KLAUSUR THEORETISCHE MECHANIK

Größe: px
Ab Seite anzeigen:

Download "KLAUSUR THEORETISCHE MECHANIK"

Transkript

1 KLAUSUR THEORETISCHE MECHANIK Univ. Potsdam Prof. A. Feldmeier Fr 30. Juli 00 4 bis 7 Uhr JEDE AUFGABE AUF EIN NEUES BLATT MIT NAME UND MATRIKEL Schein: mindest. halbe Punktzahl. Davon mindest. ein Drittel im Aufgabenteil V O R L E S U N G V. Fragen 0 Punkte je (a) Wie ist die Poissonklammer definiert? (b) Wie lauten die Bewegungsgleichungen mit Poissonklammer? (c) Wie ist die Phasenraumdichte definiert wie realisieren Sie sie? (d) Wie ist das dyadische Produkt definiert? (e) Was ist ein Tensor? V. Erzeugende Funktion 7 Punkte Sei F = F (q p q p). Weiterhin sei eine der beiden Gleichungen q = F p erfüllt sowie eine der beiden Gleichungen und es gelte H H = F/ t. q = F p p = F q F p = q Zeigen Sie dass dann q p q p die kanonischen Gleichungen erfüllen. Gemischte zweite Ableitungen nach q p t dürfen beliebig vertauscht werden. V3. Eulersche Differentialgleichung 3 Punkte Bitte leiten Sie die Eulersche Differentialgleichung d q dt q = 0 mit der originalen Eulerschen Methode her: (i) Diskretisierung der Zeitachse in Intervalle (ii) Variation 0 = δw = i δl(q i q i t i ) der Wirkung (iii) Bahnvariation δq in nur einem Punkt t. Benutzen Sie bitte linksseitige Differentiale also q = (q q 0 )/. BITTE WENDEN!

2 A U F G A B E N A. Von Hamilton zu Lagrange 4 Punkte Ein System mit einem Freiheitsgrad hat die Hamiltonfunktion H(q p) = p + A(q) p + B(q). m Bitte finden Sie die Geschwindigkeit q und die Lagrangefunktion L(q q). Achtung: L hängt von q ab nicht von p. A. Isotroper Oszillator 0 Punkte Die Hamiltonfunktion des isotropen Oszillators in der Ebene lautet Wir definieren (mit ω = k/m) H(q p) = m (p x + p y ) + k (x + y ). S = m (p x p y ) + k (x y ) S = m p xp y + kxy S 3 = ω(xp y yp x ). Zeigen Sie (mit Poissonklammern {x p x } = {y p y } = ) dass {S S } = ωs 3. A3. Rotierende kartesische Koordinaten 0 Punkte Seien X Y kartesische Koordinaten im Inertialsystem I der Ebene und x y Koordinaten im gegenüber I mit konstanter Winkelgeschwindigkeit ω = dθ/dt rotierenden System R X = x cos θ y sin θ Y = x sin θ + y cos θ. Zeigen Sie dass die Lagrangefunktion m [(Ẋ) + (Ẏ ) ] des in I kräftefreien Teilchens in R so lautet: L = m [ (ẋ) + (ẏ) + ω (x + y ) + ω(xẏ yẋ) ]. Tipp: Es empfiehlt sich Abkürzungen s = sin θ(t) und c = cos θ(t) zu verwenden. Achtung: ṡ = ωc ċ = ωs. A4. Kroneckersymbol 0 Punkte Das Kroneckersymbol ist in jedem kartesischen Koordinatensystem gleich definiert δ ij = δ ij = 0 bzw. wenn i j bzw i = j. Zeigen Sie dass sich δ unter Drehungen im euklidischen R 3 mit Drehmatrix a dennoch wie ein Tensor. Stufe transformiert.

3 L Ö S U N G E N V. Erzeugende Funktion Wir müssen zeigen dass für alle Koordinaten q p q p die kanonischen Gleichungen gelten: q = F t p = F p t = p (H H) = + H p p = + F t q = + F q t = + q (H H) = H q q = + F t p = + F p t = + p (H H) = + H p ṗ = F t q = F q t = q (H H) = H q wobei H( q p)/ q = 0 usw. verwendet wurde. V3. Eulersche Differentialgleichung Hilfsrechnung: wenn man nur den Punkt q variiert dann ändern sich die Ableitungen q und q (schreibe vor und nach der Variation) Entsprechend q vor = q q 0 = q + δq q 0 q nach δ q = q nach q vor = δq. q vor = q q = q (q + δq ) q nach δ q = q nach q vor = δq. Damit Prinzip der kleinsten Wirkung (wir schreiben q i q ) i

