Es kann günstig sein, Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a

Größe: px
Ab Seite anzeigen:

Download "Es kann günstig sein, Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a"

Transkript

1 V.3.4 Kanonische Transformationen Es kann günstig sein Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a Koordinatentransformation im Phasenraum Wir betrachten eine allgemeine Koordinatentransformation im Phasenraum q α } p α } Q α } P α } Q α = Q α t q p mit für α = 1... s. P α = P α t q p V.31 Unter diese Transformation der Koordinaten ändert sich im Allgemeinen auch die funktionale Form der Phasenraum-Funktion welche eine gewisse physikalische röße ausdrückt. Das heißt eine Funktion f der alten Koordinaten q q α } p p α } soll durch eine Funktion F der neuen Koordinaten

2 108 Hamilton-Formalismus Q Q α } P P α } ersetzt werden. Die beiden Funktion stehen in Zusammenhang zu einander weil sie die Beziehung F t Qt q p Pt q p = ft q p erfüllen müssen. Bemerkung: Hier dürfen die Koordinatentransformationen nicht nur von den Koordinaten q } und der Zeit abhängen wie es bei den Punkttransformationen III.12 im Lagrange-Formalismus der Fall war sondern auch von den Impulsen p }. Somit sind weitere Transformationen möglich. Beispiel: Sei ein System mit einem einzigen Freiheitsgrad beschrieben durch kanonisch konjugierte Variablen q p mit der Hamilton-Funktion hq p = a 1 2 q 2 + b 2 p2 q 4 V.32 wobei a und b positiv sind. Die Hamilton schen Bewegungsgleichungen lauten q = h = bpq4 ṗ = h = a q 3 2bp2 q 3. Wird die erste leichung nach der Zeit abgeleitet bzw. nach p umgestellt so ergibt sich q = bṗq 4 + 4bpq 3 q bzw. p = q bq 4. Daraus folgt die Bewegungsgleichung q = abq + 2 q2 q deren Lösung auf erster Sicht nicht trivial aussieht. Führt man aber die Koordinatentransformation Q = pq 2 P = 1 q durch so nimmt die Hamilton-Funktion die bekannte Form HQ P = a 2 P 2 + b 2 Q2 V.33 entsprechend einem harmonischen Oszillator mit Masse m = 1/a und natürlicher Kreisfrequenz ω 2 = ab. Was aber noch nicht klar ist ist ob die Bewegungsgleichungen in den neuen Koordinaten Q P die gleiche Form wie in den alten erhalten mit Hamilton-Funktion HQ P statt hq p. V.3.4 b Kanonische Transformationen Sei nun g eine neue Funktion der alten Koordinaten q p und die damit assoziierte Funktion der neuen Koordinaten Q P: t Qt q p Pt q p = gt q p. Definition: Eine Koordinatentransformation V.31 im Phasenraum heißt kanonische Transformation wenn sie die Poisson-Klammer zweier beliebigen Funktionen unverändert lässt d.h. } qp = F } QP. V.34 Insbesondere sollen die fundamentalen Poisson-Klammern in den neuen Koordinaten Q α Q } QP = P α P }QP = 0 Q α } P QP = δα V.35 sein. Reziprok kann man zeigen dass wenn die fundamentalen Poisson-Klammern in den neuen Phasenraumvariablen die kanonische Form V.35 annehmen dann ist die Koordinatentransformation kanonisch.

3 V.3 Poisson-Mechanik 109 Bemerkung: Anstatt der mathematisch korrekten Notation F für die Funktionen der neuen Variablen Q P einzuführen benutzen Physiker oft die gleiche Notation f und g auch wenn die mathematische Form nicht die gleiche wie in den alten Variablen q p ist. Dementsprechend wird } qp = } V.36 QP statt l. V.34 geschrieben. Transformation der Phasenraumkoordinaten für s = 1 Seien zwei Funktionen der Phasenraumkoordinaten q p eines Systems mit einem einzigen Freiheitsgrad. Unter einer Koordinatentransformation q p Q P werden sie durch neue Funktionen F ersetzt mit ft q p = F t Qt q p Pt q p gt q p = t Qt q p Pt q p. Die Ableitung der ersten dieser leichungen nach einer der Phasenraumvariablen zb q gibt d.h. unter Verwendung der Kettenregel f = df dq f = F + F. Ähnliche leichungen gelten für die Ableitung nach p oder für die Ableitungen von g so dass die Poisson-Klammer von f und g sich als }qp = f g f F = g + F + F + F + schreiben lässt. Beim Ausmultiplizieren des Terms auf der rechten Seite kommen acht Beiträge wovon vier sich kürzen während die vier übrigen Terme faktorisiert werden können. Insgesamt ergibt sich d.h. mit F }qp = F } qp = F } QP P p P p = det V.37a V.37b leichung V.37a zeigt dass die Koordinatentransformation q p Q P kanonisch ist wenn deren Jacobi-Determinante V.37b gleich 1 ist. Beispiel: Kommt man zurück zum Beispiel des V.3.4 a man prüft einfach nach dass die Transformation V.33 eigentlich kanonisch ist. Transformation der Phasenraumkoordinaten für s > 1 Wie betrachten nur eine Transformation q p Q P der Phasenraumkoordinaten für ein System mit s Freiheitsgraden wobei s > 1 ist. 47 Laut l. V.21 lässt sich die Poisson-Klammer 47 Eigentlich gilt die folgende Herleitung auch im Fall s = 1.

