Sind Lie Gruppen eine geeignete Therapie für Menschen mit Schlafstörungen? Are lie groups a suitable therapy for patients with sleeping disorders?

Größe: px
Ab Seite anzeigen:

Download "Sind Lie Gruppen eine geeignete Therapie für Menschen mit Schlafstörungen? Are lie groups a suitable therapy for patients with sleeping disorders?"

Transkript

1 1/12 Sind Lie Gruppen eine geeignete Therapie für Menschen mit Schlafstörungen? Are lie groups a suitable therapy for patients with sleeping disorders? Wolfgang Ring Institut für Mathematik, Universität Graz

2 Titel = Witz! 2/12

3 Titel = Witz! lie groups = Liegegruppen 3/12 Lie Gruppen = unbekannte Wesen Lie Gruppen = interessante Objekte It is impossible to overestimate the importance of Lie s contribution to modern science and mathematics [P. Olver]

4 Lie Gruppe = Gruppe & differenzierbare Mannigfaltigkeit 4/12

5 Lie Gruppe = Gruppe & differenzierbare Mannigfaltigkeit 5/12 Dimension von G = Anzahl der Parameter Tangentialvektoren = Geschwindigkeitsvektoren von Kurven Beispiel = kontinuierliche Matritzengruppen (Drehungen um nicht-diskrete Winkel)

6 Lie Algebra = Tangentialraum in e = Menge einparametriger Untergruppen 6/12

7 Lie Algebra = Tangentialraum in e = Menge einparametriger Untergruppen 6/12 Infinitesimaler Generator = Erzeugendes Vektorfeld der einparametrigen Untergruppe Exponentialabbildung = Korrespondenz zwischen Lie Algebra und Lie Gruppe Exponentialabbildung = lokal invertierbar

8 Lie Algebra = Tangentialraum in e = Menge einparametriger Untergruppen 6/12 Infinitesimaler Generator = Erzeugendes Vektorfeld der einparametrigen Untergruppe Exponentialabbildung = Korrespondenz zwischen Lie Algebra und Lie Gruppe Exponentialabbildung = lokal invertierbar

9 Lie Algebra = Tangentialraum in e = Menge einparametriger Untergruppen 6/12 Infinitesimaler Generator = Erzeugendes Vektorfeld der einparametrigen Untergruppe Exponentialabbildung = Korrespondenz zwischen Lie Algebra und Lie Gruppe Exponentialabbildung = lokal invertierbar

10 Lie Algebra = Tangentialraum in e = Menge einparametriger Untergruppen 6/12 Infinitesimaler Generator = Erzeugendes Vektorfeld der einparametrigen Untergruppe Exponentialabbildung = Korrespondenz zwischen Lie Algebra und Lie Gruppe Exponentialabbildung = lokal invertierbar

11 Gruppenaktion = Gruppe von Transformation + transformierte Objekte 7/12

12 Gruppenaktion = Gruppe von Transformation + transformierte Objekte 7/12 Transformation = verträglich mit Gruppenmultiplikation Multiplikation mit fixem Gruppenelement = Invertierbare Transformation auf M Einparametrige Untergruppe von G = Fluss auf M

13 Gruppenaktion = Gruppe von Transformation + transformierte Objekte 7/12 Transformation = verträglich mit Gruppenmultiplikation Multiplikation mit fixem Gruppenelement = Invertierbare Transformation auf M Einparametrige Untergruppe von G = Fluss auf M

14 Invarianz = infinitesimale Invarianz 8/12

15 Invarianz = infinitesimale Invarianz 8/12 Invariante Menge = Menge die durch Gruppenaktion nicht verändert wird Invarianz = Infinitesimale Generatoren sind tangential Invarianz = Durch Lie-Algebra überprüfbar

16 Invarianz = infinitesimale Invarianz 8/12 Invariante Menge = Menge die durch Gruppenaktion nicht verändert wird Invarianz = Infinitesimale Generatoren sind tangential Invarianz = Durch Lie-Algebra überprüfbar

17 Differenzialgleichung = Graph im jet space 9/12

18 Differenzialgleichung = Graph im jet space 9/12 Funktion = Graph der Funktion (Menge) Differenzialgleichung = implizit definierte Mannigfaltigkeit im jet space Lösung der Differenzialgleichung = Prolongation liegt auf der Mannigfaltigkeit

19 Differenzialgleichung = Graph im jet space 9/12 Funktion = Graph der Funktion (Menge) Differenzialgleichung = implizit definierte Mannigfaltigkeit im jet space Lösung der Differenzialgleichung = Prolongation liegt auf der Mannigfaltigkeit

20 Invarianz einer Dgl = infinitesimale Invarianz im jet space 10/12

21 Invarianz einer Dgl = infinitesimale Invarianz im jet space 10/12 Invarianz der Dgl = Invarianz des Graphen Inf. Gen. im jet space = Prolongation eines infinitesimalen Gen. Invarianz der Differenzialgleichung = Prolongierter Generator ist tangential zur Dgl im jet space

22 Invarianz einer Dgl = infinitesimale Invarianz im jet space 10/12 Invarianz der Dgl = Invarianz des Graphen Inf. Gen. im jet space = Prolongation eines inf. Generators Invarianz der Dgl = Prolongierter Generator ist tangential zur Dgl im jet space