4 0 = δw = δl i i = ( δq i + ) δ q i q i i q i ( = δq + δ q + ) δ q q q q ( = δq + δq q q ) δq q ( = / q ) / q δq q ( = d ) δq q dt q Also muss die runde Klammer verschwinden! Der zweite Summand ist ein Funktionswert an der Stelle t. Er unterscheidet sich vom Funktionswert an der Stelle t nach Taylorreihenentwicklung um t um einen Term. Im limes 0 verschwindet dieser. Da an beiden (verbleibenden) Termen der Index steht und dieser (Zeit-)Punkt beliebig ist können wir den Index weglassen: q d dt q = 0. A. Von Hamilton zu Lagrange q = H p = p m + A(q). L = p q H = p m B = m ( q A) B. A. Isotroper Oszillator Wir geben nur die nicht-verschwindenden Terme an {S S } = { m (p x p y ) + k (x y ) } m p xp y + kxy ( {p } x xy} {p y xy + { } { } ) x p x p y y p x p y = k m = k m (yp x {p x x} xp y {p y y} + xp y {x p x } yp x {y p y }) = k m (xp y yp x ) = ωs 3.

5 A3. Rotierende kartesische Koordinaten Abkürzung: s = sin θ c = cos θ. Koordinatentransformation Zeitableitung davon X = xc ys Y = xs + yc. Quadrieren und addieren Ẋ = ẋc ẏs xωs yωc Ẏ = ẋs + ẏc + xωc yωs. ) ) (Ẋ + (Ẏ = ẋ c + ẏ s + x ω s + y ω c ẋẏsc xẋωsc yẋωc + xẏωs + yẏωsc + xyω sc + ẋ s + ẏ c + x ω c + y ω s +ẋẏsc + xẋωsc yẋωs + xẏωc yẏωsc xyω sc Zusammenfassen L = m [Ẋ + Ẏ ] = m [ẋ + ẏ + ω (x + y ) + ω(xẏ yẋ) ]. A4. Kroneckertensor Für Drehmatrizen gilt a τ = a.. Beweis: mit Operatoren. Das Kroneckersymbol ist der Identitätsoperator I: I = I = aa = aa τ = aia τ Das erste Gleichheitszeichen gilt laut Voraussetzung; das letzte sollte gezeigt werden: dies ist das Transformationsverhalten eines Tensors zweiter Stufe:. Beweis: mit Indizes: T = at a τ.

6 δ ij = δ ij a ik a kj a ik a τ kj a ik a jk a ik a jl δ kl l Dies ist wieder das Transformationsverhalten eines Tensors zweiter Stufe: T ij = a ika jl T kl.

1 Lagrange-Formalismus

1 Lagrange-Formalismus Lagrange-Formalismus SS 4 In der gestrigen Vorlesung haben wir die Beschreibung eines physikalischen Systems mit Hilfe der Newton schen Axiome kennen gelernt. Oft ist es aber nicht so einfach die Kraftbilanz

Mehr

Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus

Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus Fakultät für Physik Michael Schrapp Technische Universität München Vorlesung Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus Inhaltsverzeichnis 1 Motivation 2 2 Generalisierte Koordinaten und

Mehr

Hamilton-Mechanik. Inhaltsverzeichnis. 1 Einleitung. 2 Verallgemeinerter oder kanonischer Impuls. Simon Filser

Hamilton-Mechanik. Inhaltsverzeichnis. 1 Einleitung. 2 Verallgemeinerter oder kanonischer Impuls. Simon Filser Hamilton-Mechanik Simon Filser 4.9.09 Inhaltsverzeichnis 1 Einleitung 1 Verallgemeinerter oder kanonischer Impuls 1 3 Hamiltonfunktion und kanonische Gleichungen 4 Die Hamiltonfunktion als Energie und

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

Musterlösungen. Theoretische Physik I: Klassische Mechanik

Musterlösungen. Theoretische Physik I: Klassische Mechanik Blatt 1 4.01.013 Musterlösungen Theoretische Physik I: Klassische Mechanik Prof. Dr. G. Alber MSc Nenad Balanesković Hamilton-Funktion 1. Betrachten Sie zwei Massenpunktem 1 undm die sich gemäß dem Newtonschen

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 1/13/14) Dozent: J. von Delft Übungen: B. Kubala Klausur zur Vorlesung T1: Theoretische Mechanik, SoSe 008 (3. Juli 007) Bearbeitungszeit:

Mehr

10. und 11. Vorlesung Sommersemester

10. und 11. Vorlesung Sommersemester 10. und 11. Vorlesung Sommersemester 1 Die Legendre-Transformation 1.1 Noch einmal mit mehr Details Diese Ableitung wirkt einfach, ist aber in dieser Form sicher nicht so leicht verständlich. Deswegen

Mehr

Es kann günstig sein, Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a

Es kann günstig sein, Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a V.3.4 Kanonische Transformationen Es kann günstig sein Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a Koordinatentransformation im Phasenraum Wir betrachten eine allgemeine Koordinatentransformation

Mehr

Grundlagen der Lagrange-Mechanik

Grundlagen der Lagrange-Mechanik Grundlagen der Lagrange-Mechanik Ahmed Omran 1 Abriss der Newton schen Mechanik 1.1 Newton sche Axiome 1. Axiom: Im Inertialsystem verharrt ein Körper in seinem momentanen Bewegungszustand (in Ruhe, oder

Mehr

Klausur zur T1 (Klassische Mechanik)

Klausur zur T1 (Klassische Mechanik) Klausur zur T1 (Klassische Mechanik) WS 2006/07 Bearbeitungsdauer: 120 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

2 Lagrange sche Bewegungsgleichungen

2 Lagrange sche Bewegungsgleichungen 2 Lagrange sche Bewegungsgleichungen Ausgearbeitet von Christine Cronjäger, Klaus Grambach und Ulrike Wacker 2.1 Zwangsbedingungen: Zwangsbedingungen schränken die 3 Freiheitsgrade des Teilchens ein. Unterwirft

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06 Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06 Dörte Hansen Seminar 11 1 Hamiltonsche Mechanik, kanonische Transformationen und Hamilton-Jacobi-Theorie Wie die Lagrangesche Mechanik

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

5. Raum-Zeit-Symmetrien: Erhaltungssätze

5. Raum-Zeit-Symmetrien: Erhaltungssätze 5. Raum-Zeit-Symmetrien: Erhaltungssätze Unter Symmetrie versteht man die Invarianz unter einer bestimmten Operation. Ein Objekt wird als symmetrisch bezeichnet, wenn es gegenüber Symmetrieoperationen

Mehr

Lagrange sche Bewegungsgleichungen

Lagrange sche Bewegungsgleichungen Kapitel 2 Lagrange sche Bewegungsgleichungen Ausgearbeitet von Christine Cronjäger, Klaus Grambach und Ulrike Wacker 2.1 Zwangsbedingungen: Zwangsbedingungen schränken die 3 Freiheitsgrade des Teilchens

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr

1. Prinzip von d'alembert

1. Prinzip von d'alembert 1. Prinzip von d'alembert 1.1 Freiheitsgrade 1.2 Zwangsbedingungen 1.3 Virtuelle Geschwindigkeiten 1.4 Prinzip der virtuellen Leistung Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik 2 5.1-1 1.1

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 2 - Lösung Technische Universität München 1 Fakultät für Physik 1 Perle Eine Perle der Masse m gleite reibungsfrei auf einem vertikal stehenden Ring vom Radius

Mehr

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H Formelsammlung Lagrange-Gleichungen: ( ) d L dt q k L q k = 0 mit k = 1,..., n. (1) Zur Koordinate q k konjugierter Impuls: p k = L q k. (2) Hamilton-Funktion: n H(q 1,..., q n, p 1,..., p n, t) = p k

Mehr

Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte

Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte T1: Klassische Mechanik, SoSe007 Prof. Dr. Jan von Delft Theresienstr. 37, Zi. 40 Dr. Vitaly N. Golovach vitaly.golovach@physik.lmu.de Nachholklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 007 (8.

Mehr

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme Fakultät für Physik Technische Universität München Michael Schrapp Übungsblatt 3 Ferienkurs Theoretische Mechanik 009 Hamilton Formalismus und gekoppelte Systeme Hamilton-Mechanik. Aus Doctoral General

Mehr

Diracs kanonische Quantisierung von Systemen mit Nebenbedingungen

Diracs kanonische Quantisierung von Systemen mit Nebenbedingungen Diracs kanonische von Systemen mit Nebenbedingungen Christof Witte HU Berlin Seminar zur theoretischen Physik WS 08/09 Christof Witte kanonische 1 / 46 Motivation bewährt: Übergang von klassischer zu quantenmechanischer

Mehr

Ferienkurs Theoretische Mechanik Lösungen Hamilton

Ferienkurs Theoretische Mechanik Lösungen Hamilton Ferienkurs Theoretische Mechanik Lösungen Hamilton Max Knötig August 10, 2008 1 Hamiltonfunktion, Energie und Zeitabhängigkeit 1.1 Perle auf rotierendem Draht Ein Teilchen sei auf einem halbkreisförmig