4 110 Hamilton-Formalismus zweier Funktionen der Variablen q p als }qp = 0 q f T p f T 1s q g q f T 1 s 0 p g p f T q g J 2s p g V.38 schreiben wobei die zweite leichung die antisymmetrische 2s 2s-Matrix J 2s definiert. Wie im Fall des Problems mit s = 1 Freiheitsgrad lassen sich die partiellen Ableitungen von nach den Variablen q α p α durch die Ableitungen von F nach den zugehörigen Variablen Q α P α ausdrücken; beispielsweise gelten und g α = d dq α = g = d = dp α s =1 α + α s + =1 sowie ähnliche leichungen mit g bzw. ersetzt durch f bzw. F. Führt man die vier folgenden s s-matrizen definiert durch ihre Elemente 48 q Q α = α q P α = α p Q α = p P α = V.39a ein so lassen sich die Beziehungen zwischen den partiellen Ableitungen von g und denen von in der kürzeren Matrix-Schreibweise q g q Q q P Q Q = Λ V.39b p g p Q p P P P schreiben. Dabei stellt die 2s 2s-Matrix Λ die Transformationsmatrix für die Koordinatentransformation unter Betrachtung dar. Die Transposition dieser Beziehung mit g bzw. ersetzt durch f bzw. F lautet q f T p f T = Q F T P F T Λ T. Dies kann im Ausdruck V.38 der Poisson-Klammer von f und g eingesetzt werden. Somit ergibt sich } qp = Q F T P F T Q Λ T J 2s Λ. P Andererseits gilt in den neuen Phasenraumkoordinaten } F QP = Q F T P F T Q J 2s. P Vergleicht man beide Ausdrücke man sieht dass die Transformation q p Q P kanonisch ist wenn die Anforderung Λ T J 2s Λ = J 2s V.40 an die Transformationsmatrix Λ erfüllt ist. Bemerkung: Eine Matrix welche die Beziehung V.40 erfüllt wird symplektische Matrix genannt. Man prüft einfach nach dass wenn Λ 1 Λ 2 zwei solche Matrizen sind dann ist das Produkt Λ 1 Λ 2 auch eine symplektische Matrix: anders gesagt ist das Hintereinanderausführen zweier kanonischer Transformationen wieder eine kanonische Transformation. 48 Hier ist die tief- oder hochgestellte Position der Indizes irrelevant. Wichtiger ist der Unterschied zwischen Zeilenund Spaltenindizes.

5 V.3 Poisson-Mechanik 111 Aus der Beziehung V.40 und det J 2s = 1 0 folgt det Λ 2 = 1 49 so dass jede symplektische Matrix invertierbar ist; eigentlich gilt Λ 1 = J 1 2s ΛT J 2s. V.41 Da die Einheitsmatrix 1 2s offensichtlich symplektisch ist bilden symplektische 2s 2s-Matrizen eine ruppe die sog. symplektische ruppe Sp2s. V.3.5 Poisson-Klammer und Symmetrien Sei q p eine mindestens zwei mal kontinuierlich differenzierbare Funktion auf dem Phasenraum eines Systems die nicht explizit von der Zeit abhängt. Anhand dieser Funktion lassen sich infinitesimale Koordinatentransformationen der Form q α Q α = q α + δq α V.42a p α P α = p α + δp α mit δq α q p ɛ = ɛ q α q p } q p δp α ɛ α = ɛ p α q p } V.42b generieren wobei ɛ ein kleiner reeller Parameter ist. Die Funktion wird oft Erzeugende der Transformation genannt. Zuerst kann man zeigen dass eine solche Koordinatentransformation immer kanonisch ist unabhängig von der Wahl der Funktion. Die zugehörige Transformationsmatrix V.39 lautet Λ = 2 + ɛ α ɛ α 2 ɛ δ α ɛ 2 δ α 2 wobei die Matrixelemente der s s-subblocks angegeben wurden. Dann gilt 2 ɛ δ α ɛ 2 J 2s Λ = δα 2 ɛ α ɛ 2 α. Nach einer zweiten Matrixmultiplikation findet man Λ T J 2s Λ = J 2s + ɛ 2 M wobei die Matrixelemente von M von den zweifachen Ableitungen von abhängen. Zur Ordnung ɛ ist dies genau die charakteristische Beziehung V.40 einer symplektischen Matrix d.h. die Koordinatentransformation V.42 ist kanonisch. Sei nun ft q p eine beliebige Funktion der Phasenraumkoordinaten und möglicherweise der Zeit. Anhand einer Taylor-Entwicklung kann man die Variation dieser Funktion zwischen dem transformierten Phasenraumpunkt q + δq p + δp und q p: δft q p ft q + δq p + δp ft q p = s α=1 f α δqα + f δp α 49 Man kann sogar zeigen dass die Determinante einer symplektischen Matrix det Λ = 1 ist. Ein elementarer Beweis wird in Ref. [27] gegeben..