23 Weiteres Wissenswertes: 11/12

24 Weiteres Wissenswertes: Symmetriegruppe einer Differenzialgleichung = Konstruktionsprinzip für Lösungen 12/12 Für gewöhnliche Differenzialgleichungen: Symmetrie = Lösung durch Integration Darstellungstheorie = Konstruktion aller Lösungen einer linearen Differenzialgleichung Erhaltungsgrößen und Symmetrien = Satz von Noether

Gruppen und ihre Darstellungen

Gruppen und ihre Darstellungen Kurze Zusammenfassung: Gruppen und ihre Darstellungen Beispiele: ganze Zahlen mit Addition (e=0: Nullelement)) rationale Zahlen mit Multiplikation (e=1: Einselement) Translationen: x x+a Drehungen (kontinuierlich

Mehr

LIE GRUPPEN EMANUEL SCHEIDEGGER

LIE GRUPPEN EMANUEL SCHEIDEGGER LIE GRUPPEN EMANUEL SCHEIDEGGER Zusammenfassung. Definition einer Lie-Gruppe, Beispiele, invariante Vektorfelder, Lie-Klammer, Lie-Algebra (einer Lie-Gruppe), 1. Definition und erste Beispiele Wir beginnen

Mehr

Elemente der Gruppentheorie

Elemente der Gruppentheorie Elemente der Gruppentheorie Tobias Sudmann 06.11.2006 Rolle der Gruppentheorie in der Physik abstraktes mathematisches Modell Symmetriebegriff historisch: Harmonievorstellung bei Plato, Pythagoras, Kepler,...

Mehr

Historisches zur Gruppentheorie

Historisches zur Gruppentheorie Historisches zur Gruppentheorie Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 20 Gruppen: Abstrakte Definition Eine Gruppe

Mehr

Einführung in den Symmetriebegriff und gruppentheoretische Grundlagen

Einführung in den Symmetriebegriff und gruppentheoretische Grundlagen Einführung in den Symmetriebegriff und gruppentheoretische Grundlagen Stephanie Artmeier WS 0/ Inhaltsverzeichnis Einführung... Gruppen.... Beispiel gleichseitiges Dreieck... 3. Darstellung von Gruppen...

Mehr

Definition 1.2. Eine kontinuierliche Gruppe mit einer endlichen Menge an Parametern heißt endliche kontinuierliche Gruppe. x cosξ sinξ y sinξ cosξ

Definition 1.2. Eine kontinuierliche Gruppe mit einer endlichen Menge an Parametern heißt endliche kontinuierliche Gruppe. x cosξ sinξ y sinξ cosξ 8 Gruppentheorie 1 Lie-Gruppen 1.1 Endliche kontinuierliche Gruppe Definition 1.1. Eine Menge G mit einer Verknüpfung m heißt Gruppe, falls folgende Axiome erfüllt sind: (i) Die Operation m, genannt Multiplikation,

Mehr

Liegruppen und Liealgebren

Liegruppen und Liealgebren Literatur Liegruppen und Liealgebren Vortrag im Rahmen des Proseminars zur Quantenmechanik II von Hannes Zechlin (1. Teil) und Sandra Flessau (2. Teil) Universität Hamburg, 20. Dezember 2006 [1] M. Chaichian

Mehr

Inhaltsverzeichnis. Teil I Grundlagen. Teil II Symmetrie-Werkzeuge. 1 Einleitung 3

Inhaltsverzeichnis. Teil I Grundlagen. Teil II Symmetrie-Werkzeuge. 1 Einleitung 3 Inhaltsverzeichnis Teil I Grundlagen 1 Einleitung 3 1.1 Was wir nicht herleiten können... 3 1.2 Überblick über das Buch... 5 1.3 Elementarteilchen und fundamentale Wechselwirkungen 8 2 Die Spezielle Relativitätstheorie

Mehr

5. Raum-Zeit-Symmetrien: Erhaltungssätze

5. Raum-Zeit-Symmetrien: Erhaltungssätze 5. Raum-Zeit-Symmetrien: Erhaltungssätze Unter Symmetrie versteht man die Invarianz unter einer bestimmten Operation. Ein Objekt wird als symmetrisch bezeichnet, wenn es gegenüber Symmetrieoperationen

Mehr

Rotationssymmetrie und Drehimpuls in der Quantenmechanik

Rotationssymmetrie und Drehimpuls in der Quantenmechanik Theoretische Physik V QM II Projekt 13 Rotationssymmetrie und Drehimpuls in der Quantenmechanik Präsentation von Nikolas Rixen, Pawel Mollenhauer und Madeleine Nuck Einleitung http://www.quantumdiaries.org/2011/06/19/helicity-chirality-mass-and-the-higgs/

Mehr

Gruppen, Graphen, Symmetrie Was sind negativ gekrümmte Gruppen?

Gruppen, Graphen, Symmetrie Was sind negativ gekrümmte Gruppen? Gruppen, Graphen, Symmetrie Was sind negativ gekrümmte Gruppen? MNU-Landestagung. 02/2012. Regensburg Clara Löh Fakultät für Mathematik. Universität Regensburg Überblick Zwei Paradigmen der modernen (theoretischen)

Mehr

Schneeflocken Ein mathematisches Winterwunder. Martin Köhler Science Café Hamburg, 14. Dezember 2016

Schneeflocken Ein mathematisches Winterwunder. Martin Köhler Science Café Hamburg, 14. Dezember 2016 Schneeflocken Ein mathematisches Winterwunder Martin Köhler Science Café Hamburg, 14. Dezember 2016 Gliederung > Was sind Schneeflocken? > Schneeflocken und Symmetrie > Wie bilden sich Schnee? > Schneeflocken

