V5: Klassische statistische Mechanik thermodynamische Ensembles

Größe: px
Ab Seite anzeigen:

Download "V5: Klassische statistische Mechanik thermodynamische Ensembles"

Transkript

1 V5: Klassische statistische Mechanik thermodynamische Ensembles Die statistische Mechanik behandelt Systeme mit vielen (im Grunde unendlich vielen) Freiheitsgraden. Diese sollen durch wenige Makrovariablen beschrieben werden. Eine besondere Rolle spielt hierbei die Makrovariable Entropie. Die Freiheitsgrade sind für Biomoleküle speziell die Positionen q und Impulse p = m v der Atome (mit deren Masse m und ihren Geschwindigkeiten v). In klassischen Systemen (d.h. ohne Berücksichtigung von Quanteneffekten) kommutieren alle Freiheitsgrade miteinander. [q,p] = 0. Den Raum, der durch die Freiheitsgrade aufgespannt wird, nennt man den Phasenraum. Jeder Punkt im Phasenraum bezeichnet eine bestimmte Konfiguration des Systems. Im zeitlichen Verlauf beschreibt das System einen Pfad im Phasenraum, der durch die Bewegungsgleichungen bestimmt wird. 1

2 Wiederholung: Boltzmann-Verteilung (1) In einem System mit N Teilchen sei die Teilchenzahl konstant. (2) Gesamtenergie des Systems sei konstant. D.h. es gibt Energieaustausch zwischen den Teilchen, aber nicht mit der Umgebung. (3) Wenn solch ein System im Gleichgewicht ist, ist die Energie der Teilchen E entsprechend einer Boltzmann-Verteilung populiert: N E ( E) = N 0 exp E0 Boltzmann-verteilte Systeme findet man in vielen Bereichen der Physikalischen Chemie. Welche Systeme besitzen eine Boltzmann-Verteilung? 2

3 Wiederholung: Phasenraumdichte Die Wahrscheinlichkeitsdichte im Phasenraum (= kurz die Phasenraumdichte ) ist im kanonischen Ensemble proportional zum Boltzmann-Faktor: NVT ( X ) exp( E( X )) wobei E die Gesamtenergie des Systems ist und = k B T. Was ist das kanonische Ensemble eigentlich? Für zwei Zustände des Systems X und X lautet das Verhältnis ihrer Wahrscheinlichkeiten: NVT ( X ) = exp( E), X ' NVT ( ) E = E ( X ) E( X ') 3

4 Wiederholung: Phasenraumdichte Der Normalisierungsfaktor der ersten Gleichung ist die Zustandssumme des gesamten Phasenraums (Raum der 3N Koordinaten und 3N Geschwindigkeiten): NVT Q ( X ) NVT = = 3N ( h ) 3N ( h ) 1 exp N! Q 1 N! exp ( E( X )) NVT ( E( x) ) Der Erwartungswert einer Observablen A des Systems lässt sich darstellen als: A ( x) = ( x) A( x)dx NVT NVT Im Metropolis-Algorithmus erzeugt man eine geeignete Markov-Kette von Konfigurationen, so dass der Erwartungswert von A als einfacher Mittelwert folgt: A ( x) = ( A( xi )) NVT lim M 1 M M i= 1 dx 4

5 Wiederholung: Markov-Kette Betrachte Markov-Kette von N molekularen Zuständen {X 1, X 2, X 3,...} mit einer Verteilung NVT (X) für N. In einer Markov-Kette gehört jeder Zustand zu einer endlichen Menge an Zuständen aus dem Zustandsraum D 0 D. Für die konditionelle Verteilung jedes Zustands P bezüglich aller vorherigen Zustände gilt: { X D X X } = P{ X D X } P n ,..., n n n d.h. das Ergebnis X n+1 hängt nur von X n ab. Der Metropolis-Algorithmus erzeugt eine stochastische und ergodische Übergangsmatrix für die Markovkette, so dass die Verteilung für jeden Zustand X i im Limit i = NVT (X i ) ist. So wird eine Phasenraumtrajektorie im kanonischen Ensemble erzeugt. 5

6 Wiederholung: mikroskopische Reversibilität ( detailed balance ) Lege Übergangsmatrix fest durch Definition einer Übergangswahrscheinlichkeit für jeden Übergang von X i nach X j, so dass mikroskopische Umkehrbarkeit erfüllt ist: k = k i ij Das Verhältnis der Übergangswahrscheinlichkeiten hängt damit nur vom Energieunterschied zwischen den Zuständen i und j ab: i E j ij j E ij ji k ji = exp k = ( E ) ( X ) E( X ) Was für ein Ensemble bekommen wir mit diesen Übergangswahrscheinlichkeiten? i j ij 6

7 Wiederholung: Metropolis Algorithmus Die am häufigsten verwendete Technik zur Auswahl von Konformeren ( importance sampling ) mittels Monte-Carlo-Methoden ist der Metropolis Algorithmus: (1) konstruiere Anfangskonfiguration des Moleküls (2) führe zufällige Änderung eines Freiheitsgrades (z.b. eines Torsionswinkel) durch. (3) berechne Änderung der Energie E aufgrund dieser Änderung der Konformation. (4) falls E < 0 akzeptiere die neue Konfiguration falls E > 0 berechne die Wahrscheinlichkeit w = exp erzeuge Zufallszahl r im Intervall [0,1] akzeptiere die neue Konfiguration, falls w r, sonst verwerfe sie. Da die Boltzmann-gewichtete Energiedifferenz mit einer Zufallszahl verglichen wird, werden auch vereinzelt Konformere hoher Energie akzeptiert. Daher erhält man ein Ensemble (Menge) von Konformationen mit einer Energieverteilung entsprechend einer Boltzmann-Verteilung. E k T B 7

8 abgeschlossene und nicht abgeschlossene Systeme Wenn ein System thermisch und mechanisch abgeschlossen, also von seiner Umgebung isoliert, ist, dann bleibt seine interne Energie zeitlich konstant. Warum? Wenn ein System nicht abgeschlossen ist, wird es mit der Zeit die Temperatur seiner Umgebung annehmen (die wir als konstant annehmen). Physikalische Grössen, die entweder konstant sind oder deren Durchschnittswert durch die Umgebung bestimmt wird, bezeichnet man als Systemparameter. Unterschiedliche experimentelle Umstände sorgen dafür, dass unterschiedliche Parameter konstant gehalten werden. In der Theorie der statistischen Physik entsprechen diese Fälle unterschiedlichen Ensembles. 8