6 112 Hamilton-Formalismus Unter Verwendung der expliziten Form V.42b von δq α δp α kommt δft q p = ɛ ft q p q p } qp. V.43 Das heißt die Änderung der Funktion f unter der infinitesimalen Transformation V.42 ist einfach durch die Poisson-Klammer von f und der Erzeugenden der Transformation gegeben. Beziehung V.43 gilt insbesondere wenn f die Hamilton-Funktion H des Systems ist. Sei angenommen dass eine Konstante der Bewegung ist. Laut l. V.30 ist die Poisson-Klammer H } gleich der partiellen Ableitung von nach der Zeit d.h. hier Null. Somit gilt für ein Integral der Bewegung δh = ɛ H } = 0. V.44 Anders gesagt ändert sich die Hamilton-Funktion nicht unter der infinitesimalen kanonischen Transformation die durch eine Konstante der Bewegung generiert wird: eine solche Koordinatentransformation ist eine Symmetrietransformation des Systems und wir finden den im Abschn. III.3 diskutierten Zusammenhang zwischen Symmetrien und Erhaltungsgrößen wieder. Beispiel 1: Invarianz unter Raumtranslationen und Impulserhaltung Sei zuerst angenommen dass die Erzeugende einer der Impulse ist q p = p. Dann wird die dadurch generierte infinitesimale Koordinatentransformation V.42 zu q Q = q + ɛ q α Q α = q α für α p α P α = p α für alle α. Das heißt die kanonische Transformation ist eine Translation entlang q. Nun wenn die Physik des Systems charakterisiert durch dessen Hamilton-Funktion nicht von q anhängt sollte sich H unter der Translation nicht ändern: δh = 0. Aus l. V.43 mit f = H und = p folgt dann H p } was laut l. V.30 bedeutet dass p erhalten ist wie in III.3.1 b schon gefunden wurde. Beispiel 2: Invarianz unter Zeittranslationen und Energieerhaltung Wenn die Erzeugende die Hamilton-Funktion selber ist q p = Hq p lautet die zugehörige Koordinatentransformation V.42 q α Q α = q α + ɛ H = q α + ɛ q α p α P α = p α ɛ H α = p α + ɛṗ α für alle α. Wenn die Phasenraumkoordinaten entlang einer Trajektorie betrachtet sind erkennt man dabei eine infinitesimale Zeittranslation: Q α t = q α t + ɛ P α t = p α t + ɛ. Da die Poisson-Klammer H H } Null ist ändert sich H laut l. V.43 nicht unter einer Zeittranslation: das heißt dass die Hamilton-Funktion die Erzeugende der Zeittranslationen ist und dass sie darunter erhalten bleibt entsprechend der Erhaltung der esamtenergie III.3.1 a.

IV.2 Kanonische Transformationen

IV.2 Kanonische Transformationen IV.2 Kanonische Transformationen 79 IV.2 Kanonische Transformationen IV.2.1 Phasenraum-Funktionen Die verallgemeinerten Koordinaten q a t) und die dazu konjugierten Impulse p a t) bestimmen den Bewegungszustand

Mehr

Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h.

Definition: Variablentransformation d. Form (2) heisst kanonisch, wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h. Zusammenfassung: kanonische Transformationen Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h., wenn ein existiert,

Mehr

Kanonische Transformationen

Kanonische Transformationen Kanonische Transformationen Erinnerung: Hamiltonsches Extremalprinzip: Die Wirkung ist bei vorgegebenen Randbedingungen stationär für die physikalischen Trajektorien: für Dieses Extremalprinzip gilt auch

Mehr

Poisson-Klammern. Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und Zeit abhängen: Def: "Poisson-Klammer von F und G":

Poisson-Klammern. Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und Zeit abhängen: Def: Poisson-Klammer von F und G: Poisson-Klammern Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und Zeit abhängen: Def: "Poisson-Klammer von F und G": Einfachste Beispiele: im Hamilton-Formalismus sind p, q,

Mehr

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06 Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06 Dörte Hansen Seminar 11 1 Hamiltonsche Mechanik, kanonische Transformationen und Hamilton-Jacobi-Theorie Wie die Lagrangesche Mechanik

Mehr

1 Lagrange-Formalismus

1 Lagrange-Formalismus Lagrange-Formalismus SS 4 In der gestrigen Vorlesung haben wir die Beschreibung eines physikalischen Systems mit Hilfe der Newton schen Axiome kennen gelernt. Oft ist es aber nicht so einfach die Kraftbilanz

Mehr

Lagrange-Formalismus

Lagrange-Formalismus KAPITEL II Lagrange-Formalismus Die im letzten Kapitel dargelegte Formulierung der Mechanik nach Newton ist zwar sehr intuitiv: man zählt alle auf das zu studierende System wirkenden Kräfte auf, schreibt

Mehr

Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen:

Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen: Poisson-Klammern Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen: Def: "Poisson-Klammer von F und G": Einfachste Beispiele: im Hamilton-Formalismus sind p,

Mehr

10. und 11. Vorlesung Sommersemester

10. und 11. Vorlesung Sommersemester 10. und 11. Vorlesung Sommersemester 1 Die Legendre-Transformation 1.1 Noch einmal mit mehr Details Diese Ableitung wirkt einfach, ist aber in dieser Form sicher nicht so leicht verständlich. Deswegen

Mehr

Hamiltonsche Mechanik (Kanonische Mechanik)

Hamiltonsche Mechanik (Kanonische Mechanik) Hamiltonsche Mechanik (Kanonische Mechanik) Hamilton-Funktion und Hamiltonsche Bewegungsgleichungen Motivation: Die Hamiltonsche Formulierung der klassischen Mechanik - erweiterert Klasse der zulässigen