Mehr

4. Geodätische Linien

4. Geodätische Linien Gegeben ist eine Riemann sche Mannigfaltigkeit (M,, ) mit Levi-Civita-Zusammenhang D. Das Ziel ist es, ein Analogon für Geraden zu finden. Mögliche Charakterisierung von Geraden in der Euklidischen Geometrie

Mehr

Seminar zur Darstellungstheorie endlicher Gruppen

Seminar zur Darstellungstheorie endlicher Gruppen Seminar zur Darstellungstheorie endlicher Gruppen Prof. Dr. Gebhard Böckle und Yujia Qiu Sommersemester 15, dienstags 16:15 17:45, Raum 248/INF 368. Beginn: 21.04.2015 Motivation und Ziele des Seminars

Mehr

Darstellungstheorie. der. Lorentzgruppe

Darstellungstheorie. der. Lorentzgruppe Darstellungstheorie der Lorentzgruppe 1.) Lorentztransformationen: Die zwei grundlegenden Postulate der Speziellen Relativitätstheorie sind das Relativitätsprinzip, welches besagt, dass alle Naturgesetze

Mehr

Michael Artin. Algebra. Aus dem Englischen übersetzt von Annette A'Campo. Birkhäuser Verlag Basel Boston Berlin

Michael Artin. Algebra. Aus dem Englischen übersetzt von Annette A'Campo. Birkhäuser Verlag Basel Boston Berlin Michael Artin Algebra Aus dem Englischen übersetzt von Annette A'Campo Birkhäuser Verlag Basel Boston Berlin INHALTSVERZEICHNIS Vorwort Hinweise viii x Kapitel 1 MATRIZEN 1 1. Matrizenkalkül 1 2. Zeilenreduktion

Mehr

Teil I. Differentialgleichungen in Lie-Gruppen Ansätze, numerische Verfahren und Anwendungen

Teil I. Differentialgleichungen in Lie-Gruppen Ansätze, numerische Verfahren und Anwendungen Teil I Differentialgleichungen in Lie-Gruppen Ansätze, numerische Verfahren und Anwendungen 5 Kapitel 1 Theoretische Grundlagen 1.1 Ein motivierendes Beispiel die Toda-Lattice-Gleichung Eine Abstraktion

Mehr

. Name motiviert durch (hängt von Einbettung in höher dimensionalen Raum ab) folgendes Bild:

. Name motiviert durch (hängt von Einbettung in höher dimensionalen Raum ab) folgendes Bild: 1.4 Vektoren Jeder Vektor (Vierer-Vektor) lebt an einem bestimmten Punkt der Raumzeit. Dieser lässt sich bei Krümmung nicht einfach verschieben. Betrachte deshalb Menge alle Vektoren an einem Punkt p =

Mehr

Allgemeines über Lie-Algebren

Allgemeines über Lie-Algebren Kapitel I Allgemeines über Lie-Algebren Sophus Lie 1842 1899 Wilhelm Killing 1847 1923 Elie Cartan 1869 1951 Hermann Weyl 1885 1955 1 Einleitung Die meisten Studierenden sind wohl vertrauter mit Beispielen

Mehr

8 Spontane Symmetriebrechung

8 Spontane Symmetriebrechung 8 SPONTANE SYMMETRIEBRECHUNG 111 8 Spontane Symmetriebrechung 8.1 Gebrochene diskrete Symmetrie Betrachte die φ 4 -Theorie eines reellen Skalarfeldes mit der Lagrangedichte L = 1 ( µφ)( µ φ) 1 m φ λ 4!

Mehr

RIEMANNSCHE GEOMETRIE UND TENSORANALYSIS

RIEMANNSCHE GEOMETRIE UND TENSORANALYSIS P. K. RASCHEWSKI RIEMANNSCHE GEOMETRIE UND TENSORANALYSIS 2. unveränderte Auflage mit 32 Abbildungen VERLAG HARRI DEUTSCH INHALTSVERZEICHNIS L Tensoren im dreidimensionalen euklidischen Baum 1. Einstufige

Mehr

Differenzialgleichungen erster Ordnung

Differenzialgleichungen erster Ordnung Differenzialgleichungen erster Ordnung Fakultät Grundlagen Mai 2011 Fakultät Grundlagen Differenzialgleichungen erster Ordnung Übersicht Grundsätzliches 1 Grundsätzliches Geometrische Deutung Numerik 2

Mehr

Seminar zur Theorie der Teilchen und Felder - Symmetrien und Erhaltungssätze - Gruppen und Symmetrien. Inhaltsverzeichnis. Michèle Pinkernell

Seminar zur Theorie der Teilchen und Felder - Symmetrien und Erhaltungssätze - Gruppen und Symmetrien. Inhaltsverzeichnis. Michèle Pinkernell Seminar zur Theorie der Teilchen und Felder - Symmetrien und Erhaltungssätze - Gruppen und Symmetrien Michèle Pinkernell 15. Mai 2013 Inhaltsverzeichnis 1 Einleitung 1 1.1 Erste Erfahrungen mit Symmetrie.......................