9 Ensembles Simulationen Ein Ensemble ist eine gedankliche Konstruktion: wir denken uns eine sehr große Anzahl M physikalisch identischer Kopien des isolierten Originalsystems, die sich in beliebigen Bewegungszuständen befinden können, dargestellt durch Ensemblepunkte (q,p) im Phasenraum. Jeder Ensemblepunkt charakterisiert den Bewegungszustand eines Ensemblemitglieds. Wir wollen annehmen, daß wir das Ensemble durch eine Ensembledichte (q,p,t) beschreiben können: (q,p,t)d soll der Bruchteil der M Phasenraumpunkte sein, der sich zur Zeit t im Phasenraumelement d = dp dq bei (q,p) aufhält. Damit muss auch die Ensembledichte auf den Wert 1 normiert sein: d( q, p, t) = 1 Diese Normierung erlaubt auch die Interpretation, daß (q,p,t)d die Wahrscheinlichkeit ist, den Ensemblepunkt eines beliebig herausgegriffenen Ensemblemitgliedes im Element d bei (q,p) zu finden. Zur Simulation von klassischen Vielteilchensystemen gibt es im Wesentlichen zwei Methoden: Monte Carlo und Moleküldynamik. Um diese Simulationstechniken an die experimentellen Situationen anzupassen ist in jedem Fall eine sorgfältige Betrachtung notwendig, welches Ensemble dazu geeignet ist, d.h. in welchem Ensemble man simulieren muss. 9

10 Ergoden-Hypothese. Das grundlegende Postulat der statistischen Mechanik gilt für Systeme mit konstanter Energie E, Volumen V und Teilchenzahl N. Das Postulat besagt, dass alle für das System zugänglichen Zustände (die eine bestimmte Energie, Volumen und Teilchenzahl besitzen) im Verlauf der Zeit mit gleicher Häufigkeit = Wahrscheinlichkeit eingenommen werden. Dies ist die Ergoden-Hypothese. Daher kann der zeitliche Mittelwert A einer physikalischen Messgrösse A (also einer Observablen ) durch den Mittelwert über alle zugänglichen Zustände ersetzt werden A. Mit den Zuständen X des Systems gilt: 10

11 A = Ensemble-Mittelwerte { X E} A { X E} ( X ) = X ( X ) [ H ( X ) E] [ H ( X ) E] { X } Hier ist H(X) der Hamiltonian, der die Energie des Systems an einem Punkt X im Phasenraum angibt. Damit gilt H = T + V, also die Summe aus den kinetischen und potentiellen Energien T und V. A = A Der Nenner bewirkt die entsprechende Normierung. Die Summe bezeichnet eine Summe über alle Zustände X mit einer bestimmten E { X } Energie E. In der rechten Summe wird diese Einschränkung durch die Delta-Funktion erreicht. (Zusätzlich ist das System auf ein bestimmtes Volumen und auf eine bestimmte Teilchenzahl eingeschränkt.) Der Mittelwert heisst der Ensemble-Mittelwert. Das Ensemble NVE = konstant heisst das mikrokanonische Ensemble. 11

12 Entropie Die Anzahl an Zuständen mit Energie E ist! ( N, V, E) = [ H ( X ) E] X Die Entropie wird mittels!(n, V, E) und der Boltzmann-Konstante k B definiert als: ( N, V, E) = k ln!( N, V E) S B, Die thermodynamischen Grössen Temperatur T, chemisches Potential µ und Druck P ergeben sich als Ableitungen der Entropie nach den Systemparametern: T # S = # E 1 N, V # S # S, µ = T, p = T # N # V E, V Dies folgt aus dem ersten Gesetz der Thermodynamik: de = TdS pdv + µ dn E, N 12

13 Phasenraum Ein System aus N Teilchen besitzt 3N Koordinaten und 3N Geschwindigkeiten. Daher besetzt es zu jedem Moment einen Punkt X im 6N-dimensionalen Phasenraum. Dessen Koordinaten sind: X = (x 1, y 1, z 1, p x,1,p y,1, p z,1, x 2, y 2, z 2, p x,2, p y,2, p z,2,..., x N, y N, z N, p x,n,p y,n, p z,n ) Dabei kann man separat die Orts- und Impulskoordinaten definieren als q = (x 1, y 1, z 1, x 2, y 2, z 2,..., x N, y N, z N ) p = (p x,1,p y,1, p z,1, p x,2, p y,2, p z,2,..., p x,n, p y,n, p z,n ) und damit diesen Punkt im Phasenraum als X = (q,p) darstellen. 13

14 Beispiel: der harmonische Oszillator Der Phasenraum dieses harmonischen Oszillators hat nur 2 Dimensionen, Position und Impuls. Wir definieren den Ursprung dieses Phasenraums als den Punkt, an dem der Ball der Masse m in Ruhe ist (d.h. Impuls = 0) wobei die Feder in ihrer Ruhelage ist. Dieser Punkt entspricht einem stationären Zustand des Systems. Nun verfolgen wir das dynamische Verhalten des Systems falls wir von einem anderen Punkt als dem Ursprung starten. Die Gesamtenergie = potentielle Energie + kinetische Energie ist konstant. Aus: C. Cramer, Computational Chemistry, Wiley 14

15 Beispiel: der harmonische Oszillator Betrachten wir nun die Phasenraumtrajektorie des Oszillators. t2 Zu jedem beliebigen Zeitpunkt gilt: p ( ) ( ) ( t) q t2 = q t1 + dt m wobei wir die Beziehung zwischen Geschwindigkeit und Impuls verwendet haben: v = p m Zwei Impulsvektoren zu verschiedenen 2 Zeitpunkten sind analog gemäß p( t2 ) = p( t1) + m a( t) verknüpft, wobei a die Beschleunigung ist. Diese beiden Gleichungen sind die Newtonschen Bewegungsgleichungen. Weiterhin benutzen wir das zweite Newtonsche Gesetz: a = F m mit der Kraft F und den Zusammenhang zwischen Kraft und der Ableitung der potentiellen Energie nach der Ortskoordinate: F t 1 t t 1 # E = # r dt (1) (2) 15

16 Beispiel: der harmonische Oszillator Dann erhalten wir als analytische Lösung der Bewegungsgleichungen: q k ( t) = b cos ( ) = t, p t b mk sin t m m Sie erzeugen eine Bewegung auf der elliptischen Bahn im Phasenraum. k Für kompliziertere Systeme ist es fast nie möglich, eine analytische Lösung der Bewegungsgleichungen zu finden. Wenn wir die Gleichungen (1) und (2) durch p t q( t + t) = q( t) + m und p ( ) t ( t + t) = p( t) + ma( t) t annähern, können wir die exakte Lösung der Bewegungsgleichung numerisch annähern. 16

17 Beispiel: der harmonische Oszillator Aus: C. Cramer, Computational Chemistry, Wiley 17

18 Das kanonische NVT-Ensemble In experimentellen Situationen muss oft die Temperatur konstant gehalten werden und nicht die Energie E (da man das System gar nicht perfekt isolieren kann bzw. möchte). Dies stellt man sich durch Kopplung des Systems an ein externes Wärmebad vor, das viel grösser als das System ist (und dessen Temperatur daher konstant ist). Dadurch ergibt sich, dass ein zeitlicher Mittelwert des Systems gleich einem gewichteten Mittelwert über alle Zustände mit festem Volumen und Teilchenzahl ist. Den Gewichtungsfaktor bezeichnet man als Boltzmann-Faktor ( X ) * H ' exp ( % $ exp ) kbt & [ H ( X )] 18