Mehr

Hamilton-Formalismus

Hamilton-Formalismus KAPITEL IV Hamilton-Formalismus Einleitung! IV.1 Hamilton sche Bewegungsgleichungen IV.1.1 Kanonisch konjugierter Impuls Sei ein mechanisches System mit s Freiheitsgraden. Im Rahmen des in Kap. II eingeführten

Mehr

Kapitel 6. Der Lagrange-Formalismus. 6.2 Lagrange-Funktion in der relativistischen Feldtheorie. 6.1 Euler-Lagrange-Gleichung

Kapitel 6. Der Lagrange-Formalismus. 6.2 Lagrange-Funktion in der relativistischen Feldtheorie. 6.1 Euler-Lagrange-Gleichung 92 Teilchenphysik, HS 2007-SS 2008, Prof. A. Rubbia (ETH Zurich) 6.2 Lagrange-Funktion in der relativistischen Felheorie Kapitel 6 Der Lagrange-Formalismus 6.1 Euler-Lagrange-Gleichung In der Quantenmechanik

Mehr

X.4 Elektromagnetische Wellen im Vakuum

X.4 Elektromagnetische Wellen im Vakuum X.4 Elektromagnetische Wellen im Vakuum 173 X.4 Elektromagnetische Wellen im Vakuum In Abwesenheit von Quellen, ρ el. = 0 j el. = 0, nehmen die Bewegungsgleichungen (X.9) (X.11) für die elektromagnetischen

Mehr

Hamilton-Mechanik. Kapitel 2

Hamilton-Mechanik. Kapitel 2 Hamilton-Mechanik 2 2.1 Legendre-Transformation...106 2.1.1 Aufgaben...109 2.2 Kanonische Gleichungen...110 2.2.1 Hamilton-Funktion...110 2.2.2 Einfache Beispiele...114 2.2.3 Aufgaben...120 2.3 Wirkungsprinzipien...123

Mehr

Hamilton-Mechanik. Inhaltsverzeichnis. 1 Einleitung. 2 Verallgemeinerter oder kanonischer Impuls. Simon Filser

Hamilton-Mechanik. Inhaltsverzeichnis. 1 Einleitung. 2 Verallgemeinerter oder kanonischer Impuls. Simon Filser Hamilton-Mechanik Simon Filser 4.9.09 Inhaltsverzeichnis 1 Einleitung 1 Verallgemeinerter oder kanonischer Impuls 1 3 Hamiltonfunktion und kanonische Gleichungen 4 Die Hamiltonfunktion als Energie und

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 1/13/14) Dozent: J. von Delft Übungen: B. Kubala Klausur zur Vorlesung T1: Theoretische Mechanik, SoSe 008 (3. Juli 007) Bearbeitungszeit:

Mehr

Nichtlinearität in der klassischen Physik

Nichtlinearität in der klassischen Physik Nichtlinearität in der klassischen Physik Dr. Peter Schlagheck Vorlesung an der Uni Regensburg im Wintersemester 25/26 Inhaltsverzeichnis Klassische Mechanik 2. Lagrange-Formalismus........................................

Mehr

Theoretische Physik 1 Mechanik

Theoretische Physik 1 Mechanik Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik 1 Mechanik Skript zu Vorlesung 3: Lagrange-Formalismus, Systeme von Schwingungen gehalten von: Markus Krottenmüller & Markus

Mehr

Hamiltonsche Mechanik. Norbert Dragon

Hamiltonsche Mechanik. Norbert Dragon Hamiltonsche Mechanik Norbert Dragon Der Artikel hat zur Zeit noch nicht seine endgültige Form, die jeweils neueste Fassung befindet sich im Internet bei http://www.itp.uni-hannover.de/~dragon. Für Hinweise

Mehr

48 Symplektische Geometrie und Klassische Mechanik

48 Symplektische Geometrie und Klassische Mechanik 48 Symplektische Geometrie und Klassische Mechanik Zusammenfassung Zum Schluss der Vorlesung gehen wir noch auf eine geometrische Struktur ein, die wie die euklidische oder die Minkowski-Struktur im Rahmen

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

Grundlagen der analytischen Mechanik

Grundlagen der analytischen Mechanik Grundlagen der analytischen Mechanik Seminar: Theorie der komplexen Systeme Marcus Tassler Grundlagen der analytischen Mechanik p. Teil I: Lagrange Mechanik Grundlagen der analytischen Mechanik p. Überblick

Mehr

Klausur zur T1 (Klassische Mechanik)

Klausur zur T1 (Klassische Mechanik) Klausur zur T1 (Klassische Mechanik) WS 2006/07 Bearbeitungsdauer: 120 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Symplektische Geometrie

Symplektische Geometrie Symplektische Geometrie Def. Eine symplektische Form auf U R 2n ist eine geschlossene, nichtausgeartete 2-Differentialform. }{{}}{{} d.h. dω = 0 wird gleich definiert Wir bezeichnen sie normalerweise mit

Mehr

Klassische Theoretische Physik: Mechanik

Klassische Theoretische Physik: Mechanik Klassische Theoretische Physik: Mechanik Patrick Simon Argelander-Institut für Astronomie Auf dem Hügel 71 psimon@astro.uni-bonn.de 10. Dezember 2013 1 Hamilton-Mechanik Im Abschnitt?? haben wir eine neue

Mehr

Diracs kanonische Quantisierung von Systemen mit Nebenbedingungen

Diracs kanonische Quantisierung von Systemen mit Nebenbedingungen Diracs kanonische von Systemen mit Nebenbedingungen Christof Witte HU Berlin Seminar zur theoretischen Physik WS 08/09 Christof Witte kanonische 1 / 46 Motivation bewährt: Übergang von klassischer zu quantenmechanischer

Mehr

Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h.