Mehr

Max Neunhöffer. Wie schaffte es E 8 in die Schlagzeilen? Max Neunhöffer. Einführung. Was sie gemacht haben. Was die Presse davon hielt

Max Neunhöffer. Wie schaffte es E 8 in die Schlagzeilen? Max Neunhöffer. Einführung. Was sie gemacht haben. Was die Presse davon hielt Wie schaffte es E 8 Der Atlas der Kompakte Der Atlas der Kompakte Eine Nachrichtengeschichte Am 20. März 2007 titelte : The Scientific Promise of Perfect Symmetry It is one of the most symmetrical mathematical

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 2 Beispiele für Gruppen Aus der Vorlesung Mathematik I sind schon viele kommutative Gruppen bekannt. Zunächst gibt es die additiven

Mehr

Mehr von PLARTHIN gibt's im Internet auf http://plarthin.wordpress.com Literatur: - [1] deutsche, englische Wikipedia (Literaturverweise hierauf gekennzeichnet mit [1, de]; [1, en]) - [2] Spacetime and

Mehr

Theoretische Physik 1

Theoretische Physik 1 Springer-Lehrbuch Theoretische Physik 1 Mechanik Bearbeitet von Florian Scheck Neuausgabe 2007. Taschenbuch. xx, 538 S. Paperback ISBN 978 3 540 71377 7 Format (B x L): 19,1 x 23,5 cm Gewicht: 1031 g Weitere

Mehr

Es kann günstig sein, Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a

Es kann günstig sein, Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a V.3.4 Kanonische Transformationen Es kann günstig sein Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a Koordinatentransformation im Phasenraum Wir betrachten eine allgemeine Koordinatentransformation

Mehr

Eine objektorientierte Programmierumgebung für differentialgeometrische Berechnungen in MuPAD

Eine objektorientierte Programmierumgebung für differentialgeometrische Berechnungen in MuPAD 1 Eine objektorientierte Programmierumgebung für differentialgeometrische Berechnungen in MuPAD Studienarbeit von WOLFGANG GLOBKE Betreuer: Dipl. Inf. Marcus Hausdorf Dr. Werner Seiler Institut für Algorithmen

Mehr

Symmetrie in Physik und Technik

Symmetrie in Physik und Technik Symmetrie in Physik und Technik Wolfgang Herfort Wien 21.Mai 2012 Bildung im Resselpark At the deepest level, all we find are symmetries and responses to symmetries. Steven Weinberg (1933-) Dirac Memorial

Mehr

Ernst Kleinert. Mathematik für Philosophen

Ernst Kleinert. Mathematik für Philosophen Ernst Kleinert Mathematik für Philosophen Leipziger Universitätsverlag 2004 Inhalt Erster Teil: Grundlagen Einleitung 1. Warum Mathematik für Philosophen"? 10 2. Der kategoriale Ursprung der Mathematik:

Mehr

Theorie der einfachen Lie-Gruppen

Theorie der einfachen Lie-Gruppen Theorie der einfachen Lie-Gruppen Eine Einführung Notizen zur Vorlesung im Sommersemester 2009 23. Juli 2009 1 2 INHALTSVERZEICHNIS Inhaltsverzeichnis 1 Lie-Gruppen 8 1.1 Endliche kontinuierliche Gruppe............................

Mehr

Vorlesung 1. Allgemeine Theorie einer Gleichung erster Ordnung

Vorlesung 1. Allgemeine Theorie einer Gleichung erster Ordnung Vorlesung 1. Allgemeine Theorie einer Gleichung erster Ordnung ImUnterschiedzudengewöhnlichen Differentialgleichungen besitzen die partiellen Differentialgleichungen keine einheitliche Theorie. Einige

Mehr

Programm des Hauptseminars Symmetrie

Programm des Hauptseminars Symmetrie Programm des Hauptseminars Symmetrie Prof. Dr. Irene Bouw Universität Ulm Institut für Reine Mathematik SS 2008 irene.bouw at uni-ulm.de Vortrag 1: Einführung (2 Personen) Dieser Vortrag soll eine Einführung

Mehr

Lie Gruppen, SS 2010 Montag $Id: intro.tex,v /04/13 16:06:37 hk Exp hk $ Es wird etwas dauern bis wir in der Lage sind zu sagen was

Lie Gruppen, SS 2010 Montag $Id: intro.tex,v /04/13 16:06:37 hk Exp hk $ Es wird etwas dauern bis wir in der Lage sind zu sagen was $Id: intro.tex,v 1.3 2010/04/13 16:06:37 hk Exp hk $ 1 Einleitung Es wird etwas dauern bis wir in der Lage sind zu sagen was Lie Gruppen eigentlich sind. Dagegen ist es sehr wohl möglich bereits einige

Mehr

Die Weil-Vermutungen

Die Weil-Vermutungen Die Weil-Vermutungen Andreas Krug Philipps-Universität Marburg Habilitationsvortrag 2017 Erste Motivation Die Weil-Vermutungen sind: eine interessante und nützliche Verbindung zwischen den Gebieten der

Mehr

Mathematik für die ersten Semester

Mathematik für die ersten Semester Mathematik für die ersten Semester von Prof. Dr. Wolfgang Mückenheim 2., verbesserte Auflage Oldenbourg Verlag München Inhaltsverzeichnis I Grundlagen 1 1 Logik 3 2 Mengen 7 3 Relationen 15 3.1 Abbildungen

Mehr

Ein Lie-Gruppe ist eine Gruppe und gleichzeitig differenzierbare Mannigfaltigkeit. ad(a)(x) := axa 1

Ein Lie-Gruppe ist eine Gruppe und gleichzeitig differenzierbare Mannigfaltigkeit. ad(a)(x) := axa 1 1 Lie-Gruppen Ein Lie-Gruppe ist eine Gruppe und gleichzeitig differenzierbare Mannigfaltigkeit für die gilt: (a, b) G a 1 b ist eine differenzierbare Abbildung. Sei L a (bzw. R a ) die Translation auf