19 Das kanonische NVT-Ensemble Damit gilt nun für den Ensemble-Mittelwert einer Observablen A Z A NVT = 1 Z ( X ) exp[ H ( X )] ( N, V, T ) = exp[ H ( X )] X X A Der Faktor Z bewirkt die korrekte Normierung. Er heisst Zustandssumme. Z hängt mit der freien Energie F (free enthalpy) zusammen: ( N, V T ) F = kb T ln Z, Bezüglich der thermodynamischen Grössen gilt auch: F = E TS Im Gleichgewicht nimmt die freie Energie ihr Minimum unter der Bedingung festes Volumen und feste Teilchenzahl an. Der Mittelwert A NVT heisst der kanonische Ensemble-Mittelwert. 19

20 Das kanonische Ensemble Aus diesen Betrachtungen ergibt sich sofort, dass die Newtonsche Bewegungsgleichungen keine geeignete Methode sind um die Zustände in diesem Ensemble zu samplen. Warum? Weil die Newtonschen Bewegungsgleichungen ja die Energie erhalten. Jede Trajektorie generiert die Dynamik auf einer Hyperfläche des Phasenraums bei konstanter Energie. Damit dies einem System mit Boltzmann-Verteilung entspricht, benötigt man Übergänge zwischen Oberflächen konstanter Energie, die jeweils mit dem Boltzmann-Faktor gewichtet werden sollten. 20

21 Beziehung zwischen den Ensembles Die Zustandssumme kann als Summe über die Zustände fester Energie! dargestellt werden: Z ( N, V, T ) = exp [ E ] ( N, V, E ) E Die Anzahl der Zustände!(N,V,E) nimmt sehr rasch mit E zu, wogegen die Boltzmann-Verteilung sehr rasch mit E abnimmt. Das Produkt der beiden Funktionen hat daher ein scharfes Maximum bei einem Wert E und das System wird meist eine Energie sehr eng bei diesem Wert haben. Daher besteht in der Praxis meist kein grosser Unterschied zwischen dem kanonischen und dem mikrokanonischen System. Aufgrund des Gesetzes der grossen Zahlen, haben messbare physikalische Grössen sehr kleine Fluktuationen. Die Abweichungen zwischen den Ensembles werden jedoch grösser, je kleiner die Systeme werden Vorsicht also bei Simulationssystemen! 21

22 Beziehung zwischen den Ensembles Mit der Definition der Entropie kann man umschreiben in: Z ( N, V, E) = k ln!( N, V E) S B, ( N, V, T ) = exp[ E] ( N, V E) Z!, wobei F E die Freie Energie E TS ist, wobei S im mikrokanonischen Ensemble für die Energie berechnet wurde. E ( N, V, T ) = exp[ ( E TS )] = exp[ ] E E F E Man sieht, dass die Summe tatsächlich durch die Zustände dominiert wird, für die die freie Enthalpie minimal ist. 22

23 Vollständiges Differential Definition: Sei f(x) eine Funktion einer Veränderlichen, dann ist df = f + ( x)dx das totale oder vollständige Differential. Das Differential beschreibt die Änderung des Funktionswerts auf der in (x, f(x)) errichteten Tangente an die Kurve von f(x). Definition: Sei f(x) eine Funktion von zwei Veränderlichen, dann ist # f # f df = dx + dy # x # y das vollständige Differential. 23

24 Beziehung zwischen den Ensembles Der erste Satz der Thermodynamik lässt sich mit dem Differential umformen in: de = TdS pdv + µ dn F = E TS df = de TdS SdT df = SdT pdv + µ dn Damit lassen sich aus der freien Energie F folgende thermodynamische Grössen ableiten: µ = # F # N V, T # F # F, p =, S = # V # T N, T V, N 24

25 Das isotherm-isobare NpT-Ensemble In experimentellen Situationen muss zusätzlich zur Temperatur oft ebenfalls der Druck als konstant angenommen werden. Dann ist aber das Volumen V nicht mehr konstant. Man erhält für die Mittelwerte von Observablen im isotherm-isobaren NpT- Ensemble: Q A NPT 1 = Q dv exp [ pv ] exp[ H ( X )] A( X ) X ( N, p, T ) = dv exp[ pv ] exp[ H ( X )] = dv exp[ pv ] Z( N, V, T ) Q heisst wieder die Zustandssumme. X Q verhält sich zur kanonischen Zustandssumme Z ähnlich wie Z mit der Funktion! im mikrokanonischen Ensemble zusammenhing. 25

26 Das isotherm-isobare NpT-Ensemble Q hängt mit der Gibbs schen Freien Enthalpie G (englisch: Gibbs free energy) folgendermassen zusammen: G = k T Q ( N p T ) B ln,, G kann wieder mit den thermodynamischen Grössen ausgedrückt werden: G = E TS + Analog zu oben können folgende thermodynamische Grössen aus G(N,P,T) abgeleitet werden: µ = # G # N p, T N, T pv # G # G, V =, S = # p # T p, N 26

27 Das grosskanonische µvt-ensemble Wenn nun wieder das Volumen konstant ist, aber die Zahl der Teilchen variiert werden kann, erhalten wir den gross-kanonischen Mittelwert: Z G A µ VT = 1 Z [ µ N ] exp[ H ( X )] A( X ) ( µ, V, T ) = exp[ µ N] exp[ H ( X )] = exp[ µ N ] Z( N, V, T ) N G N exp X X µ ist das chemische Potential für die Addition oder Entfernung eines Teilchens, d.h. µ # G # N = N N ±1 Z G sollte nicht mit der kanonischen Zustandssumme Z(N,V,T) verwechselt werden. (Ihr Zusammenhang ist oben dargestellt.) N Z G definiert das grosskanonische Potential! G : G ( µ, V, T ) = N F! µ 27

28 Das grosskanonische µvt-ensemble Die interne Energie kann mit den Variablen S, V und N dargestellt werden (Gibbs-Duhem Gleichung) so dass gilt: ( S, V, N ) = TS + pv + N E µ Analog zu oben können folgende thermodynamische Grössen aus dem grosskanonischen Potential abgeleitet werden: N #! = # ( µ, V T ) = pv!, G, p #! = G G G µ V, T # V µ, T # T V, µ, S #! = 28

29 Zusammenfassung: gebräuchliche statistische Ensembles Das mikrokanonische Ensemble NVE = konstant Das kanonische Ensemble NVT = konstant Das isotherme-isobare Ensemble NPT = konstant Das grosskanonische Ensemble µvt = konstant 29

30 Anwendungen Das mikrokanonische Ensemble NVE = konstant überprüfe Stabilität von Integrationsalgorithmen, Erzeugung von wahrer Dynamik Das kanonische Ensemble NVT = konstant simuliere Vorgänge unter Druckschwankungen Das isotherme-isobare Ensemble NPT = konstant übliches Ensemble für Simulationen von Biomolekülen Das grosskanonische Ensemble µvt = konstant Stuchebrukhov-Paper über Zahl der Wassermoleküle in Cytochrom c Oxidase 30