Definition: Variablentransformation d. Form (2) heisst kanonisch, wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h. Zusammenfassung: kanonische Transformationen Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h., wenn ein existiert,

Mehr

KLAUSUR THEORETISCHE MECHANIK

KLAUSUR THEORETISCHE MECHANIK KLAUSUR THEORETISCHE MECHANIK Univ. Potsdam Prof. A. Feldmeier Fr 30. Juli 00 4 bis 7 Uhr JEDE AUFGABE AUF EIN NEUES BLATT MIT NAME UND MATRIKEL Schein: mindest. halbe Punktzahl. Davon mindest. ein Drittel

Mehr

6. Hamiltonische Formulierung

6. Hamiltonische Formulierung monoton wächst) und es gilt xu) = f ) 1 u) 6.3) 6. Hamiltonische Formulierung 6.1 Kanonische Gleichungen Die Lagrange-Funktion Lq q t) ist eine Funktion der generalisierten Koordinaten q = q 1... q f )

Mehr

Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus

Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus Fakultät für Physik Michael Schrapp Technische Universität München Vorlesung Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus Inhaltsverzeichnis 1 Motivation 2 2 Generalisierte Koordinaten und

Mehr

Fibonacci Zahlen: 3. Hamiltonsche Systeme. 3.1 Hamilton Dynamik. Teilverhältnis beim `goldenen Schnitt : definiert als. mit

Fibonacci Zahlen: 3. Hamiltonsche Systeme. 3.1 Hamilton Dynamik. Teilverhältnis beim `goldenen Schnitt : definiert als. mit Fibonacci Zahlen: definiert als Bemerkungen: (1) ist das Teilverhältnis beim `goldenen Schnitt : mit A T B und (2) Alle Zahlen, deren Darstellung als Kettenbruch auf endet, heißen `noble Zahlen. (3) Entwicklung

Mehr

5. Raum-Zeit-Symmetrien: Erhaltungssätze

5. Raum-Zeit-Symmetrien: Erhaltungssätze 5. Raum-Zeit-Symmetrien: Erhaltungssätze Unter Symmetrie versteht man die Invarianz unter einer bestimmten Operation. Ein Objekt wird als symmetrisch bezeichnet, wenn es gegenüber Symmetrieoperationen

Mehr

Skalare Differenzialgleichungen

Skalare Differenzialgleichungen 3 Skalare Differenzialgleichungen Differenzialgleichungen stellen eine Beziehung her zwischen einer oder mehreren Funktionen und ihren Ableitungen. Da Ableitungen Veränderungen beschreiben, modellieren

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

Tutorial: Theoretische Mechanik

Tutorial: Theoretische Mechanik Tutorial: Theoretische Mechanik Jan Krieger http://www.jkrieger.de 23. Juli 2006 1. Einleitung 3 2. Newton sche Mechanik 4 2.1. Newton sche Axiome.......................................

Mehr

Einführung in den Symmetriebegriff und gruppentheoretische Grundlagen

Einführung in den Symmetriebegriff und gruppentheoretische Grundlagen Einführung in den Symmetriebegriff und gruppentheoretische Grundlagen Stephanie Artmeier WS 0/ Inhaltsverzeichnis Einführung... Gruppen.... Beispiel gleichseitiges Dreieck... 3. Darstellung von Gruppen...

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte

Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte T1: Klassische Mechanik, SoSe007 Prof. Dr. Jan von Delft Theresienstr. 37, Zi. 40 Dr. Vitaly N. Golovach vitaly.golovach@physik.lmu.de Nachholklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 007 (8.

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme Fakultät für Physik Technische Universität München Michael Schrapp Übungsblatt 3 Ferienkurs Theoretische Mechanik 009 Hamilton Formalismus und gekoppelte Systeme Hamilton-Mechanik. Aus Doctoral General

Mehr

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung Kapitel 3 Lineare Abbildungen Lineare Abbildungen sind eine natürliche Klasse von Abbildungen zwischen zwei Vektorräumen, denn sie vertragen sich per definitionem mit der Struktur linearer Räume Viele

Mehr

a 1 a 1 A = a n . det = λ det a i

a 1 a 1 A = a n . det = λ det a i 49 Determinanten Für gegebene Vektoren a 1,,a n K n, betrachte die Matrix deren Zeilenvektoren a 1,,a n sind, also A = Ab sofort benutzen wir diese bequeme Schreibweise Definition Sei M : K n K }{{ n K

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

Umkehrfunktion. g (y) = f (x) 1, x = g(y), Umkehrfunktion 1-1

Umkehrfunktion. g (y) = f (x) 1, x = g(y), Umkehrfunktion 1-1 Umkehrfunktion Ist für eine stetig differenzierbare n-variate Funktion f : D R n die Jacobi-Matrix f (x ) für einen Punkt x im Innern des Definitionsbereiches D R n nicht singulär, so ist f lokal invertierbar,

Mehr

Definition 1.1 (Wirkung) Wir wollen die Kurvenverläufe x(t) finden, die das Funktional

Definition 1.1 (Wirkung) Wir wollen die Kurvenverläufe x(t) finden, die das Funktional Christina Schindler Karolina Stoiber Ferienkurs Analysis für Physiker SS 13 A 1 Variationsrechnung 1.1 Lagrange. Art Wir führen die Überlegungen von gestern fort und wollen nun die Lagrangegleichungen.