Mehr

6. Hamiltonische Formulierung

6. Hamiltonische Formulierung monoton wächst) und es gilt xu) = f ) 1 u) 6.3) 6. Hamiltonische Formulierung 6.1 Kanonische Gleichungen Die Lagrange-Funktion Lq q t) ist eine Funktion der generalisierten Koordinaten q = q 1... q f )

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der

Mehr

Theoretische Physik I Mechanik Probeklausur - Lösungshinweise

Theoretische Physik I Mechanik Probeklausur - Lösungshinweise Prof. H. Monien St. Kräer R. Sanchez SS2014 Theoretische Physik I Mechanik Probeklausur - Lösungshinweise Hinweise: Diese Lösung/Lösungshinweise erhebt keinen Anspruch auf Richtigkeit oder Vollständigkeit,

Mehr

Grundlagen der analytischen Mechanik

Grundlagen der analytischen Mechanik Grundlagen der analytischen Mechanik Seminar: Theorie der komplexen Systeme Marcus Tassler Grundlagen der analytischen Mechanik p. Teil I: Lagrange Mechanik Grundlagen der analytischen Mechanik p. Überblick

Mehr

IV.2 Kanonische Transformationen

IV.2 Kanonische Transformationen IV.2 Kanonische Transformationen 79 IV.2 Kanonische Transformationen IV.2.1 Phasenraum-Funktionen Die verallgemeinerten Koordinaten q a t) und die dazu konjugierten Impulse p a t) bestimmen den Bewegungszustand

Mehr

Musterlösungen. Theoretische Physik I: Klassische Mechanik

Musterlösungen. Theoretische Physik I: Klassische Mechanik Blatt 13 3101013 Musterlösungen Theoretische Physik I: Klassische Mechanik Prof Dr G Alber MSc Nenad Balanesković Levi-Civita Symbol, Poissonklammern und kanonische Transformationen 1 Das Levi-Civita Symbol

Mehr

Probeklausur zur T1 (Klassische Mechanik)

Probeklausur zur T1 (Klassische Mechanik) Probeklausur zur T1 (Klassische Mechanik) WS 006/07 Bearbeitungsdauer: 10 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Kapitel 2. Lagrangesche Mechanik. 2.1 Einleitung/Motivation

Kapitel 2. Lagrangesche Mechanik. 2.1 Einleitung/Motivation Kapitel Lagrangesche Mechanik Hier entwickeln wir eine elegante und einfache Betrachtungsweise der Newtontheorie, die eine Verallgemeinerung für quantenmechanische und relativistische Systeme ermöglicht..1

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Aus dem Beispiel lässt sich ablesen (und auch beweisen, siehe Mathematikvorlesung): Die Einheitsvektoren des Koordinatensystems K sind die Spalten der

Aus dem Beispiel lässt sich ablesen (und auch beweisen, siehe Mathematikvorlesung): Die Einheitsvektoren des Koordinatensystems K sind die Spalten der 7 Aus dem Beispiel lässt sich ablesen (und auch beweisen, siehe Mathematikvorlesung): Folgerung: Drehmatrizen haben die Determinante. Folgerung: Drehmatrizen sind orthogonale Matrizen, das heißt D = D

Mehr

15 Hamiltonsche Mechanik

15 Hamiltonsche Mechanik 15 Hamiltonsche Mechanik Wie bereits an anderer Stelle kurz erwähnt, stellt das Wirkungsprinzip so etwas wie das Bindeglied zwischen der klassischen Physik und der Quantenphysik her. Wenn man für ein bestimmtes

Mehr

Technische Mechanik 3

Technische Mechanik 3 Technische Mechanik 3 2. Kinematik eines Massenpunktes 2.1. Grundbegriffe, kartesische Koordinaten 2.2. Geradlinige Bewegung 2.3. Ebene Bewegung, Polarkoordinaten 2.4. räumliche Bewegung, natürliche Koordinaten

Mehr

11. Vorlesung Wintersemester

11. Vorlesung Wintersemester 11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y

Mehr

Blatt 03.1: Scheinkräfte

Blatt 03.1: Scheinkräfte Fakultät für Physik T1: Klassische Mechanik, SoSe 2016 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik/

Mehr

Kapitel 2. Mathematische Grundlagen. Koordinatensystem

Kapitel 2. Mathematische Grundlagen. Koordinatensystem Kapitel 2 Mathematische Grundlagen 2.1 Koordinatensystem Zumeist werden in diesem Buch rechtwinkelige kartesische Koordinatensysteme verwendet. Sie sind durch drei zueinander orthogonale Koordinatenachsen