Mehr

Kapitel 13 UNTERMANNIGFALTIGKEITEN IMPLIZITE FUNKTIONEN

Kapitel 13 UNTERMANNIGFALTIGKEITEN IMPLIZITE FUNKTIONEN Kapitel 3 UNTERMANNIGFALTIGKEITEN DES R n UND DER SATZ ÜBER IMPLIZITE FUNKTIONEN Fassung vom 23. Februar 2006 Claude Portenier ANALYSIS 345 3. Di eomorphismen 3. Di eomorphismen Seien X und Y o ene Mengen

Mehr

Gruppen in der Physik Liegruppen und Liealgebren 1.Teil Vortrag vom Claudia Würz

Gruppen in der Physik Liegruppen und Liealgebren 1.Teil Vortrag vom Claudia Würz 1 Einleitung Gruppen in der Physik Liegruppen und Liealgebren 1.Teil Vortrag vom 13.06.2006 Claudia Würz Im folgenden wollen wir uns mit Liegruppen und Liealgebren beschäftigen. Sie sind nicht nur für

Mehr

Elemente der Algebra

Elemente der Algebra Prof. Dr. H. Brenner Osnabrück SS 2015 Elemente der Algebra Vorlesung 1 Der Gruppenbegriff Definition 1.1. Eine Verknüpfung auf einer Menge M ist eine Abbildung : M M M, (x,y) (x,y) = x y. Statt (x,y)

Mehr

Verallgemeinerte Dreiecksungleichungen Michael Kapovich

Verallgemeinerte Dreiecksungleichungen Michael Kapovich Verallgemeinerte Dreiecksungleichungen Michael Kapovich Wir alle wissen, dass eine gerade Linie die kürzeste Verbindung von einem Punkt zu einem anderen Punkt ist. Dieses Wissen scheint in den Jahrmillionen

Mehr

PROBEPRÜFUNG MATHEMATIK I UND II

PROBEPRÜFUNG MATHEMATIK I UND II PROBEPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften Für diese Probeprüfung sind ca 4 Stunden vorgesehen. Die eigentliche Prüfung wird signifikant

Mehr

Fibonacci Zahlen: 3. Hamiltonsche Systeme. 3.1 Hamilton Dynamik. Teilverhältnis beim `goldenen Schnitt : definiert als. mit

Fibonacci Zahlen: 3. Hamiltonsche Systeme. 3.1 Hamilton Dynamik. Teilverhältnis beim `goldenen Schnitt : definiert als. mit Fibonacci Zahlen: definiert als Bemerkungen: (1) ist das Teilverhältnis beim `goldenen Schnitt : mit A T B und (2) Alle Zahlen, deren Darstellung als Kettenbruch auf endet, heißen `noble Zahlen. (3) Entwicklung

Mehr

Vorlesung Theoretische Mechanik

Vorlesung Theoretische Mechanik Julius-Maximilians-Universität Würzburg Vorlesung Theoretische Mechanik Wintersemester 17/18 Prof. Dr. Johanna Erdmenger Vorläufiges Skript 1 (Zweite Vorlesung, aufgeschrieben von Manuel Kunkel, 23. 10.

Mehr

Vortrag: HAMILTONsche Mechanik in symplektischer Form. Luis Haug Andreas Klaiber

Vortrag: HAMILTONsche Mechanik in symplektischer Form. Luis Haug Andreas Klaiber Vortrag: HAMILTONsche Mechanik in symplektischer Form Luis Haug Andreas Klaiber Leipzig, den 1. Juni 2006 Inhaltsverzeichnis I Symplektische Struktur des Phasenraums I 2 1 HAMILTONsche Gleichungen..............................

Mehr

B-P 11: Mathematik für Physiker

B-P 11: Mathematik für Physiker B-P 11: Mathematik für Physiker Status: freigegeben Modulziele Erwerb der Grundkenntnisse der Analysis, der Linearen Algebra und Rechenmethoden der Physik Modulelemente Mathematik für Physiker I: Analysis

Mehr

Quantenchromodynamik die Starke Wechselwirkung. Max Camenzind Akademie HD Juni 2015

Quantenchromodynamik die Starke Wechselwirkung. Max Camenzind Akademie HD Juni 2015 Quantenchromodynamik die Starke Wechselwirkung Max Camenzind Akademie HD Juni 25 2.6.25 Tag der offenen Tür Haus der Astronomie & MPIA Bus 39 alle 5 Min. ab Bismarckplatz > :45 Uhr Was ist eine Gruppe

Mehr

Gruppentheorie und Symmetrie in der Chemie

Gruppentheorie und Symmetrie in der Chemie Gruppentheorie und Symmetrie in der Chemie Martin Schütz Institut für theoretische Chemie, Universität Stuttgart Pfaffenwaldring 55, D-70569 Stuttgart Stuttgart, 0. April 00 M. Schütz, Vorlesung Gruppentheorie

Mehr

G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag

G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag Beantwortung der Fragen und Lösungen der Aufgaben zu Kapitel Version V vom 3.. 28 2 Beantwortung der Fragen zu Kapitel TESTFRAGEN

Mehr

Vorbereitung für die Prüfung Mathematik II für Informatiker

Vorbereitung für die Prüfung Mathematik II für Informatiker Technische Universität Ilmenau SS 2010 Institut für Mathematik Inf Prof. Dr. Michael Stiebitz Vorbereitung für die Prüfung Mathematik II für Informatiker 1 Lineare Algebra Aufgabe 1 Schauen Sie sich die