Mehr

Zeitentwicklung von Observablen und Zuständen in der klassischen Mechanik

Zeitentwicklung von Observablen und Zuständen in der klassischen Mechanik Zeitentwicklung von Observablen und Zuständen in der klassischen Mechanik Martin Vojta 05.01.2012 1 Hamiltonsche Mechanik Die Hamiltonsche Mechanik befasst sich mit der Bewegung im Phasenraum. Dabei kann

Mehr

Das Noether-Theorem. Philipp Arras, Jakob Moritz. 18. Juli Quellen 6

Das Noether-Theorem. Philipp Arras, Jakob Moritz. 18. Juli Quellen 6 Das Noether-Theorem Philipp Arras, Jakob Moritz 18. Juli 013 Inhaltsverzeichnis 1 Herleitung des Noether-Theorems in der Feldtheorie 1 1.1 Voraussetzungen.......................................... 1 1.

Mehr

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A

Mehr

Kapitel 3. Statistische Definition der Entropie. 3.1 Ensemble aus vielen Teilchen

Kapitel 3. Statistische Definition der Entropie. 3.1 Ensemble aus vielen Teilchen Kapitel 3 Statistische Definition der Entropie 3.1 Ensemble aus vielen Teilchen Die Überlegungen dieses Abschnitts werden für klassische Teilchen formuliert, gelten sinngemäß aber genauso auch für Quantensysteme.

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Vortrag Gmnasium Birkenfeld Von der mathematischen Spielerei zur technischen Anwendung Vortrag Gmnasium Birkenfeld. Vektoren und Matrizen Wir betrachten einen Punkt P (, ) in der Ebene eines rechtwinklig

Mehr

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der

Mehr

Übungsblatt

Übungsblatt Übungsblatt 3 3.5.27 ) Die folgenden vier Matrizen bilden eine Darstellung der Gruppe C 4 : E =, A =, B =, C = Zeigen Sie einige Gruppeneigenschaften: a) Abgeschlossenheit: Berechnen Sie alle möglichen

Mehr

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 }

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 } A Analsis, Woche Implizite Funktionen A Implizite Funktionen in D A3 Wenn man den Kreis mit Radius um, beschreiben möchte, dann ist { x, ; x + = } eine Möglichkeit Oft ist es bequemer, so eine Figur oder

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 18 8. Januar 2010 Kapitel 5. Funktionen mehrerer Veränderlicher, Stetigkeit und partielle Ableitungen 5.2. Partielle Ableitungen von Funktionen

Mehr

Wiederholung von Linearer Algebra und Differentialrechnung im R n

Wiederholung von Linearer Algebra und Differentialrechnung im R n Wiederholung von Linearer Algebra und Differentialrechnung im R n 1 Lineare Algebra 11 Matrizen Notation: Vektor x R n : x = x 1 x n = (x i ) n i=1, mit den Komponenten x i, i {1,, n} zugehörige Indexmenge:

Mehr

Klassische Mechanik. WILEY-VCH Verlag GmbH & Co. KGaA. Herbert Goldstein, Charles P. Poole, Jr., und John L Safko

Klassische Mechanik. WILEY-VCH Verlag GmbH & Co. KGaA. Herbert Goldstein, Charles P. Poole, Jr., und John L Safko Herbert Goldstein, Charles P. Poole, Jr., und John L Safko Klassische Mechanik Dritte, vollständig überarbeitete und erweiterte Auflage WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Inhaltsverzeichnis Vorwort

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Allgemeine Phasenraumkoordinaten Im letzten Kapitel haben wir den Hamiltonschen Fluss als eine geometrische Beschreibung der Zeitentwicklung

Allgemeine Phasenraumkoordinaten Im letzten Kapitel haben wir den Hamiltonschen Fluss als eine geometrische Beschreibung der Zeitentwicklung 16 Symmetrien Das Ziel dieses Abschnittes ist es, eines der wichtigsten Theoreme der theoretischen Physik zu beweisen, das erstmals von Emmy Noether im Jahre 1905 formuliert wurde. Es stellt eine Beziehung

Mehr

Allgemeine Mechanik Musterlösung 11.

Allgemeine Mechanik Musterlösung 11. Allgemeine Mechanik Musterlösung 11. HS 2014 Prof. Thomas Gehrmann Übung 1. Poisson-Klammern 1 Zeigen Sie mithilfe der Poisson-Klammern, dass folgendes gilt: a Für das Potential V ( r = α r 1+ε ist der

Mehr

Kleine Schwingungen vieler Freiheitsgrade

Kleine Schwingungen vieler Freiheitsgrade Kleine Schwingungen vieler Freiheitsgrade Betrachte System mit f Freiheitsgraden: (z.b. N Teilchen in 3 Dim.: ) Koordinaten: Geschwindigkeiten: Kinetische Energie: "Massenmatrix" Nebenbemerkung: Bei fortgeschrittenen

Mehr

Vorlesung Theoretische Mechanik

Vorlesung Theoretische Mechanik Julius-Maximilians-Universität Würzburg Vorlesung Theoretische Mechanik Wintersemester 17/18 Prof. Dr. Johanna Erdmenger Vorläufiges Skript 1 (Zweite Vorlesung, aufgeschrieben von Manuel Kunkel, 23. 10.