Mehr

11 Lagrangesche Mechanik

11 Lagrangesche Mechanik 11 Lagrangesche Mechanik In diesem Kapitel werden wir den ersten Schritt zu einer allgemeinen Formulierung aller heute bekannten fundamentalen physikalischen Theorien machen. Allerdings ist dieser erste

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

25. Vorlesung Sommersemester

25. Vorlesung Sommersemester 25. Vorlesung Sommersemester 1 Die Euler-Winkel Die Euler-Winkel geben die relative Orientierung zweier gegeneinander gedrehter Koordinatensysteme an, indem definiert wird, in welcher Reihenfolge welche

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

(dφ) 2 + (dz) 2. φ 2 dφ mit z=z(φ).

(dφ) 2 + (dz) 2. φ 2 dφ mit z=z(φ). PD Dr. S. Mertens Theoretische Physik I Mechanik J. Unterhinninghofen, M. Hummel Blatt 5 WS 8/9.. 8. Strecke auf Zylinder. Bestimmen Sie die kürzeste Verbindung zwischen zwei Punkten auf Pkt.) dem Zylinder.

Mehr

Theoretische Physik 1 Mechanik

Theoretische Physik 1 Mechanik Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik 1 Mechanik Skript zu Vorlesung 3: Lagrange-Formalismus, Systeme von Schwingungen gehalten von: Markus Krottenmüller & Markus

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 3 Tobias Spranger - Prof. Tom Kirchner WS 5/6 http://www.pt.tu-clausthal.de/qd/teaching.html. Dezember 5 Übungsblatt 6 Lösungsvorschlag 3 ufgaben,

Mehr

Lagrange-Formalismus

Lagrange-Formalismus KAPITEL II Lagrange-Formalismus Die im letzten Kapitel dargelegte Formulierung der Mechanik nach Newton ist zwar sehr intuitiv: man zählt alle auf das zu studierende System wirkenden Kräfte auf, schreibt

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

Kapitel 22. Aufgaben. Verständnisfragen. Rechenaufgaben

Kapitel 22. Aufgaben. Verständnisfragen. Rechenaufgaben Kapitel Aufgaben Verständnisfragen Aufgabe. Gegeben sind kartesische Tensoren r ij k, s ij und t ij. Welche der folgenden Größen sind koordinateninvariant? s ii, s ij t jk, s ij t ji, r ijj, s ij t jk

Mehr

Allgemeine Mechanik Musterlösung 11.

Allgemeine Mechanik Musterlösung 11. Allgemeine Mechanik Musterlösung 11. HS 2014 Prof. Thomas Gehrmann Übung 1. Poisson-Klammern 1 Zeigen Sie mithilfe der Poisson-Klammern, dass folgendes gilt: a Für das Potential V ( r = α r 1+ε ist der

Mehr

Gliederung. Gliederung (cont.) Probleme der Dynamik von Manipulatoren

Gliederung. Gliederung (cont.) Probleme der Dynamik von Manipulatoren - Gliederung Jianwei Zhang zhang@informatik.uni-hamburg.de Fakultät für Mathematik, Informatik und Naturwissenschaften Technische Aspekte Multimodaler Systeme 08. Juni 010 Allgemeine Informationen Einführung

Mehr

Vorlesung Theoretische Mechanik

Vorlesung Theoretische Mechanik Julius-Maximilians-Universität Würzburg Vorlesung Theoretische Mechanik Wintersemester 17/18 Prof. Dr. Johanna Erdmenger Vorläufiges Skript 1 (Zweite Vorlesung, aufgeschrieben von Manuel Kunkel, 23. 10.

Mehr

Allgemeine Phasenraumkoordinaten Im letzten Kapitel haben wir den Hamiltonschen Fluss als eine geometrische Beschreibung der Zeitentwicklung

Allgemeine Phasenraumkoordinaten Im letzten Kapitel haben wir den Hamiltonschen Fluss als eine geometrische Beschreibung der Zeitentwicklung 16 Symmetrien Das Ziel dieses Abschnittes ist es, eines der wichtigsten Theoreme der theoretischen Physik zu beweisen, das erstmals von Emmy Noether im Jahre 1905 formuliert wurde. Es stellt eine Beziehung

Mehr

Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h.