31 Anwendung: identifiziere Wassermoleküle in Proteinen Kristallstrukturen von Proteinen zeigen oft nicht die Position interner Wassermoleküle, da diese zu mobil sind. Verwende Computersimulationen um die wahre Hydratation zu finden. Welches ist das beste Ensemble um Wassermoleküle in ein Protein zu positionieren? Das gross-kanonische Ensemble! Tashiro, Stuchebrukhov, J Phys Chem B 109, 1015 (2005) 31

32 Anwendung: identifiziere Wassermoleküle in Proteinen Betrachte Transfer aus dem Lösungsmittel Wasser ins Proteininnere. In Lösung besitzt ein Wassermolekül eine freie Lösungsenthalpie von kcal/mol. Wenn es im Proteininneren eine günstigere Position findet, dann wird diese im zeitlichen Mittel mit einem Wasser besetzt sein. Führe Simulation im semi-grosskanonischen Ensemble durch, wobei während der Simulation Wassermoleüle in das Protein hinzugefügt bzw. daraus entfernt werden. In diesem Fall ist es gerade so günstig, die Kavität mit 2 Wassermolekülen zu füllen. Tashiro, Stuchebrukhov, J Phys Chem B 109, 1015 (2005) 32

4. Vorlesung. Globale Optimierung. Sampling von Energiehyperflächen. Monte Carlo / Metropolis-Algorithmus. statistische Mechanik

4. Vorlesung. Globale Optimierung. Sampling von Energiehyperflächen. Monte Carlo / Metropolis-Algorithmus. statistische Mechanik 4. Vorlesung Globale Optimierung Sampling von Energiehyperflächen Monte Carlo / Metropolis-Algorithmus statistische Mechanik Entropie, Phasenraum, Ensembles 4. Vorlesung SS07 Computational Chemistry 1

Mehr

4. Vorlesung. Lokale und Globale Optimierung. Sampling von Energiehyperflächen. Monte Carlo / Metropolis-Algorithmus. Statistische Mechanik

4. Vorlesung. Lokale und Globale Optimierung. Sampling von Energiehyperflächen. Monte Carlo / Metropolis-Algorithmus. Statistische Mechanik 4. Vorlesung Lokale und Globale Optimierung Sampling von Energiehyperflächen Monte Carlo / Metropolis-Algorithmus Statistische Mechanik Entropie, Phasenraum, Ensembles 4. Vorlesung SS14 Computational Chemistry

Mehr

2.1 Importance sampling: Metropolis-Algorithmus

2.1 Importance sampling: Metropolis-Algorithmus Kapitel 2 Simulationstechniken 2.1 Importance sampling: Metropolis-Algorithmus Eine zentrale Fragestellung in der statistischen Physik ist die Bestimmung von Erwartungswerten einer Observablen O in einem

Mehr

6.2 Zweiter HS der Thermodynamik

6.2 Zweiter HS der Thermodynamik Die Änderung des Energieinhaltes eines Systems ohne Stoffaustausch kann durch Zu-/Abfuhr von Wärme Q bzw. mechanischer Arbeit W erfolgen Wird die Arbeit reversibel geleistet (Volumenarbeit), so gilt W

Mehr

Erinnerung an die Thermodynamik

Erinnerung an die Thermodynamik 2 Erinnerung an die Thermodynamik 2.1 Erinnerung an die Thermodynamik Hauptsätze der Thermodynamik Thermodynamische Potentiale 14 2 Erinnerung an die Thermodynamik 2.1 Thermodynamik: phänomenologische

Mehr

Die innere Energie and die Entropie

Die innere Energie and die Entropie Die innere Energie and die Entropie Aber fangen wir mit der Entropie an... Stellen Sie sich ein System vor, das durch die Entropie S, das Volumen V und die Stoffmenge n beschrieben wird. U ' U(S,V,n) Wir

Mehr

Erreichte Punktzahlen: Die Bearbeitungszeit beträgt 3 Stunden.

Erreichte Punktzahlen: Die Bearbeitungszeit beträgt 3 Stunden. Fakultät für Physik der LMU München Prof. Ilka Brunner Michael Kay Vorlesung T4, WS11/12 Klausur am 18. Februar 2012 Name: Matrikelnummer: Erreichte Punktzahlen: 1 2 3 4 5 6 Hinweise Die Bearbeitungszeit

Mehr

Mathematik des Hybriden Monte-Carlo. Marcus Weber. Zuse Institute Berlin

Mathematik des Hybriden Monte-Carlo. Marcus Weber. Zuse Institute Berlin Mathematik des Hybriden Monte-Carlo Marcus Weber Zuse Institute Berlin Statistische Thermodynamik Ziel: Am Computer ein Ensemble samplen. Messung im Gleichgewicht (zeitunabhängige Verteilung π der Systemzustände

Mehr

Thermodynamik un Statistische Mechanik

Thermodynamik un Statistische Mechanik Theoretische Physik Band 9 Walter Greiner Ludwig Neise Horst Stöcker Thermodynamik un Statistische Mechanik Ein Lehr- und Übungsbuch Mit zahlreichen Abbildungen, Beispiele n und Aufgaben mit ausführlichen

Mehr

Thermodynamik und Statistische Mechanik

Thermodynamik und Statistische Mechanik Theoretische Physik Band 9 Walter Greiner Ludwig Neise Horst Stöcker Thermodynamik und Statistische Mechanik Ein Lehr- und Übungsbuch Mit zahlreichen Abbildungen, Beispielen und Aufgaben mit ausführlichen

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

E = w + q. kein Perpetuum Mobile der 1. Art (also: keine Maschine verrichtet Arbeit ohne Brennstoff) de = dw + dq de = 0

E = w + q. kein Perpetuum Mobile der 1. Art (also: keine Maschine verrichtet Arbeit ohne Brennstoff) de = dw + dq de = 0 Thermodynamik: 1. Hauptsatz Energieerhaltung: Arbeit plus Wärmeentwicklung gleich Änderung der inneren Energie E = w + q kein Perpetuum Mobile der 1. Art (also: keine Maschine verrichtet Arbeit ohne Brennstoff)

Mehr

Auswahl von Prüfungsfragen für die Prüfungen im September 2011

Auswahl von Prüfungsfragen für die Prüfungen im September 2011 Auswahl von Prüfungsfragen für die Prüfungen im September 2011 Was ist / sind / bedeutet / verstehen Sie unter... Wie nennt man / lautet / Wann spricht man von / Definieren Sie... Die anschließenden Fragen

Mehr

10. und 11. Vorlesung Sommersemester

10. und 11. Vorlesung Sommersemester 10. und 11. Vorlesung Sommersemester 1 Die Legendre-Transformation 1.1 Noch einmal mit mehr Details Diese Ableitung wirkt einfach, ist aber in dieser Form sicher nicht so leicht verständlich. Deswegen

Mehr

Thermodynamik. Christian Britz

Thermodynamik. Christian Britz Hauptsätze der Klassische nanoskaliger Systeme 04.02.2013 Inhalt Einleitung Hauptsätze der Klassische nanoskaliger Systeme 1 Einleitung 2 Hauptsätze der 3 4 Klassische 5 6 7 nanoskaliger Systeme 8 Hauptsätze