Mehr

und Unterdeterminante

und Unterdeterminante Zusammenfassung: Determinanten Definition: Entwicklungssätze: mit und Unterdeterminante (streiche Zeile i & Spalte j v. A, bilde dann die Determinante) Eigenschaften v. Determinanten: Multilinearität,

Mehr

Sei ω eine symplektische Struktur auf U 2n. Satz 12. In einer Umgebung eines beliebigen Punktes x gibt es

Sei ω eine symplektische Struktur auf U 2n. Satz 12. In einer Umgebung eines beliebigen Punktes x gibt es Satz von Darboux Sei ω eine symplektische Struktur auf U 2n. Satz 12. In einer Umgebung eines beliebigen Punktes x gibt es Koordinaten (x 1,..., x n, p 1,..., p n ), sodass ω = n i=1 dp i dx i. Ferner

Mehr

Klassische Mechanik. Friedhelm Kuypers. Mit 103 Beispielen und 167 Aufgaben mit Lösungen. 7., erweiterte und verbesserte Auflage WILEY- VCH

Klassische Mechanik. Friedhelm Kuypers. Mit 103 Beispielen und 167 Aufgaben mit Lösungen. 7., erweiterte und verbesserte Auflage WILEY- VCH Friedhelm Kuypers Klassische Mechanik Mit 103 Beispielen und 167 Aufgaben mit Lösungen 7., erweiterte und verbesserte Auflage WILEY- VCH WI LEY-VCH Verlag GmbH & Co. KGaA IX Inhaltsverzeichnis A Die Newtonsche

Mehr

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte]

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte] Übungen Theoretische Physik I (Mechanik) Blatt 9 (Austeilung am: 1.9.11, Abgabe am 8.9.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle.

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle. Nachschlag:Transposition von Matrizen Sei Explizit: Def: "Transponierte v. A": (tausche Zeilen mit Spalten d.h., spiegle in der Diagonale) m Reihen, n Spalten n Reihen, m Spalten z.b. m=2,n=3: Eigenschaft:

Mehr

Bewegung auf Paraboloid 2

Bewegung auf Paraboloid 2 Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 8 vom 17.06.13 Abgabe: 24.06. Aufgabe 34 4 Punkte Bewegung auf Paraboloid 2 Ein Teilchen der Masse m bewege sich reibungsfrei unter

Mehr

Rang einer Matrix. 1-E1 Ma 1 Lubov Vassilevskaya

Rang einer Matrix. 1-E1 Ma 1 Lubov Vassilevskaya Rang einer Matrix 1-E1 Ma 1 Lubov Vassilevskaya Unterdeterminante einer nichtquadratischen Matrix M ist eine nichtquadratische 2,3-Matrix: M = 6 2 3 0 5 7 Durch Streichen einer der drei Spalten kann man

Mehr

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe: Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

15 Hamiltonsche Mechanik

15 Hamiltonsche Mechanik 15 Hamiltonsche Mechanik Wie bereits an anderer Stelle kurz erwähnt, stellt das Wirkungsprinzip so etwas wie das Bindeglied zwischen der klassischen Physik und der Quantenphysik her. Wenn man für ein bestimmtes

Mehr

mit "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor"

mit Skalarprodukt aus i-tem Zeilenvektor und j-tem Spaltenvektor Zusammenfassung Matrizen Transponierte: Addition: mit Skalare Multiplikation: Matrixmultiplikation: m x p m x n n x p mit ES "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor" "Determinante"

Mehr

Dies ist nun eine Differentialgleichung zweiter Ordnung mit dem Randwertproblem x(t 0 ) = x 0 und x(t 1 ) = x 1.

Dies ist nun eine Differentialgleichung zweiter Ordnung mit dem Randwertproblem x(t 0 ) = x 0 und x(t 1 ) = x 1. Florian Niederreiter Karolina Stoiber Ferienkurs Analysis für Physiker SS 15 A 1 Variationsrechnung 1.1 Lagrange. Art Wir führen die Überlegungen von gestern fort und wollen nun die Lagrangegleichungen.

Mehr

Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra)

Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra) Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra) Matrix: (Plural: Matrizen) Vielfältige Anwendungen in der Physik: - Lösung von linearen Gleichungsystemen - Beschreibung von Drehungen

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Eckhard flebhan Theoretische Physik: Mechanik ELSEVIER SPEKTRUM AKADEMISCHER VERLAG Spektrum L AKADEMISCHER VI k_/l AKADEMISCHER VEHLAG Inhaltsverzeichnis Anmerkungen zur Theoretischen Physik 1 1 Vorbemerkungen

Mehr

Analysis von singulären Differentialgleichungen erster und zweiter Ordnung - Skalare Probleme

Analysis von singulären Differentialgleichungen erster und zweiter Ordnung - Skalare Probleme Analysis von singulären Differentialgleichungen erster und zweiter Ordnung - Skalare Probleme Jonathan Mosser 3. Juni 27 / 38 Vorbemerkungen Singularität Singuläre Probleme können auf zwei Arten formuliert

Mehr

Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n

Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n Universität Stuttgart Physik und ihre Didaktik PD Dr Holger Cartarius Matrizen Matrizen: Ein rechteckiges Zahlenschema der Form a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A a m,1 a m,2 a m,n (a) nennt man eine

Mehr

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form:

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: C7.5 Differentialgleichungen 1. Ordnung - Allgemeine Aussagen System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: Kompaktnotation: Anfangsbedingung: Gesuchte Lösung: Gleichungen dieser Art