Definition: Variablentransformation d. Form (2) heisst kanonisch, wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h. Zusammenfassung: kanonische Transformationen Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h., wenn ein existiert,

Mehr

. Name motiviert durch (hängt von Einbettung in höher dimensionalen Raum ab) folgendes Bild:

. Name motiviert durch (hängt von Einbettung in höher dimensionalen Raum ab) folgendes Bild: 1.4 Vektoren Jeder Vektor (Vierer-Vektor) lebt an einem bestimmten Punkt der Raumzeit. Dieser lässt sich bei Krümmung nicht einfach verschieben. Betrachte deshalb Menge alle Vektoren an einem Punkt p =

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Seite 1 Theoretische Physik: Mechanik Blatt 4 Fakultät für Physik Technische Universität München 27.09.2017 Inhaltsverzeichnis 1 Trägheitsmoment & Satz von Steiner 2 2 Trägheitstensor einer dünnen Scheibe

Mehr

J. Neunte Übungseinheit

J. Neunte Übungseinheit J. Neunte Übungseinheit Inhalt der neunten Übungseinheit: Aufgaben dieser Art kommen zum zweiten Kenntnisnachweis. Umformen von Differentialgleichungen 2. und höherer Ordnung auf Systeme 1. Ordnung J.1.

Mehr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 2 Lösung. 22. September 2015, 12-14 Uhr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 2 Lösung. 22. September 2015, 12-14 Uhr KIT SS 15 Klassische Theoretische Physik II V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch Klausur Lösung. September 15, 1-14 Uhr Aufgabe 1: Kurzfragen (3+4+1+1 Punkte (a Die erhaltenen Größen und evtl.

Mehr

Das Noether-Theorem. Philipp Arras, Jakob Moritz. 18. Juli Quellen 6

Das Noether-Theorem. Philipp Arras, Jakob Moritz. 18. Juli Quellen 6 Das Noether-Theorem Philipp Arras, Jakob Moritz 18. Juli 013 Inhaltsverzeichnis 1 Herleitung des Noether-Theorems in der Feldtheorie 1 1.1 Voraussetzungen.......................................... 1 1.

Mehr

Bewegung auf Paraboloid 2

Bewegung auf Paraboloid 2 Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 8 vom 17.06.13 Abgabe: 24.06. Aufgabe 34 4 Punkte Bewegung auf Paraboloid 2 Ein Teilchen der Masse m bewege sich reibungsfrei unter

Mehr

2. Translation und Rotation

2. Translation und Rotation 2. Translation und Rotation 2.1 Rotation eines Vektors 2.2 Rotierendes ezugssystem 2.3 Kinetik Prof. Dr. Wandinger 2. Relativbewegungen Dynamik 2 2.2-1 2.1 Rotation eines Vektors Gesucht wird die zeitliche

Mehr

Seminar 1. Epsilontik. 1.1 Der ε-pseudotensor und einige seiner Eigenschaften

Seminar 1. Epsilontik. 1.1 Der ε-pseudotensor und einige seiner Eigenschaften Seminar 1 1 Vektoralgebra, -Operator, Epsilontik 1.1 Der ε-pseudotensor und einige seiner Eigenschaften In in allen Bereichen der theoretischen Physik sehr gebräuchliches Hilfsmittel ist der ε-pseudotensor.

Mehr

Drehung. Die orthogonale n n-matrix 1 0. c s. Zeile j. s c

Drehung. Die orthogonale n n-matrix 1 0. c s. Zeile j. s c Drehung Die orthogonale n n-matrix Q i,j... Zeile i c s... Zeile j s c... mit c = cos ϕ und s = sin ϕ beschreibt eine Drehung um den Winkel ϕ in der x i x j -Ebene des R n. Drehung - Drehung Die orthogonale

Mehr

(9.1) q Alternativ können wir das System jetzt durch die verallgemeinerten Koordinaten q und p und durch die Hamilton-Funktion

(9.1) q Alternativ können wir das System jetzt durch die verallgemeinerten Koordinaten q und p und durch die Hamilton-Funktion Kapitel 9 Hamilton-Formalismus Die Bedeutung des Hamilton-Formalismus wird erst bei der Beschäftigung mit der Quantenmechanik und der statistischen Mechanik deutlich: In der Quantenmechanik geht der Hamilton-Operator,

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten

Mehr

Theoretische Physik II: Analytische Mechanik und Spezielle Relativitätstheorie

Theoretische Physik II: Analytische Mechanik und Spezielle Relativitätstheorie Theoretische Physik II: Analytische Mechanik und Spezielle Relativitätstheorie Dirk H. Rischke Sommersemester 2010 Inhaltsverzeichnis 1 Lagrange-Mechanik 1 1.1 Zwangskräfte, Zwangsbedingungen und generalisierte