Mehr

Brownsche Bewegung Seminar - Weiche Materie

Brownsche Bewegung Seminar - Weiche Materie Brownsche Bewegung Seminar - Weiche Materie Simon Schnyder 11. Februar 2008 Übersicht Abbildung: 3 Realisationen des Weges eines Brownschen Teilchens mit gl. Startort Struktur des Vortrags Brownsches Teilchen

Mehr

Winter-Semester 2017/18. Moderne Theoretische Physik IIIa. Statistische Physik

Winter-Semester 2017/18. Moderne Theoretische Physik IIIa. Statistische Physik Winter-Semester 2017/18 Moderne Theoretische Physik IIIa Statistische Physik Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Do 11:30-13:00, Lehmann Raum 022, Geb 30.22 http://www.tkm.kit.edu/lehre/

Mehr

Statistische Thermodynamik I Lösungen zur Serie 11

Statistische Thermodynamik I Lösungen zur Serie 11 Statistische Thermodynamik I Lösungen zur Serie Verschiedenes 20 Mai 206 Barometrische Höhenformel: Betrachte die rdatmosphäre im homogenen Gravitationspotential M gz der rde Unter der Annahme, dass sich

Mehr

Theorie der Wärme Musterlösung 11.

Theorie der Wärme Musterlösung 11. Theorie der Wärme Musterlösung. FS 05 Prof. Thomas Gehrmann Übung. Edelgas im Schwerefeld Berechne den Erwartungswert der Energie eines monoatomaren idealen Gases z. B. eines Edelgases in einem zylindrischen

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

Theoretische Chemie (TC II) Computational Chemistry

Theoretische Chemie (TC II) Computational Chemistry Theoretische Chemie (TC II) Computational Chemistry Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Dr. Matthias Ruckenbauer (matruc@theochem.uni-frankfurt.de) Dr. Haleh Hashemi

Mehr

Probeklausur STATISTISCHE PHYSIK PLUS

Probeklausur STATISTISCHE PHYSIK PLUS DEPARTMENT FÜR PHYSIK, LMU Statistische Physik für Bachelor Plus WS 2011/12 Probeklausur STATISTISCHE PHYSIK PLUS NAME:... MATRIKEL NR.:... Bitte beachten: Schreiben Sie Ihren Namen auf jedes Blatt; Schreiben

Mehr

Winter-Semester 2017/18. Moderne Theoretische Physik IIIa. Statistische Physik

Winter-Semester 2017/18. Moderne Theoretische Physik IIIa. Statistische Physik Winter-Semester 2017/18 Moderne Theoretische Physik IIIa Statistische Physik Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Do 11:30-13:00, Lehmann Raum 022, Geb 30.22 http://www.tkm.kit.edu/lehre/

Mehr

Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal

Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal 7.2 Die Enthalpie Die Enthalpie H ist definiert als H = U + pv, womit wir für die Änderung erhalten dh = pdv + TdS +

Mehr

Fortgeschrittene MD/MC Methoden Wie man die freie Energie berechnet. Andreas Irmler

Fortgeschrittene MD/MC Methoden Wie man die freie Energie berechnet. Andreas Irmler Fortgeschrittene MD/MC Methoden Wie man die freie Energie berechnet Andreas Irmler 22. März 2010 Inhaltsverzeichnis 1 Freie Energie 2 1.1 Motivation............................................... 2 1.2

Mehr

Informationen. Anmeldung erforderlich: ab :00 bis spätestens :00

Informationen. Anmeldung erforderlich: ab :00 bis spätestens :00 10 Informationen Anmeldung erforderlich: ab 1.3. 16:00 bis spätestens 8. 3. 09:00 online im TISS (i (tiss.tuwien.ac.at) i Tutorium: Fr. 10:00 11:00, 11:00, Beginn: 15.3.2013 Gruppeneinteilung wird auf

Mehr

Erreichte Punktzahlen: Die Bearbeitungszeit beträgt 3 Stunden.

Erreichte Punktzahlen: Die Bearbeitungszeit beträgt 3 Stunden. Fakultät für Physik der LMU München Prof. Ilka Brunner Vorlesung T4p, WS08/09 Klausur am 11. Februar 2009 Name: Matrikelnummer: Erreichte Punktzahlen: 1.1 1.2 1.3 2.1 2.2 2.3 2.4 Hinweise Die Bearbeitungszeit

Mehr

Kapitel 3. Statistische Definition der Entropie. 3.1 Ensemble aus vielen Teilchen

Kapitel 3. Statistische Definition der Entropie. 3.1 Ensemble aus vielen Teilchen Kapitel 3 Statistische Definition der Entropie 3.1 Ensemble aus vielen Teilchen Die Überlegungen dieses Abschnitts werden für klassische Teilchen formuliert, gelten sinngemäß aber genauso auch für Quantensysteme.

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 14. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 14. 06.

Mehr

Einführung in Simulationen mit Monte Carlo und Brownscher Dynamik. Martin Oettel Johannes Bleibel

Einführung in Simulationen mit Monte Carlo und Brownscher Dynamik. Martin Oettel Johannes Bleibel Einführung in Simulationen mit Monte Carlo und Brownscher Dynamik Martin Oettel Johannes Bleibel Die Monte Carlo-Methode 1. Beispiel Bestimmung von π 1 1 π = 1 1 dx 1 dy G(x, y) G (x, y) = θ(1 x 2 + y

Mehr

PCG Grundpraktikum Versuch 5 Lösungswärme Multiple Choice Test

PCG Grundpraktikum Versuch 5 Lösungswärme Multiple Choice Test PCG Grundpraktikum Versuch 5 Lösungswärme Multiple Choice Test 1. Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Lösungswärme wird dieses Vorgespräch durch einen Multiple Choice

Mehr

Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie

Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Sommer-Semester 2011 Moderne Theoretische Physik III Statistische Physik Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Di 09:45-11:15, Lehmann HS 022, Geb 30.22 Do 09:45-11:15,

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

Übungen zu Moderne Theoretischen Physik III SS Curie-Paramagnetismus ( =30 Punkte, schriftlich)

Übungen zu Moderne Theoretischen Physik III SS Curie-Paramagnetismus ( =30 Punkte, schriftlich) Karlsruher Institut für echnologie Institut für heorie der Kondensierten Materie Übungen zu Moderne heoretischen Physik III SS 06 Prof. Dr. A. Shnirman Blatt 5 PD Dr. B. Narozhny, P. Schad Lösungsvorschlag.

