Strom und Spannung im einfachen Stromkreis. U V : Spannung am Verbraucher

2. GLEICHSTROMSCHALTUNGEN MIT LINEAREN BAUELEMENTEN. 2.1 Strom und Spannung im einfachen Stromkreis. U V : Spannung am Verbraucher n n n n n n n n n n n n n n n n n n n n n n n Fachhochschule Köln niversity of Applied Sciences Cologne Campus Gummersbach 18 Elektrotechnik Prof. Dr. Jürgen Weber Einführung in die Mechanik und Elektrotechnik

Mehr

1 Grundlagen. 1.1 Leistung und Arbeit. 1.2 Dämpfung und Verstärkung. 1.3 Widerstände. 1.3.1 Vernachlässigungsregeln 1 T. P (t)dt P (t) = u(t) i(t) P =

1 Grundlagen. 1.1 Leistung und Arbeit. 1.2 Dämpfung und Verstärkung. 1.3 Widerstände. 1.3.1 Vernachlässigungsregeln 1 T. P (t)dt P (t) = u(t) i(t) P = Grundlagen. Leistung und Arbeit W = P (t)dt P (t) = u(t) i(t) P = T T 0 u(t) i(t)dt.2 Dämpfung und Verstärkung P 2/P db U 2/U 2,00 3,4 4,00 6 2,00 0,00 0 3,6 00,00 20 0,00 (a) Verstärkung P 2/P db U 2/U

Mehr

Elektrische Widerstände

Elektrische Widerstände Elektrotechnik Grundlagen Elektrische Widerstände Andreas Zbinden Gewerblich- Industrielle Berufsschule Bern Inhaltsverzeichnis 1 Festwiderstände 2 2 Bauarten 6 3 Temperaturabhängigkeit 7 4 Heissleiter-Widerstand

Mehr

Labor Grundlagen der Elektrotechnik 1. Versuch 2: Gleichspannungsquellen

Labor Grundlagen der Elektrotechnik 1. Versuch 2: Gleichspannungsquellen Studiengang Elektrotechnik Labor Grundlagen der Elektrotechnik 1 Versuch 2: Gleichspannungsquellen Modul/Unit-Nr. TEL 1005.2 Kurs-Nr. TEL..G... Name der/s Studierenden:... Laborausarbeitung in Ordnung.

Mehr

Seite 1 von 8 FK 03. W. Rehm. Name, Vorname: Taschenrechner, Unterschrift I 1 U 1. U d U 3 I 3 R 4. die Ströme. I 1 und I

Seite 1 von 8 FK 03. W. Rehm. Name, Vorname: Taschenrechner, Unterschrift I 1 U 1. U d U 3 I 3 R 4. die Ströme. I 1 und I Diplomvorprüfung GET Seite 1 von 8 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2011 Fach: Grundlagen der Elektrotechnik,

Mehr

3.2 Arbeitspunkteinstellung

3.2 Arbeitspunkteinstellung 3 Der Bipolartransistor 3.2. Arbeitspunkteinstellung 28 3.2 Arbeitspunkteinstellung Wiederholung: Der Arbeitspunkt legt die Großsignalgrößen,,,,, und U CE, sowie die Kleinsignalgrößen r BE, S und g EA

Mehr

Komplexpraktikum Elektrotechnik II Versuch EE2: Ein- und dreiphasige Strom- und Spannungswandler 9/2012

Komplexpraktikum Elektrotechnik II Versuch EE2: Ein- und dreiphasige Strom- und Spannungswandler 9/2012 Praktikum Schutzrechnik Komplexpraktikum Elektrotechnik II Versuch EE2: Ein- und dreiphasige Strom- und Spannungswandler 9/2012 Versuchsteilnehmer: Praktikumsgr.: Abgabetermin: Protokollant: Eingangsdat.:

Mehr

1 Wiederholung einiger Grundlagen

1 Wiederholung einiger Grundlagen TUTORIAL MODELLEIGENSCHAFTEN Im vorliegenden Tutorial werden einige der bisher eingeführten Begriffe mit dem in der Elektrotechnik üblichen Modell für elektrische Netzwerke formalisiert. Außerdem soll