Mehr

Kommentierender Anhang

Kommentierender Anhang Kommentierender Anhang 1. Lie-Theorie und DitTerentialinvarianten in ursprünglicher Form Von den drei namhaften Mathematikern LIE, ENGEL und STUDY, die mit ihren Arbeiten im Mittelpunkt dieses Bandes stehen,

Mehr

BASISPRÜFUNG MATHEMATIK I UND II

BASISPRÜFUNG MATHEMATIK I UND II ETH Zürich Sommer 015 Dr. Ana Cannas BASISPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften 1. Sei a) Ist das System lösbar? b) Lösen Sie das System

Mehr

Invariante Kegel in Cartan-Algebren

Invariante Kegel in Cartan-Algebren Seminar Sophus Lie 1 (1991) 55 63 Invariante Kegel in Cartan-Algebren Ulrike Zimmermann Für die Bestimmung von Halbgruppen in einer Liegruppe spielen invariante Kegel als deren Tangentialobjekte eine sehr

Mehr

Invariantentheorie. Bewegungen

Invariantentheorie. Bewegungen Prof. Dr. H. Brenner Osnabrück WS 2012/2013 Invariantentheorie Vorlesung 21 In den folgenden Vorlesungen werden wir die endlichen Untergruppen G SL 2 (C) und ihre Invariantenringe klassifizieren. Dieses

Mehr

Enrico G. De Giorgi. Mathematik. 2. Auflage Lehrstuhl für Mathematik Universität St.Gallen. Diese Version: August 2014.

Enrico G. De Giorgi. Mathematik. 2. Auflage Lehrstuhl für Mathematik Universität St.Gallen. Diese Version: August 2014. Enrico G. De Giorgi Mathematik 2. Auflage 2014 Lehrstuhl für Mathematik Universität St.Gallen Diese Version: August 2014. c 2014, Enrico De Giorgi, Universität St.Gallen, alle Rechte vorbehalten. Die Vervielfältigung

Mehr

Probeklausur zur Analysis II

Probeklausur zur Analysis II Probeklausur zur Analysis II Prof. Dr. C. Löh/M. Blank 3. Februar 2012 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten

Mehr

Definition 1.1 (Wirkung) Wir wollen die Kurvenverläufe x(t) finden, die das Funktional

Definition 1.1 (Wirkung) Wir wollen die Kurvenverläufe x(t) finden, die das Funktional Christina Schindler Karolina Stoiber Ferienkurs Analysis für Physiker SS 13 A 1 Variationsrechnung 1.1 Lagrange. Art Wir führen die Überlegungen von gestern fort und wollen nun die Lagrangegleichungen.

Mehr

1 Formen und äußeres Differential

1 Formen und äußeres Differential 1 Formen und äußeres Differential Wir betrachten den n-dimensionalen reellen Raum R n = { x = x 1,...,x n ) : x i R für i = 1,...,n }. Definition 1.1 Ein Tangentialvektor an R n im Punkt x R n ist ein

Mehr

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen 11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen Ziel: Wir wollen lokale Extrema von Funktionen f : M R untersuchen, wobei M R n eine k-dimensionale Untermannigfaltigkeit des

Mehr

PRÜFUNG AUS ALGEBRA UND DISKRETE MATHEMATIK F. INF. U. WINF.

PRÜFUNG AUS ALGEBRA UND DISKRETE MATHEMATIK F. INF. U. WINF. Zuname: Vorname: Matrikelnummer: PRÜFUNG AUS ALGEBRA UND DISKRETE MATHEMATIK F. INF. U. WINF. (GITTENBERGER) Wien, am 5. Februar 2013 (Ab hier freilassen!) Arbeitszeit: 100 Minuten 1) 2) 3) 4) 5) 1)(8

Mehr

Symmetrie und Symmetriebrechung

Symmetrie und Symmetriebrechung Symmetrie und Symmetriebrechung Oliver Passon 4. September 2006 Inhaltsverzeichnis 1 Symmetrieklassen 1 1.1 Symmetriebrechung............................... 2 2 Chirale Symmetrie 3 2.1 Chirale U(1) Symmetrie............................

Mehr

i) ii) iii) iv) i) ii) iii) iv) v) gilt (Cauchy-Schwarz-Ungleichung): Winkel zwischen zwei Vektoren : - Für schreibt man auch.

i) ii) iii) iv) i) ii) iii) iv) v) gilt (Cauchy-Schwarz-Ungleichung): Winkel zwischen zwei Vektoren : - Für schreibt man auch. Abbildungen Rechnen Matrizen Rechnen Vektoren Äquivalenzrelation Addition: Skalarmultiplikation: Skalarprodukt: Länge eines Vektors: Vektorprodukt (im ): i ii i ii v) gilt (Cauchy-Schwarz-Ungleichung):

Mehr

Mathematisches Kaleidoskop II Materialien Teil 3. Dr. Hermann Dürkop

Mathematisches Kaleidoskop II Materialien Teil 3. Dr. Hermann Dürkop Mathematisches Kaleidoskop II Materialien Teil 3 Dr. Hermann Dürkop E-Mail: info@ermanus.de .3.3 Noch zwei Isomorphie-Beispiele Beispiel : Wir betrachten die Symmetrien eines nichtquadratischen Rechtecks.