Mehr

IV.2 Kanonische Transformationen

IV.2 Kanonische Transformationen IV.2 Kanonische Transformationen 79 IV.2 Kanonische Transformationen IV.2.1 Phasenraum-Funktionen Die verallgemeinerten Koordinaten q a t) und die dazu konjugierten Impulse p a t) bestimmen den Bewegungszustand

Mehr

2 Grundbegriffe der Thermodynamik

2 Grundbegriffe der Thermodynamik 2 Grundbegriffe der Thermodynamik 2.1 Thermodynamische Systeme (TDS) Aufteilung zwischen System und Umgebung (= Rest der Welt) führt zu einer Klassifikation der Systeme nach Art der Aufteilung: Dazu: adiabatisch

Mehr

Moleküldynamik. Modell: Klassische Mechanik Newtonsche Bewegungsgleichungen. = m a i

Moleküldynamik. Modell: Klassische Mechanik Newtonsche Bewegungsgleichungen. = m a i Mikroskopische Simulation der Molekülbewegungen Moleküldynamik Statistische Mechanik Modell: Klassische Mechanik Newtonsche Bewegungsgleichungen Makroskopische igenschaften des Systems (nergie, Temp, Druck,

Mehr

Allgemeines Gasgesetz. PV = K o T

Allgemeines Gasgesetz. PV = K o T Allgemeines Gasgesetz Die Kombination der beiden Gesetze von Gay-Lussac mit dem Gesetz von Boyle-Mariotte gibt den Zusammenhang der drei Zustandsgrößen Druck, Volumen, und Temperatur eines idealen Gases,

Mehr

Molekulare Bioinformatik

Molekulare Bioinformatik Molekulare Bioinformatik Wintersemester 2013/2014 Prof. Thomas Martinetz Institut für Neuro- und Bioinformatik Universität zu Luebeck 14.01.2014 1 Molekulare Bioinformatik - Vorlesung 11 Wiederholung Wir

Mehr

Klausur zur Statistischen Physik SS 2013

Klausur zur Statistischen Physik SS 2013 Klausur zur Statistischen Physik SS 2013 Prof. Dr. M. Rohlfing Die folgenden Angaben bitte deutlich in Blockschrift ausfüllen: Name, Vorname: geb. am: in: Matrikel-Nr.: Übungsgruppenleiter: Aufgabe maximale

Mehr

Statistik und Thermodynamik

Statistik und Thermodynamik Klaus Goeke Statistik und Thermodynamik Eine Einführung für Bachelor und Master STUDIUM VIEWEG+ TEUBNER Inhaltsverzeichnis I Grundlagen der Statistik und Thermodynamik 1 1 Einleitung 3 2 Grundlagen der

Mehr

Kapitel 5. Kanonisches Ensemble. 5.1 Herleitung 1; E 1 =? 2; E 2 =?

Kapitel 5. Kanonisches Ensemble. 5.1 Herleitung 1; E 1 =? 2; E 2 =? Kapitel 5 Kanonisches Ensemble 5.1 Herleitung Abgesehen von der Legendre-Transformation S(E,, N) F (T,, N) besteht noch eine weitere Möglichkeit, die freie Energie zu berechnen, und zwar wiederum mittels

Mehr

Hochschule Düsseldorf University of Applied Sciences. 20. April 2016 HSD. Energiespeicher Wärme

Hochschule Düsseldorf University of Applied Sciences. 20. April 2016 HSD. Energiespeicher Wärme Energiespeicher 02 - Wärme Wiederholung Energiearten Primärenergie Physikalische Energie Kernenergie Chemische Energie Potentielle Energie Kinetische Energie Innere Energie Quelle: Innere Energie Innere

Mehr

Das Unschärfeprodukt x p in der klassischen Mechanik Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Jonas Lübke

Das Unschärfeprodukt x p in der klassischen Mechanik Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Jonas Lübke Das Unschärfeprodukt x p in der klassischen Mechanik Seminar zur Theorie der Atome, Kerne und kondensierten Materie Jonas Lübke 7. November 013 Inhaltsverzeichnis 1 Einführung 1 Beziehung zwischen klassischer

Mehr

Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Kohärente Zustände des harmonischen Oszillators. Thomas Biekötter

Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Kohärente Zustände des harmonischen Oszillators. Thomas Biekötter Seminar zur Theorie der Atome, Kerne und kondensierten Materie Kohärente Zustände des harmonischen Oszillators Thomas Biekötter 16.11.011 QUANTENMECHANISCHER HARMONISCHER OSZILLATOR 1 Klassischer harmonischer

Mehr

2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen

2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen 2. Thermodynamik 1 2.1 Grundbegriffe 2 2.2 Hauptsätze 3 2.3 Thermodynamische Potentiale 4 2.4 response -Funktionen G. Kahl & B.M. Mladek (E136) Statistische Physik I Kapitel 2 5. März 2012 1 / 25 2.1 Grundbegriffe

Mehr

Wahrscheinlichkeitsrechnung und Quantentheorie

Wahrscheinlichkeitsrechnung und Quantentheorie Physikalische Chemie II: Atombau und chemische Bindung Winter 2013/14 Wahrscheinlichkeitsrechnung und Quantentheorie Messergebnisse können in der Quantenmechanik ganz prinzipiell nur noch mit einer bestimmten

Mehr

Thermodynamik und Statistische Mechanik WS2014/2015

Thermodynamik und Statistische Mechanik WS2014/2015 Thermodynamik und Statistische Mechanik WS2014/2015 Martin E. Garcia Theoretische Physik, FB 10, Universität Kassel Email: garcia@physik.uni-kassel.de Vorlesungsübersicht 1) Einführung: -Makroskopische

Mehr

3 Der 1. Hauptsatz der Thermodynamik

3 Der 1. Hauptsatz der Thermodynamik 3 Der 1. Hauptsatz der Thermodynamik 3.1 Der Begriff der inneren Energie Wir betrachten zunächst ein isoliertes System, d. h. es können weder Teilchen noch Energie mit der Umgebung ausgetauscht werden.

Mehr

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke)

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Freie Universität Berlin WS 2006/2007 Fachbereich Physik 0..2006 Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Übungsblatt 3: Zentraler Grenzwertsatz, Mikrokanonisches Ensemble, Entropie Aufgabe

Mehr

Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie

Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie Kapitel 1: Quantenmechanik Kapitel 2: Atome Kapitel 3: Moleküle Mathematische Grundlagen Schrödingergleichung Einfache Beispiele

Mehr

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 10/09/15

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 10/09/15 Physikdepartment Ferienkurs zur Experimentalphysik 4 Daniel Jost 10/09/15 Inhaltsverzeichnis Technische Universität München 1 Kurze Einführung in die Thermodynamik 1 1.1 Hauptsätze der Thermodynamik.......................