Mehr

Kapitel 1. Vektoren und Matrizen. 1.1 Vektoren

Kapitel 1. Vektoren und Matrizen. 1.1 Vektoren Kapitel 1 Vektoren und Matrizen In diesem Kapitel stellen wir die Hilfsmittel aus der linearen Algebra vor, die in den folgenden Kapiteln öfters benötigt werden. Dabei wird angenommen, dass Sie die elementaren

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

Geodätische Woche 2014 Session 6 Theoretische Geodäsie

Geodätische Woche 2014 Session 6 Theoretische Geodäsie Enrico Mai (IfE/LUH) & Robin Geyer (ZIH/TUD) Numerische Integration mittels Lie Reihen unter Verwendung von Parallelem Rechnen Geodätische Woche 2014 Session 6 Theoretische Geodäsie Berlin, 07.10.2014

Mehr

Einführung in die Störungstheorie

Einführung in die Störungstheorie Einführung in die Störungstheorie Steffen Vanselow und Lukas Weymann June 6, 23 Vorbereitung. Integrabilität Betrachten System mit n Freiheitsgraden und k n Erhaltungsgrössen. Die Freiheitsgrade werden

Mehr

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 6. Juni 0 Prof. Dr. H. Brenner Mathematik für Anwender II Testklausur mit Lösungen Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Ein Skalarprodukt

Mehr

Ferienkurs Analysis 3 für Physiker. Übung: Distributionen

Ferienkurs Analysis 3 für Physiker. Übung: Distributionen Ferienkurs Analysis 3 für Physiker Übung: Distributionen Autor: Maximilian Jokel, Benjamin üth Stand: 14. März 16 Aufgabe 1 (Ableitung der Heaviside-Funktion) Wir betrachten die durch Θ(x) : { 1 für x

Mehr

Serie 12: Eigenwerte und Eigenvektoren

Serie 12: Eigenwerte und Eigenvektoren D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie : Eigenwerte und Eigenvektoren Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom 7 und 9 Dezember Finden Sie für folgende

Mehr

49 Differenzierbarkeit, Richtungsableitung und partielle Differenzierbarkeit

49 Differenzierbarkeit, Richtungsableitung und partielle Differenzierbarkeit 49 Differenzierbarkeit, Richtungsableitung und partielle Differenzierbarkeit 49.1 Differenzierbarkeit 49.2 Eindeutigkeit des Differentials; Unabhängigkeit der Differenzierbarkeit von den gewählten Normen

Mehr

L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren. Gegeben. Gesucht: Diagonalform: Finde und! Definition: Eigenvektor, Eigenwert

L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren. Gegeben. Gesucht: Diagonalform: Finde und! Definition: Eigenvektor, Eigenwert L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren Viele Anwendungen in der Physik: z.b. Bestimmung der - Haupträgheitsmomente eines starren Körpers durch Diagonalisierung des Trägheitstensors

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

Probeklausur zur Theoretischen Physik I: Mechanik

Probeklausur zur Theoretischen Physik I: Mechanik Prof. Dr. H. Friedrich Physik-Department T3a Technische Universität München Probeklausur zur Theoretischen Physik I: Mechanik Montag, 2.7.29 Hörsaal 1 1:15-11:5 Aufgabe 1 (8 Punkte) Geben Sie möglichst

Mehr

Analysis II 14. Übungsblatt

Analysis II 14. Übungsblatt Jun.-Prof. PD Dr. D. Mugnolo Wintersemester 01/13 F. Stoffers 04. Februar 013 Analysis II 14. Übungsblatt 1. Aufgabe (8 Punkte Man beweise: Die Gleichung z 3 + z + xy = 1 besitzt für jedes (x, y R genau

Mehr

2. Stetigkeit und Differenzierbarkeit

2. Stetigkeit und Differenzierbarkeit 2. Stetigkeit Differenzierbarkeit 9 2. Stetigkeit Differenzierbarkeit Wir wollen uns nun komplexen Funktionen zuwenden dabei zunächst die ersten in der Analysis betrachteten Eigenschaften untersuchen,

Mehr

Musterlösungen. Theoretische Physik I: Klassische Mechanik

Musterlösungen. Theoretische Physik I: Klassische Mechanik Blatt 13 3101013 Musterlösungen Theoretische Physik I: Klassische Mechanik Prof Dr G Alber MSc Nenad Balanesković Levi-Civita Symbol, Poissonklammern und kanonische Transformationen 1 Das Levi-Civita Symbol

Mehr

Lineare Algebra II 3. Übungsblatt

Lineare Algebra II 3. Übungsblatt Lineare Algebra II 3. Übungsblatt Fachbereich Mathematik SS 2011 Prof. Dr. Kollross 27./28. April 2011 Susanne Kürsten Tristan Alex Minitest Aufgabe M1 (Formale Polynome) Betrachten Sie die folgenden Polynome

Mehr

i j m f(y )h i h j h m

i j m f(y )h i h j h m 10 HÖHERE ABLEITUNGEN UND ANWENDUNGEN 56 Speziell für k = 2 ist also f(x 0 + H) = f(x 0 ) + f(x 0 ), H + 1 2 i j f(x 0 )h i h j + R(X 0 ; H) mit R(X 0 ; H) = 1 6 i,j,m=1 i j m f(y )h i h j h m und passendem

Mehr