Mehr

7.4. Gradient, Niveau und Tangentialebenen

7.4. Gradient, Niveau und Tangentialebenen 7.4. Gradient Niveau und Tangentialebenen Wieder sei f eine differenzierbare Funktion von einer Teilmenge A der Ebene R -dimensionalen Raumes R n ) nach R. (oder des n Der Anstieg von f in einem Punkt

Mehr

Lehr- und Übungsbuch Mathematik für Informatiker

Lehr- und Übungsbuch Mathematik für Informatiker Lehr- und Übungsbuch Mathematik für Informatiker Lineare Algebra und Anwendungen Bearbeitet von Wolfgang Preuß, Günter Wenisch 1. Auflage 1996. Buch. 328 S. Hardcover ISBN 978 3 446 18702 3 Format (B x

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 44 In den folgenden Vorlesungen werden wir unsere Methoden um einige wesentliche Aspekte erweitern, indem wir

Mehr

Block I: Integration und Taylorentwicklung in 1D

Block I: Integration und Taylorentwicklung in 1D Wiederholungsübungen zur Ingenieur-Mathematik III WS 5/6 Blatt 3..6 Block I: Integration und Taylorentwicklung in D Aufgabe : Berechnen Sie die Integrale: a) π sin x cos x dx b) ( x) +x dx c) x e x dx

Mehr

5. Krümmung Der Riemann sche Krümmungstensor

5. Krümmung Der Riemann sche Krümmungstensor 5 Krümmung 51 Der Riemann sche Krümmungstensor Gegeben sei eine Riemann sche Mannigfaltigkeit (M,, ) mit Levi-Civita-Zusammenhang D Der Riemann sche Krümmungstensor von M bezüglich D ist die Abbildung

Mehr

48 Symplektische Geometrie und Klassische Mechanik

48 Symplektische Geometrie und Klassische Mechanik 48 Symplektische Geometrie und Klassische Mechanik Zusammenfassung Zum Schluss der Vorlesung gehen wir noch auf eine geometrische Struktur ein, die wie die euklidische oder die Minkowski-Struktur im Rahmen

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 10 Bewegungen Wir haben schon mehrfach die Würfelgruppe betrachtet, also die Gruppe der eigentlichen Symmetrien an einem Würfel.

Mehr

Das Noethertheorem in der Quantenmechanik und die SO(4)-Symmetrie des Wasserstoffatoms

Das Noethertheorem in der Quantenmechanik und die SO(4)-Symmetrie des Wasserstoffatoms Das Noethertheorem in der Quantenmechanik und die SO(4)-Symmetrie des Wasserstoffatoms Matthias Jacobi und Hendrik Spahr 13.12.2006 1 Inhaltsverzeichnis 1 Das Noethertheorem in der Quantenmechanik 3 1.1

Mehr

Symmetrien. Transformationen. Affine und euklidische Räume

Symmetrien. Transformationen. Affine und euklidische Räume Symmetrien Transformationen Der Gruppenbegriff entwickelte sich aus dem Begriff der Transformationsgruppe. In dieser Form tauchen auch die meisten Gruppen in der Mathematik, Physik, Chemie, Kristallographie,

Mehr

Schwerpunkt Algebra und Geometrie

Schwerpunkt Algebra und Geometrie Schwerpunkt Algebra und Geometrie Es werden Vertiefungen angeboten in (i) Topologie (ii) Algebra und Zahlentheorie (i) WS15/16 Topologie (4+2) SS2016 Vorlesung (2+1) Seminar Dies ergibt eine Spezialisierungsmöglichkeit

Mehr

Einführung Gruppen, Beispiele, Konjugationsklassen

Einführung Gruppen, Beispiele, Konjugationsklassen Einführung Gruppen, eispiele, Konjugationsklassen Fabian Rühle 21.10.2015 Inhaltsverzeichnis 1 Definition von Gruppen und einfache eispiele 1 2 Die zyklische Gruppe n 2 3 Die Diedergruppe D n 3 4 Die Permutationsgruppe

Mehr

Kapitel 5 Untermannigfaltigkeiten. 5.1 Glatte Flächen in R 3

Kapitel 5 Untermannigfaltigkeiten. 5.1 Glatte Flächen in R 3 Kapitel 5 Untermannigfaltigkeiten 5.1 Glatte Flächen in R 3 Bisher haben wir unter einem glatten Weg im R n stets eine differenzierbare Abbildung γ:i R n, definiert auf einem Intervall I R, verstanden.

Mehr

Symmetrietransformationen

Symmetrietransformationen Kapitel 6 Symmetrietransformationen Besonders wichtig, nicht nur in der Quantenmechanik, sind zeitliche und räumliche Verschiebungen sowie Drehungen. Man bezeichnet sie auch als Symmetrietransformationen,

Mehr

Script zum Vortrag Symmetrien in der Physik: Gruppen, Beispiele und Konjugationsklassen

Script zum Vortrag Symmetrien in der Physik: Gruppen, Beispiele und Konjugationsklassen Script zum Vortrag Symmetrien in der Physik: Gruppen, Beispiele und Konjugationsklassen gehalten an der Universität Hamburg am 25.10.2012 im Rahmen des Proseminars: Gruppentheorie in der Quantenmechanik

Mehr

5. Gruppen, Ringe, Körper

5. Gruppen, Ringe, Körper 5. Gruppen, Ringe, Körper 5.1. Gruppen Die Gruppentheorie, als mathematische Disziplin im 19. Jahrhundert entstanden, ist ein Wegbereiter der modernen Mathematik. Beispielsweise folgt die Gruppe, die aus

Mehr

Definition der Ordnung eines Elementes einer Gruppe und Definition der Gruppenordnung mit Beispielen. Groups and Symmetry S Beispiel (iii)

Definition der Ordnung eines Elementes einer Gruppe und Definition der Gruppenordnung mit Beispielen. Groups and Symmetry S Beispiel (iii) 1 Diedergruppe 1. Vortrag: Groups and Symmetry S. 15-18 Definition Beispiel D 3 : Gruppentafel Definition der Ordnung eines Elementes einer Gruppe und Definition der Gruppenordnung mit Beispielen Untergruppen

Mehr

Differentialformen. Lie-Ableitung von Differentialformen und Poincaré-Formel. Differentialform dp dx und ihre Invarianz bzgl. Hamiltonischer Flüsse.