Mehr

Karlsruher Institut für Technologie Festkörperphysik. Übungen zur Theoretischen Physik F SS 10

Karlsruher Institut für Technologie Festkörperphysik. Übungen zur Theoretischen Physik F SS 10 Karlsruher Institut für Technologie Institut für Theoretische Festkörperphysik Übungen zur Theoretischen Physik F SS 10 Prof. Dr. G. Schön Lösungsvorschlag zu Blatt 2 Dr. J. Cole 30.04.2010 1. Van-der-Waals

Mehr

Modell der Punktmasse

Modell der Punktmasse Kinematik Die Kinematik (kinema, griech., Bewegung) ist die Lehre von der Bewegung von Punkten und Körpern im Raum, beschrieben durch die Größen Weg (Änderung der Ortskoordinate) s, Geschwindigkeit v und

Mehr

Thermodynamik (Wärmelehre) III kinetische Gastheorie

Thermodynamik (Wärmelehre) III kinetische Gastheorie Physik A VL6 (07.1.01) Thermodynamik (Wärmelehre) III kinetische Gastheorie Thermische Bewegung Die kinetische Gastheorie Mikroskopische Betrachtung des Druckes Mawell sche Geschwindigkeitserteilung gdes

Mehr

Hamilton-Mechanik. Kapitel 2

Hamilton-Mechanik. Kapitel 2 Hamilton-Mechanik 2 2.1 Legendre-Transformation...106 2.1.1 Aufgaben...109 2.2 Kanonische Gleichungen...110 2.2.1 Hamilton-Funktion...110 2.2.2 Einfache Beispiele...114 2.2.3 Aufgaben...120 2.3 Wirkungsprinzipien...123

Mehr

Es kann günstig sein, Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a

Es kann günstig sein, Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a V.3.4 Kanonische Transformationen Es kann günstig sein Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a Koordinatentransformation im Phasenraum Wir betrachten eine allgemeine Koordinatentransformation

Mehr

4.2 Der Harmonische Oszillator

4.2 Der Harmonische Oszillator Dieter Suter - 208 - Physik B3, SS03 4.2 Der Harmonische Oszillator 4.2.1 Harmonische Schwingungen Die Zeitabhängigkeit einer allgemeinen Schwingung ist beliebig, abgesehen von der Periodizität. Die mathematische

Mehr

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 Differenziation und Integration von Vektorfunktionen Der Ortsvektor: Man kann einen Punkt P im Raum eindeutig durch die

Mehr

6 Thermodynamische Potentiale und Gleichgewichtsbedingungen

6 Thermodynamische Potentiale und Gleichgewichtsbedingungen 6 hermodynamische Potentiale und Gleichgewichtsbedingungen 6.1 Einführung Wir haben bereits folgende thermodynamische Potentiale untersucht: U(S,V ) S(U,V ) hermodynamische Potentiale sind Zustandsfunktionen

Mehr

6 Der Harmonische Oszillator

6 Der Harmonische Oszillator 6 Der Harmonische Oszillator Ein Teilchen der Masse m bewege sich auf der x-achse unter dem Einfluß der Rückstellkraft Fx = mω x. 186 Die Kreisfrequenz ω bzw. die Federkonstante k := mω ist neben der Masse

Mehr

Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie

Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Sommer-Semester 2011 Moderne Theoretische Physik III Statistische Physik Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Di 09:45-11:15, Lehmann HS 022, Geb 30.22 Do 09:45-11:15,

Mehr

Ruprecht-Karls-Universität Heidelberg Vorbereitung zur Diplomprüfung Theoretische Physik

Ruprecht-Karls-Universität Heidelberg Vorbereitung zur Diplomprüfung Theoretische Physik Ruprecht-Karls-Universität Heidelberg Vorbereitung zur Diplomprüfung Theoretische Physik begleitend zur Vorlesung Statistische Mechanik und Thermodynamik WS 2006/2007 Prof. Dr. Dieter W. Heermann erstellt

Mehr

Theoretische Physik 6: Thermodynamik und Statistik

Theoretische Physik 6: Thermodynamik und Statistik Rainer J.Jelitto Theoretische Physik 6: Thermodynamik und Statistik Eine Einführung in die mathematische Naturbeschreibung 2. korrigierte Auflage Mit 82 Abbildungen, Aufgaben und Lösungen dulfc AU LA-Verlag

Mehr

Theoretische Physik 1 Mechanik

Theoretische Physik 1 Mechanik Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik 1 Mechanik Skript zu Vorlesung 2: konservative Kräfte, Vielteilchensysteme und ausgedehnte Körper gehalten von: Markus

Mehr

Experimentalphysik I : Mechanik und Wärmelehre WS 2010/11 Prof. Dr. J. Winter

Experimentalphysik I : Mechanik und Wärmelehre WS 2010/11 Prof. Dr. J. Winter Informationen zur Klausur 2. Teilklausur Freitag, den 28.1.2011 Schwingungen (2.7) Wellen (2.8) Wärmelehre kin. Gastheorie (3.1) Wärme (3.2) Wärmetransport (3.3) 1. Haupsatz (isotherm, adiabatisch, isochor,

Mehr

Theoretische Physik F: Zwischenklausur SS 12

Theoretische Physik F: Zwischenklausur SS 12 Karlsruher Institut für echnologie Institut für heorie der Kondensierten Materie heoretische Physik F: Zwischenklausur SS 1 Prof. Dr. Jörg Schmalian Lösungen Dr. Igor Gornyi esprechung 18.05.01 1. Quickies:

Mehr

22. Entropie; Zweiter Hauptsatz der Wärmelehre

22. Entropie; Zweiter Hauptsatz der Wärmelehre 22. Entropie; Zweiter Hauptsatz der Wärmelehre Nicht alle Prozesse, die dem Energiesatz genügen, finden auch wirklich statt Beispiel: Um alle Energieprobleme zu lösen, brauchte man keine Energie aus dem

Mehr

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II Physik Schwingungen II Ort, Geschwindigkeit, Beschleunigung x(t) = cos! 0 t v(t) =ẋ(t) =! 0 sin! 0 t t a(t) =ẍ(t) =! 2 0 cos! 0 t Energie In einem mechanischen System ist die Gesamtenergie immer gleich

Mehr

Theoretische Physik 25. Juli 2013 Thermodynamik und statistische Physik (T4) Prof. Dr. U. Schollwöck Sommersemester 2013

Theoretische Physik 25. Juli 2013 Thermodynamik und statistische Physik (T4) Prof. Dr. U. Schollwöck Sommersemester 2013 Theoretische Physik 25. Juli 2013 Thermodynamik und statistische Physik (T4) Klausur Prof. Dr. U. Schollwöck Sommersemester 2013 Matrikelnummer: Aufgabe 1 2 3 4 5 6 Summe Punkte Note: WICHTIG! Schreiben

Mehr

Prof. Dr. Peter Vogl, Thomas Eissfeller, Peter Greck. Übung in Thermodynamik und Statistik 4B Blatt 4 Lösung. P + a )

Prof. Dr. Peter Vogl, Thomas Eissfeller, Peter Greck. Übung in Thermodynamik und Statistik 4B Blatt 4 Lösung. P + a ) U München Physik Department, 33 http://www.wsi.tum.de/33 eaching) Prof. Dr. Peter ogl, homas Eissfeller, Peter Greck Übung in hermodynamik und Statistik 4B Blatt 4 Lösung. van der Waals Gas, Adiabatengleichung

Mehr

Thermodynamik und Statistische Physik

Thermodynamik und Statistische Physik Jürgen Schnakenberg Thermodynamik und Statistische Physik Einführung in die Grundlagen der Theoretischen Physik mit zahlreichen Übungsaufgaben 2., durchgesehene Auflage )WILEY-VCH Inhaltsverzeichnis 1