Mehr

1 Die Serienschaltung von Widerständen

1 Die Serienschaltung von Widerständen 1 Die Serienschaltung von Widerständen Wollen wir mehrere Verbraucher an dieselbe Spannungsquelle anschließen, dann haben wir dazu verschiedene Möglichkeiten. Wir können die Verbraucher in Serie, parallel

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Energie E= 1 Q r 4 r 2 r F = E q W 12 =Q E ds

Mehr

Stand: 4. März 2009 Seite 1-1

Stand: 4. März 2009 Seite 1-1 Thema Bereiche Seite Ladung Berechnung - Spannung allgemeine Definition - Berechnung - Definition über Potential - Stromstäre Berechnung über Ladung - Stromdichte Berechnung - Widerstand Berechnung allgemein

Mehr

Strom-Spannung. 1. Grundlagen. Labor für elektrische Messtechnik. 1.1 Strommessung U I = (1) I R = = I I. Versuch. Fassung vom 18.12.

Strom-Spannung. 1. Grundlagen. Labor für elektrische Messtechnik. 1.1 Strommessung U I = (1) I R = = I I. Versuch. Fassung vom 18.12. Fassung vom 8.2.2009; Blatt FCHBEECH. Grundlagen. Strommessung Die Messung des Stroms in einem Stromkreis (erbraucher) geschieht durch das Einfügen eines Strommessers in den Stromkreis. Durch den nnenwiderstand

Mehr

Aufgaben zur Einführung in die Messtechnik Elektrische Messtechnik

Aufgaben zur Einführung in die Messtechnik Elektrische Messtechnik F 1 Aufgaben zur Einführung in die Messtechnik Elektrische Messtechnik Wolfgang Kessel Braunschweig.PPT/F1/2003-11-06/Ke AUFGABE01 F 2 AUFGABE01: Potentiometer a) Wie hängt bei vorgegebener fester Eingangsspannung

Mehr

UNIVERSITÄT BIELEFELD

UNIVERSITÄT BIELEFELD UNIVERSITÄT BIELEFELD Elektrizitätslehre GV: Gleichstrom Durchgeführt am 14.06.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Philip Baumans Marius Schirmer E3-463 Inhaltsverzeichnis

Mehr

E29 Operationsverstärker

E29 Operationsverstärker E29 Operationsverstärker Physikalische Grundlagen Ein Operationsverstärker (OPV) ist im Wesentlichen ein Gleichspannungsverstärker mit sehr hoher Verstärkung und einem invertierenden (E-) sowie einem nichtinvertierenden

Mehr

Kennlinienaufnahme elektronische Bauelemente

Kennlinienaufnahme elektronische Bauelemente Messtechnik-Praktikum 06.05.08 Kennlinienaufnahme elektronische Bauelemente Silvio Fuchs & Simon Stützer 1 Augabenstellung 1. a) Bauen Sie eine Schaltung zur Aufnahme einer Strom-Spannungs-Kennlinie eines

Mehr

Fach BK4 Elektrotechnik Serie A. Prüfungsdatum. Kandidat / Nr. ... ... Allgemeine Bestimmungen: Notenschlüssel: Erreichte Punktzahl: Note: Visum:.../.

Fach BK4 Elektrotechnik Serie A. Prüfungsdatum. Kandidat / Nr. ... ... Allgemeine Bestimmungen: Notenschlüssel: Erreichte Punktzahl: Note: Visum:.../. Kantonale Prüfungskommission Lehrabschlussprüfung Elektromonteure Fach BK4 Elektrotechnik Serie A Prüfungsdatum Kandidat / Nr................ Allgemeine Bestimmungen: ie Aufgaben dürfen nur an der Lehrabschlussprüfung

Mehr

Atom Strom Elektron Stromkreis

Atom Strom Elektron Stromkreis Atom Strom Elektron Stromkreis Aufbau eines Atoms Name Ort Ladung Proton Kern positiv + Neutron Kern neutral n Elektron Hülle negativ - Elektroskop Elektrische Ladungen können mit dem Elektroskop nachgewiesen