Mehr

48 Symplektische Geometrie und Klassische Mechanik

48 Symplektische Geometrie und Klassische Mechanik 48 Symplektische Geometrie und Klassische Mechanik Zusammenfassung Zum Schluss der Vorlesung gehen wir noch auf eine geometrische Struktur ein, die wie die euklidische oder die Minkowski-Struktur im Rahmen

Mehr

Theoretische Physik I: Weihnachtszettel Michael Czopnik

Theoretische Physik I: Weihnachtszettel Michael Czopnik Theoretische Physik I: Weihnachtszettel 21.12.2012 Michael Czopnik Aufgabe 1: Rudolph und der Weihnachtsmann Der Weihnachtsmann (Masse M) und sein Rentier Rudolph (Masse m) sind durch ein Seil mit konstanter

Mehr

Klassische Theoretische Physik: Mechanik

Klassische Theoretische Physik: Mechanik Klassische Theoretische Physik: Mechanik Patrick Simon Argelander-Institut für Astronomie Auf dem Hügel 71 psimon@astro.uni-bonn.de 21. November 2013 1 Beschleunigte Bezugssysteme Die Forminvarianz der

Mehr

Blatt 05.2: Green sche Funktionen

Blatt 05.2: Green sche Funktionen Fakultät für Physik T: Klassische Mechanik, SoSe 05 Dozent: Jan von Delft Übungen: Katharina Stadler, Frauke Schwarz, Dennis Schimmel, Lukas Weidinger http://homepages.physik.uni-muenchen.de/~vondelft/lehre/5t/

Mehr

Aufgaben zu Kapitel 22

Aufgaben zu Kapitel 22 Aufgaben zu Kapitel Aufgaben zu Kapitel Verständnisfragen Aufgabe. Gegeben sind kartesische Tensoren r ij k, s ij und t ij. Welche der folgenden Größen sind koordinateninvariant? s ii, s ij t jk, s ij

Mehr

Theoretische Physik 1 Mechanik

Theoretische Physik 1 Mechanik Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik 1 Mechanik Skript zu Vorlesung 1: Grundlagen der Newton schen Mechanik, Zweiteilchensysteme gehalten von: Markus Krottenmüller

Mehr

Theoretische Physik II: Analytische Mechanik und Spezielle Relativitätstheorie

Theoretische Physik II: Analytische Mechanik und Spezielle Relativitätstheorie Theoretische Physik II: Analytische Mechanik und Spezielle Relativitätstheorie Dirk H. Rischke Sommersemester 2010 Inhaltsverzeichnis 1 Lagrange-Mechanik 1 1.1 Zwangskräfte, Zwangsbedingungen und generalisierte

Mehr

Burgersgleichung in 1D und 2D

Burgersgleichung in 1D und 2D Burgersgleichung in 1D und 2D Johannes Lülff Universität Münster 5.12.2008 Inhaltsverzeichnis 1 Einführung 2 Numerik 3 Phänomenologie 4 Analytische Ergebnisse 5 Zusammenfassung Herkunft der Burgersgleichung

Mehr

Grundlagen der Analytischen Mechanik

Grundlagen der Analytischen Mechanik Höhere Technische Mechanik Grundlagen der Analytischen Mechanik Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Grundlagen der Analytischen

Mehr

Klassische Theoretische Physik: Mechanik

Klassische Theoretische Physik: Mechanik Klassische Theoretische Physik: Mechanik Patrick Simon Argelander-Institut für Astronomie Auf dem Hügel 71 psimon@astro.uni-bonn.de 10. Dezember 2013 1 Hamilton-Mechanik Im Abschnitt?? haben wir eine neue

Mehr

X.3.1 Energiedichte und -stromdichte des elektromagnetischen Feldes

X.3.1 Energiedichte und -stromdichte des elektromagnetischen Feldes X.3 Energie und Impuls des elektromagnetischen Feldes 169 X.3 Energie und Impuls des elektromagnetischen Feldes Genau wie mechanische Systeme trägt das elektromagnetische Feld Energie ( X.3.1 und Impuls

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

Lagrangesche Mechanik. Ari Wugalter 22. September 2009

Lagrangesche Mechanik. Ari Wugalter 22. September 2009 Lagrangesche Mechanik. September 009 Teil II. Lagrangesche Mechanik. Einführung in die Lagrange-Regeln.Art.. Generalisierte Koordinaten, Freiheitsgrade und Zwangsbedingungen In der Newtonschen Mechanik

Mehr

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe: Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das