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

Differentialformen in Natur und Technik. Geometrie Hamiltonscher Systeme

Differentialformen in Natur und Technik. Geometrie Hamiltonscher Systeme Differentialformen in Natur und Technik. Geometrie Hamiltonscher Systeme Florian Krämer 27.1.2009 Anwendungen in der Physik Phasen- und Zustandsraum Hamiltonsche Systeme Integralinvarianten Anwendungen

Mehr

2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen

2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen 2. Thermodynamik 1 2.1 Grundbegriffe 2 2.2 Hauptsätze 3 2.3 Thermodynamische Potentiale 4 2.4 response -Funktionen G. Kahl & F. Libisch (E136) Statistische Physik I Kapitel 2 5. April 2016 1 / 25 2.1 Grundbegriffe

Mehr

E 3. Ergänzungen zu Kapitel 3

E 3. Ergänzungen zu Kapitel 3 E 3. Ergänzungen zu Kapitel 3 1 E 3.1 Kritisches Verhalten des van der Waals Gases 2 E 3.2 Kritisches Verhalten des Ising Spin-1/2 Modells 3 E 3.3 Theorie von Lee und Yang 4 E 3.4 Skalenhypothese nach

Mehr

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System: Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar

Mehr

Der Metropolis-Hastings Algorithmus

Der Metropolis-Hastings Algorithmus Der Algorithmus Michael Höhle Department of Statistics University of Munich Numerical Methods for Bayesian Inference WiSe2006/07 Course 30 October 2006 Markov-Chain Monte-Carlo Verfahren Übersicht 1 Einführung

Mehr

Hamilton-Mechanik. Inhaltsverzeichnis. 1 Einleitung. 2 Verallgemeinerter oder kanonischer Impuls. Simon Filser

Hamilton-Mechanik. Inhaltsverzeichnis. 1 Einleitung. 2 Verallgemeinerter oder kanonischer Impuls. Simon Filser Hamilton-Mechanik Simon Filser 4.9.09 Inhaltsverzeichnis 1 Einleitung 1 Verallgemeinerter oder kanonischer Impuls 1 3 Hamiltonfunktion und kanonische Gleichungen 4 Die Hamiltonfunktion als Energie und

Mehr

1. Thermodynamik magnetischer Systeme

1. Thermodynamik magnetischer Systeme 1. Thermodynamik magnetischer Systeme 1 1.1 Thermodynamische Potentiale 2 1.2 Magnetische Modellsysteme G. Kahl (Institut für Theoretische Physik) Statistische Physik II Kapitel 1 5. April 2013 1 / 15

Mehr

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme Fakultät für Physik Technische Universität München Michael Schrapp Übungsblatt 3 Ferienkurs Theoretische Mechanik 009 Hamilton Formalismus und gekoppelte Systeme Hamilton-Mechanik. Aus Doctoral General

Mehr

Grundlagen der Monte Carlo Simulation

Grundlagen der Monte Carlo Simulation Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte

Mehr

Klausur zur T1 (Klassische Mechanik)

Klausur zur T1 (Klassische Mechanik) Klausur zur T1 (Klassische Mechanik) WS 2006/07 Bearbeitungsdauer: 120 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Methoden der Statistik Markov Chain Monte Carlo Methoden

Methoden der Statistik Markov Chain Monte Carlo Methoden Methoden der Statistik Markov Chain Monte Carlo Methoden Humboldt-Universität zu Berlin 08.02.2013 Problemstellung Wie kann eine Zufallsstichprobe am Computer simuliert werden, deren Verteilung aus einem

Mehr

Prüfungsklausur - Lösung

Prüfungsklausur - Lösung Prof. G. Dissertori Physik I ETH Zürich, D-PHYS Durchführung: 08. Februar 2012 Bearbeitungszeit: 180min Prüfungsklausur - Lösung Aufgabe 1: Triff den Apfel! (8 Punkte) Wir wählen den Ursprung des Koordinatensystems

Mehr

Stochastik Praktikum Markov Chain Monte Carlo Methoden

Stochastik Praktikum Markov Chain Monte Carlo Methoden Stochastik Praktikum Markov Chain Monte Carlo Methoden Humboldt-Universität zu Berlin 14.10.2010 Problemstellung Wie kann eine Zufallsstichprobe am Computer simuliert werden, deren Verteilung aus einem

Mehr

Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion

Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion Aufgabe EStrich ist Lennard Jones Potential mit Exponentialfunktion Ansatz: Exponentialfunktion mit 3 Variablen einführen: a: Amplitude b:stauchung c:verschiebung_entlang_x_achse EStrich r_, ro_, _ : a

Mehr

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik III (Theorie F Statistische Mechanik SS 7 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 6

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 14. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 14. 06.

Mehr

1 Lagrange-Formalismus

1 Lagrange-Formalismus Lagrange-Formalismus SS 4 In der gestrigen Vorlesung haben wir die Beschreibung eines physikalischen Systems mit Hilfe der Newton schen Axiome kennen gelernt. Oft ist es aber nicht so einfach die Kraftbilanz

Mehr

5.4 Hamilton-Mechanik

5.4 Hamilton-Mechanik 5.4 Hamilton-Mechanik 157 5.4 Hamilton-Mechanik Die Lagrangegleichung ist das Mittel zur Wahl zum Lösen allgemeiner mechanischer Aufgaben, wobei es unerheblich ist, welches konkrete Problem und unter Benutzung

Mehr

Notizen zur statistischen Physik

Notizen zur statistischen Physik Notizen zur statistischen Physik Kim Boström Begriffe der hermodynamik System: Gedanklich und im Prinzip operativ abtrennbarer eil der Welt. Physik ist das Studium der Eigenschaften von Systemen. Umgebung:

Mehr

Probeklausur zu Physikalische Chemie II für Lehramt

Probeklausur zu Physikalische Chemie II für Lehramt Department Chemie Dr. Don C. Lamb http://www.cup.uni-muenchen.de/pc/lamb Probeklausur zu Physikalische Chemie II für Lehramt Zur Bearbeitung der Klausur ist nur der freie Platz dieser vor Ihnen liegenden

Mehr

8. Mehrkomponentensysteme. 8.1 Partielle molare Größen. Experiment 1 unter Umgebungsdruck p:

8. Mehrkomponentensysteme. 8.1 Partielle molare Größen. Experiment 1 unter Umgebungsdruck p: 8. Mehrkomponentensysteme 8.1 Partielle molare Größen Experiment 1 unter Umgebungsdruck p: Fügen wir einer Menge Wasser n mit Volumen V (molares Volumen v m =V/n) bei einer bestimmten Temperatur T eine

Mehr

BZQ II: Stochastikpraktikum

BZQ II: Stochastikpraktikum BZQ II: Stochastikpraktikum Block 5: Markov-Chain-Monte-Carlo-Verfahren Randolf Altmeyer February 1, 2017 Überblick 1 Monte-Carlo-Methoden, Zufallszahlen, statistische Tests 2 Nichtparametrische Methoden

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas Thermodynamik Teilgebiet der klassischen Physik. Wir betrachten statistisch viele Teilchen. Informationen über einzelne Teilchen werden nicht gewonnen bzw.

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 25. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 25. 06.

Mehr