Mehr

Fachhochschule Braunschweig / Wolfenbüttel Fachbereich Elektrotechnik

Fachhochschule Braunschweig / Wolfenbüttel Fachbereich Elektrotechnik Fachhochschule Braunschweig / Wolfenbüttel Fachbereich Elektrotechnik Prof. Dr.-Ing. Ose 8. 11. 2006 Labor Grundlagen der ET I V 16: Lineare Netzwerke (AV) Teilnehmer 1: Matr.-Nr.: Datum: Gruppen-Kennzeichen:

Mehr

Elektrotechnik für Ingenieure

Elektrotechnik für Ingenieure Elektrotechnik für Ingenieure Band 1: Grundlagen von Prof. Dr.-Ing. Rainer Ose 2., bearbeitete Auflage Mit 427 Bildern, 18 Tabellen, 47 Lehrbeispielen, 109 Berechnungsbeispielen, 59 Übungsaufgaben und

Mehr

Fit für die Prüfung Elektrotechnik Effektives Lernen mit Beispielen und ausführlichen Lösungen

Fit für die Prüfung Elektrotechnik Effektives Lernen mit Beispielen und ausführlichen Lösungen Jan Luiken ter Haseborg Christian Schuster Manfred Kasper Fit für die Prüfung Elektrotechnik Effektives Lernen mit Beispielen und ausführlichen Lösungen 18 1 Elektrische Gleichstromnetzwerke det(a 2 )

Mehr

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen. LD Handblätter Physik P3.6.3.

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen. LD Handblätter Physik P3.6.3. Elektrizitätslehre Gleich- und Wechselstromkreise Wechselstromwiderstände LD Handblätter Physik P3.6.3. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen Versuchsziele

Mehr

Elektrotechnik für Ingenieure - Formelsammlung

Elektrotechnik für Ingenieure - Formelsammlung Elektrotechnik für Ingenieure - Formelsammlung Elektrotechnik kompakt Bearbeitet von Wilfried Weißgerber 5. Auflage 2015. Buch. XV, 204 S. Kartoniert ISBN 978 3 658 09089 0 Format (B x L): 16,9 x 24,1

Mehr

Prüfungsvorbereitung Physik: Elektrischer Strom

Prüfungsvorbereitung Physik: Elektrischer Strom Prüfungsvorbereitung Physik: Elektrischer Strom Alle Grundlagen aus den vorhergehenden Prüfungen werden vorausgesetzt. Das heisst: Gut repetieren! Theoriefragen: Diese Begriffe müssen Sie auswendig in

Mehr

Sommersemester 2014, Dauer: 90 min Elektronik/Mikroprozessortechnik

Sommersemester 2014, Dauer: 90 min Elektronik/Mikroprozessortechnik Diplomprüfung im Studiengang MB Seite 1 von 8 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: alle eigenen Sommersemester 2014, Dauer: 90 min Elektronik/Mikroprozessortechnik Matr.-Nr.: Name, Vorname:

Mehr

Diplomprüfung WS 11/12 Elektronik/Mikroprozessortechnik

Diplomprüfung WS 11/12 Elektronik/Mikroprozessortechnik Diplomprüfung Elektronik/Mikroprozessortechnik Seite 1 von 9 Hochschule München FK 03 Maschinenbau Zugelassene Hilfsmittel: alle eigenen Dauer: 90 Minuten Diplomprüfung WS 11/12 Elektronik/Mikroprozessortechnik

Mehr

Messgröße Abk. Einheit Abk. Messgerät Schaltezeichen. 2. (2) Die elektrische Spannung Ergänze: Je größer der am Minuspol

Messgröße Abk. Einheit Abk. Messgerät Schaltezeichen. 2. (2) Die elektrische Spannung Ergänze: Je größer der am Minuspol Gruppe 1 2. (2) Die elektrische Spannung Ergänze: Je größer der am Minuspol und je größer der am, desto größer ist die! 3. (2) Von welchen vier Faktoren hängt der elektrische Widerstand eines elektrischen

Mehr

Name:... Vorname:... Matr.-Nr.:...