Mehr

10 Tensorfelder . (10.1) ds = lim 21

10 Tensorfelder . (10.1) ds = lim 21 10 Tensorfelder Im letzten Kapitel haben wir Tensoren nur im Zusammenhang mit Vektorräumen diskutiert. In physikalischen Theorien tauchen Tensoren aber meistens in Form Tensorfelder auf, zum Beispiel als

Mehr

Theoretische Physik II: Analytische Mechanik und Grundlagen der Thermodynamik

Theoretische Physik II: Analytische Mechanik und Grundlagen der Thermodynamik Theoretische Physik II: Analytische Mechanik und Grundlagen der Thermodynamik Matthias Bartelmann Institut für Theoretische Astrophysik Universität Heidelberg Herzlichen Dank an viele Studentinnen und

Mehr

Hamiltonsche Mechanik (Kanonische Mechanik)

Hamiltonsche Mechanik (Kanonische Mechanik) Hamiltonsche Mechanik (Kanonische Mechanik) Hamilton-Funktion und Hamiltonsche Bewegungsgleichungen Motivation: Die Hamiltonsche Formulierung der klassischen Mechanik - erweiterert Klasse der zulässigen

Mehr

Theoretische Mechanik

Theoretische Mechanik Theoretische Mechanik Kompenium) Herausgegeben von Jeffrey Kelling Felix Lemke Stefan Majewsky Stan: 23 Oktober 2008 Inhaltsverzeichnis Newton sche Mechanik 3 Mechanische Größen un wichtige Sätze 3 Planetenbewegung

Mehr

Kapitel 6. Der Lagrange-Formalismus. 6.2 Lagrange-Funktion in der relativistischen Feldtheorie. 6.1 Euler-Lagrange-Gleichung

Kapitel 6. Der Lagrange-Formalismus. 6.2 Lagrange-Funktion in der relativistischen Feldtheorie. 6.1 Euler-Lagrange-Gleichung 92 Teilchenphysik, HS 2007-SS 2008, Prof. A. Rubbia (ETH Zurich) 6.2 Lagrange-Funktion in der relativistischen Felheorie Kapitel 6 Der Lagrange-Formalismus 6.1 Euler-Lagrange-Gleichung In der Quantenmechanik

Mehr

Das Trägheitsmoment und der Satz von Steiner

Das Trägheitsmoment und der Satz von Steiner Übungen zu Theoretische Physik I - echanik im Sommersemester 3 Batt 9 vom 4.6.3 Abgabe:.7. Aufgabe 38 Punkte Das Trägheitsmoment und der Satz von Steiner Berechnen Sie das Trägheitsmoment eines Zyinders

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II... ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Prüfungsklausur - Lösung

Prüfungsklausur - Lösung Prof. G. Dissertori Physik I ETH Zürich, D-PHYS Durchführung: 08. Februar 2012 Bearbeitungszeit: 180min Prüfungsklausur - Lösung Aufgabe 1: Triff den Apfel! (8 Punkte) Wir wählen den Ursprung des Koordinatensystems

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu Klassische Elektrodynamik 1 Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astrono mie Auf de m Hügel 71 kbasu@astro.uni-bonn.de

Mehr

1. Probeklausur. φ = 2x 2 y(z 1).

1. Probeklausur. φ = 2x 2 y(z 1). Übungen zur T: Theoretische Mechanik, SoSe04 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45. Probeklausur Dr. Reinke Sven Isermann Reinke.Isermann@lmu.e Übung.: Gegeben sei ie Funktion φ = x y z. a Berechnen

Mehr

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte]

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte] Übungen Theoretische Physik I (Mechanik) Blatt 9 (Austeilung am: 1.9.11, Abgabe am 8.9.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

Blatt 6. Schwingungen- Lösungsvorschlag

Blatt 6. Schwingungen- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T1) i SoSe 011 Blatt 6. Schwingungen- Lösungsvorschlag Aufgabe 6.1. Räulicher Oszillator

Mehr

Übung 8 : Spezielle Relativitätstheorie

Übung 8 : Spezielle Relativitätstheorie Universität Potsdam Institut für Physik Vorlesung Theoretische Physik I LA) WS 13/14 M. Rosenblum Übung 8 : Spezielle Relativitätstheorie Besprechung am Montag, dem 03.0.014) Aufgabe 8.1 Zeigen Sie die

Mehr

Kapitel 6. Variationsrechnung

Kapitel 6. Variationsrechnung Kapitel 6 Variationsrechnung Die vorangegangenen Kapitel waren der relativistischen Kinematik gewidmet, also der Beschreibung der Bewegung von Teilchen, deren Geschwindigkeit nicht vernachlässigbar klein

Mehr