Name:... Vorname:... Matr.-Nr.:... 1. Klausur Grundlagen der Elektrotechnik I-B 27. Mai 2003 berlin Name:... Vorname:... Matr.-Nr.:... Bitte den Laborbeteuer ankreuzen Reyk Brandalik Björn Eissing Steffen Rohner Karsten Gänger Lars Thiele

Mehr

Lösungen zu Kapazitäten / Kondensatoren

Lösungen zu Kapazitäten / Kondensatoren Ein- und Ausschaltvorgänge mit Kapazitäten A47: (869, 870) Ein Kondensator von µf wird über einen Widerstand von 3 MΩ auf eine Spannung von 50 V geladen. Welche Werte hat der Ladestrom a) 0,3 s, b), s,

Mehr

GEP1 Grundlagen der Elektrotechnik 1 für Mechatroniker LABOR FÜR GRUNDLAGEN DER ELEKTROTECHNIK. GEP1 Versuch 1. Weitere Übungsteilnehmer:

GEP1 Grundlagen der Elektrotechnik 1 für Mechatroniker LABOR FÜR GRUNDLAGEN DER ELEKTROTECHNIK. GEP1 Versuch 1. Weitere Übungsteilnehmer: Department nformationsund Elektrotechnik Studiengruppe: Üungstag: LABOR FÜR GRNDLAGEN DER ELEKTROTECHNK GEP1 Versuch 1 Protokollführer (Name, Vorname): Weitere Üungsteilnehmer: Professor: Testat: Messungen

Mehr

Praktikum Elektronik

Praktikum Elektronik Fakultät Elektrotechnik Hochschule für Technik und Wirtschaft Dresden University of Applied Sciences Friedrich-List-Platz 1, 01069 Dresden ~ PF 120701 ~ 01008 Dresden ~ Tel. (0351) 462 2437 ~ Fax (0351)

Mehr

Spannung und Stromstärke bei Reihen- und Parallelschaltung von Solarzellen

Spannung und Stromstärke bei Reihen- und Parallelschaltung von Solarzellen Spannung und Stromstärke bei Reihen- und ENT Schlüsselworte Sonnenenergie, Fotovoltaik, Solarzelle, Reihenschaltung, Parallelschaltung Prinzip Eine einzelne Solarzelle liefert nur eine Spannung von 0,5

Mehr

Bei einer Reihenschaltung zweier Widerstände wurden folgende Spannungswerte gemessen : U 1 =200V, U 2 =1,5V

Bei einer Reihenschaltung zweier Widerstände wurden folgende Spannungswerte gemessen : U 1 =200V, U 2 =1,5V Aufgaben zu Fehlerfortpflanzung Aufgabe 1: Der ohmsche Widerstand eines Drahtes soll aus den Abmessungen und der Leitfähigkeit bestimmt werden. Der rel. Fehler bei der Längenmessung sei f l =+0,5%, bei

Mehr

Schnellkurs Ohmsches Gesetz Reihen- und Parallelschaltung von Widerständen. Jeder kennt aus der Schule das Ohmsche Gesetz:

Schnellkurs Ohmsches Gesetz Reihen- und Parallelschaltung von Widerständen. Jeder kennt aus der Schule das Ohmsche Gesetz: Schnellkurs Ohmsches Gesetz eihen- und Parallelschaltung von Widerständen Jeder kennt aus der Schule das Ohmsche Gesetz: = Aber was bedeutet es? Strom (el. Stromstärke) Spannung Widerstand Vorbemerkung:

Mehr

Qualifikationsverfahren Elektroinstallateurin EFZ Elektroinstallateur EFZ

Qualifikationsverfahren Elektroinstallateurin EFZ Elektroinstallateur EFZ Serie 01 Berufskenntnisse schriftlich Pos..1 Technologische Grundlagen Qualifikationsverfahren Elektroinstallateurin EFZ Elektroinstallateur EFZ Name, Vorname Kandidatennummer Datum......... Zeit: Hilfsmittel:

Mehr

Musterlösungen zu den Übungsaufgaben aus Grundlagen der Elektrotechnik

Musterlösungen zu den Übungsaufgaben aus Grundlagen der Elektrotechnik Musterlösungen zu den Übungsaufgaben aus Grundlagen der Elektrotechnik W. Kippels 24. November 2013 Inhaltsverzeichnis 1 Allgemeines 2 2 Übungsfragen mit Antworten 2 2.1 Übungsfragen zum Stromkreis........................

Mehr

ELEKTRONIK - Beispiele - Dioden

ELEKTRONIK - Beispiele - Dioden ELEKTRONIK - Beispiele - Dioden DI Werner Damböck (D.1) (D.2) geg: U 1 = 20V Bestimme den Vorwiderstand R um einen maximalen Strom von 150mA in der Diode nicht zu überschreiten. Zeichne den Arbeitspunkt

Mehr

1. Wie groß ist der Strom, der durch den Verbraucher fließt (Betrag und Phase), wenn die Generatorspannung als Bezugszeiger gewählt wird?

1. Wie groß ist der Strom, der durch den Verbraucher fließt (Betrag und Phase), wenn die Generatorspannung als Bezugszeiger gewählt wird? Übung 10 Ein Generator (R i = 0, Klemmenspannung 230 V, f = 50 Hz) ist mit einem Verbraucher mit dem Leistungsfaktor cos ϕ = 0, 8 (induktiv) zusammengeschaltet. Der Verbraucher nimmt dabei die Wirkleistung

Mehr

Elektrischer Widerstand

Elektrischer Widerstand In diesem Versuch sollen Sie die Grundbegriffe und Grundlagen der Elektrizitätslehre wiederholen und anwenden. Sie werden unterschiedlichen Verfahren zur Messung ohmscher Widerstände kennen lernen, ihren

Mehr

Naturwissenschaften, Teil Physik

Naturwissenschaften, Teil Physik Die Prüfung Naturwissenschaften dauert insgesamt 4 Stunden. Sie umfasst die drei gleichwertigen Teile Biologie, Chemie und Physik à je 80 Minuten: Kand.-Nr.: Note: Name, Vorname: Für die Korrigierenden

Mehr

Klausur "Elektrotechnik" am 11.02.2000

Klausur Elektrotechnik am 11.02.2000 Name, Vorname: Matr.Nr.: Hinweise zur Klausur: Die zur Verfügung stehende Zeit beträgt 1,5 h. Klausur "Elektrotechnik" 6141 am 11.02.2000 Aufg. P max 0 2 1 10 2 9 3 10 4 9 5 16 6 10 Σ 66 N P Zugelassene

Mehr

ELEXBO A-Car-Engineering

ELEXBO A-Car-Engineering 1 Aufgabe: -Bauen Sie alle Schemas nacheinander auf und beschreiben Ihre Feststellungen. -Beschreiben Sie auch die Unterschiede zum vorherigen Schema. Bauen Sie diese elektrische Schaltung auf und beschreiben

Mehr

Grundlagen der Elektrotechnik 2: Lösungen zur Klausur am 17. Juli 2012

Grundlagen der Elektrotechnik 2: Lösungen zur Klausur am 17. Juli 2012 Fachhochschule Südwestfalen - Meschede Prof. Dr. Henrik Schulze Grundlagen der Elektrotechnik 2: Lösungen zur Klausur am 17. Juli 2012 Aufgabe 1 Die folgende Schaltung wird gespeist durch die beiden Quellen

Mehr

Ohmscher Spannungsteiler

Ohmscher Spannungsteiler Fakultät Technik Bereich Informationstechnik Ohmscher Spannungsteiler Beispielbericht Blockveranstaltung im SS2006 Technische Dokumentation von M. Mustermann Fakultät Technik Bereich Informationstechnik

Mehr

Elektrotechnik für MB

Elektrotechnik für MB Elektrotechnik für MB Gleichstrom Elektrische und magnetische Felder Wechsel- und Drehstrom Grundlagen und Bauelemente der Elektronik Studium Plus // IW-MB WS 2015 Prof. Dr. Sergej Kovalev 1 Ziele 1. Gleichstrom:

Mehr

6 Netze an Sinusspannung

6 Netze an Sinusspannung Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München 6 Netze an Sinusspannung Aufgabe 6.19 Ein Verstärker-Zweitor wird durch die Leitwert-Parameter Y 11 = 490 µs ; Y 12 = 0,05 µs ; Y 21 =

Mehr

Die Arbeitspunkteinstellung beim Bipolartransistor

Die Arbeitspunkteinstellung beim Bipolartransistor Die Arbeitspunkteinstellung beim Bipolartransistor In der Schaltungstechnik stellt sich immer wieder das Problem der Arbeitspunkteinstellung eines Bipolartransistors (BJT). Bauteiltoleranzen des Transistors

Mehr

Messübungen Grundschaltungen

Messübungen Grundschaltungen ufgaben von Harald Gorbach MÜ1.1 Handhabung der Messgeräte Messgeräte nach Gebrauch immer ausschalten! OFF Wie muss ich anschließen? i. Digitales Multimeter (DMM912) von Tektronix µ m COM Ω 10 FSED (600)

Mehr

Klausur 23.02.2010, Grundlagen der Elektrotechnik I (BSc. MB, SB, VT, EUT, BVT, LUM) Seite 1 von 6. Antwort (ankreuzen) (nur eine Antwort richtig)

Klausur 23.02.2010, Grundlagen der Elektrotechnik I (BSc. MB, SB, VT, EUT, BVT, LUM) Seite 1 von 6. Antwort (ankreuzen) (nur eine Antwort richtig) Klausur 23.02.2010, Grundlagen der Elektrotechnik I (BSc. MB, SB, VT, EUT, BVT, LUM) Seite 1 von 6 1 2 3 4 5 6 Summe Matr.-Nr.: Nachname: 1 (5 Punkte) Drei identische Glühlampen sind wie im Schaltbild

Mehr

Skriptum zur Vorlesung Elektronik 1

Skriptum zur Vorlesung Elektronik 1 Skriptum zur Vorlesung Elektronik 1 Inhalte Modul 1 (Januar März) Dr.-Ing. Jens Timmermann Ausgabe: Januar 2012, Version 2.0 Elektronik 1; Dr. Ing. Jens Timmermann - 1 Vorbemerkungen Dieses Skript richtet

Mehr

Elektronik I, Foliensatz 2 1.3 Handwerkszeug bis 1.4 Schaltungen mit Dioden

Elektronik I, Foliensatz 2 1.3 Handwerkszeug bis 1.4 Schaltungen mit Dioden G. Kemnitz Institut für Informatik, TU-Clausthal (E1-F2) 13. November 2015 1/66 Elektronik I, Foliensatz 2 1.3 Handwerkszeug bis 1.4 Schaltungen mit Dioden G. Kemnitz Institut für Informatik, TU-Clausthal

Mehr

E-Technik 2C Das ohmsche Gesetz Seite 1 von 11

E-Technik 2C Das ohmsche Gesetz Seite 1 von 11 E-Technik 2C Das ohmsche Gesetz Seite 1 von 11 i = u R Strom (i) = Spannung (u) Widerstand (R) Das oben stehende ohmsche Gesetz beschreibt den Zusammenhang zwischen dem elektrischen Strom i, der elektrischen

Mehr

Diplomprüfung SS 2012 Elektronik/Mikroprozessortechnik

Diplomprüfung SS 2012 Elektronik/Mikroprozessortechnik Diplomprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Maschinenbau Dauer: 90 Minuten Zugelassene Hilfsmittel: alle eigenen Diplomprüfung SS 2012 Elektronik/Mikroprozessortechnik Matr.-Nr.: Hörsaal:

Mehr

Spannungsmessung im Physikunterricht

Spannungsmessung im Physikunterricht Lösungsvorschlag zur Staatsexamensaufgabe Frühjahr 2007 Thema 1 Spannungsmessung im Physikunterricht 1.a Der Begriff der elektrischen Spannung bereitet vielen Schülerinnen und Schülern erhebliche Lernschwierigkeiten.

Mehr

Aufgabensammlung Elektrotechnik 1

Aufgabensammlung Elektrotechnik 1 Martin Vömel Dieter Zastrow 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Aufgabensammlung Elektrotechnik 1 Gleichstrom

Mehr

Transistorverstärker in Emitterschaltung

Transistorverstärker in Emitterschaltung Transistorverstärker in Emitterschaltung Bild 1 zeigt den Transistor BD139 in Emitterschaltung, der die Wechselspannung u e verstärken und über einen Lautsprecher (R C = 16 Ω) ausgeben soll. Weitere Daten:

Mehr

Studentenmitteilung 1. Semester - WS 2000/2001

Studentenmitteilung 1. Semester - WS 2000/2001 UNIVERSITÄT LEIPZIG Institut für Informatik Studentenmitteilung 1. Semester - WS 2000/2001 Abt. Technische Informatik Gerätebeauftragter Dr. rer.nat. Hans-Joachim Lieske Tel.: [49]-0341-97 32213 Zimmer:

Mehr

Elektrischer Strom. Strommessung

Elektrischer Strom. Strommessung Elektrischer Strom. Elektrischer Strom als Ladungstransport. Wirkungen des elektrischen Stromes 3. Mikroskopische Betrachtung des Stroms, elektrischer Widerstand, Ohmsches Gesetz 4. Elektrische Netzwerke

Mehr

Wechselstromkreis mit verschiedenen Bauteilen

Wechselstromkreis mit verschiedenen Bauteilen Wechselstromkreis mit verschiedenen Bauteilen Im Folgenden werden nun die Auswirkungen eines ohmschen Widerstands, eines induktiven Widerstands (Spule) und eines kapazitiven Widerstands (Kondensator) auf

Mehr

Aufg. P max 1 10 Klausur "Elektrotechnik" 2 14 3 8 4 10 am 14.03.1997

Aufg. P max 1 10 Klausur Elektrotechnik 2 14 3 8 4 10 am 14.03.1997 Name, Vorname: Matr.Nr.: Hinweise zur Klausur: Aufg. P max 1 10 Klausur "Elektrotechnik" 2 14 3 8 6141 4 10 am 14.03.1997 5 18 6 11 Σ 71 N P Die zur Verfügung stehende Zeit beträgt 1,5 h. Zugelassene Hilfsmittel

Mehr

Lösungen zum 6. Übungsblatt

Lösungen zum 6. Übungsblatt Lösungen zum 6. Übungsblatt vom 18.05.2016 6.1 Widerstandsschaltung (6 Punkte) Aus vier Widerständen R 1 = 20 Ω, R 2 = 0 Ω und R = R 4 wird die Schaltung aus Abbildung 1 aufgebaut. An die Schaltung wird

Mehr

GEM1 & 2, Kontrollfragen. Grundbegriffe

GEM1 & 2, Kontrollfragen. Grundbegriffe 1/9 Grundbegriffe 1. Erläutern Sie die Begriffe physikalische Grössen, Symbole, Einheiten, sowie Grössengleichung und Einheitengleichung. Nennen Sie dafür Beispiele. 2. Nennen Sie Beispiele für Basiseinheiten

Mehr

Klausur 06.09.2010 Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5

Klausur 06.09.2010 Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5 Klausur 06.09.2010 Grundlagen der Elektrotechnik II (M, EUT, LUM) Seite 1 von 5 Aufgabe 1 (4 Punkte) Name: Mit Matr.-Nr.: Lösung r = 30 cm d = 1 mm Q = 7,88 10-6 As ε 0 = 8,85 10-12 As/Vm ε r = 5 Der dargestellte

Mehr