Differentialformen. Lie-Ableitung von Differentialformen und Poincaré-Formel. Differentialform dp dx und ihre Invarianz bzgl. Hamiltonischer Flüsse. Differentialformen Plan Zuerst lineare Algebra: Schiefsymmetrische Formen im R n. Dann Differentialformen: Invarianz bzgl. Diffeomorphismen (und sogar beliebigen glatten Abbildungen). Äußere Ableitung.

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 10.12.2013 Alexander Lytchak 1 / 15 Motivation Für das Verständis affiner Teilräume eines Vektorraums sind Translationen

Mehr

Symplektische Geometrie

Symplektische Geometrie 31. August 2005 Symplektische Vektorrume Wiederholung: Eine (schwach) symplektische Form auf einem Vektorraum V ist eine Bilinearform die schiefsymmetrisch ist, d.h. ω : V V R ω(w.v) = ω(v, w) für alle

Mehr

Eichinvarianz in der Quantenmechanik. abgeleitet aus der Maxwell-Theorie

Eichinvarianz in der Quantenmechanik. abgeleitet aus der Maxwell-Theorie Eichinvarianz in der Quantenmechanik abgeleitet aus der Maxwell-Theorie Seminarvortrag Quantenelektrodynamik 1. Teil: Schrödingergleichung Motivation: Eichtheorien sind ein inhaltsreicher Gedankenkomplex

Mehr

Wie kann man beweisen, dass (H, ) eine Gruppe ist?

Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) Wie kann man beweisen, dass (H, )

Mehr

Symmetrie Eine Einführung. Proseminarvortrag von Annkathrin Krämmer am

Symmetrie Eine Einführung. Proseminarvortrag von Annkathrin Krämmer am Symmetrie Eine Einführung Proseminarvortrag von Annkathrin Krämmer am.0.0 p(a,b,c,d)=abc+abd+acd+bcd Gliederung ) Definition Symmetrie ) Symmetriegruppe ) Symmetrie von Graphen anhand des Petersengraph

Mehr

3. Algebra und Begriffsverbände. Algebraische Strukturen

3. Algebra und Begriffsverbände. Algebraische Strukturen 3. Algebra und Begriffsverbände Algebraische Strukturen Def.: Eine n-stellige (n-äre) [algebraische] Operation [auch: Verknüpfung] auf einer Menge A ist eine Abbildung f : A n A. Der Spezialfall n = 0:

Mehr

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

Symmetrien in der Physik

Symmetrien in der Physik Symmetrien in der Physik Andreas Wipf Theoretisch-Physikalisches-Institut Friedrich-Schiller-Universität, Max Wien Platz 1 07743 Jena 9. Auflage, SS 2018 1. Auflage, SS 2002 c 2018 Andreas Wipf, Friedrich-Schiller-Universität

Mehr

Symmetrien in der Physik

Symmetrien in der Physik Symmetrien in der Physik Andreas Wipf Theoretisch-Physikalisches-Institut Friedrich-Schiller-Universität, Max Wien Platz 1 07743 Jena 9. Auflage, SS 2018 1. Auflage, SS 2002 c 2018 Andreas Wipf, Friedrich-Schiller-Universität

Mehr

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau,

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau, Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 18 1.3 Gruppen Der Begriff der Gruppe ordnet sich in gewisser Weise dem allgemeineren Konzept der Verknüpfung (auf einer Menge) unter. So ist zum Beispiel

Mehr

Hamiltonsche Mechanik. Norbert Dragon

Hamiltonsche Mechanik. Norbert Dragon Hamiltonsche Mechanik Norbert Dragon Der Artikel hat zur Zeit noch nicht seine endgültige Form, die jeweils neueste Fassung befindet sich im Internet bei http://www.itp.uni-hannover.de/~dragon. Für Hinweise

Mehr

Kompakte Lie Gruppen und Darstellungstheorie

Kompakte Lie Gruppen und Darstellungstheorie Kompakte Lie Gruppen und Darstellungstheorie SS 2017 Franz Schuster franz.schuster@tuwien.ac.at Einleitung Diese Vorlesung soll als eine Einführung in die Theorie kompakter Lie Gruppen und ihrer Darstellungen

Mehr

Verallgemeinerte Dreiecksungleichungen Generalized triangle inequalities

Verallgemeinerte Dreiecksungleichungen Generalized triangle inequalities Verallgemeinerte Dreiecksungleichungen Generalized triangle inequalities Kapovich, Mikhail Max-Planck-Institut für Mathematik, Bonn Korrespondierender Autor E-Mail: Moree@mpim-bonn.mpg.de Zusammenfassung

Mehr

Klassische Mechanik. Friedhelm Kuypers. Mit 103 Beispielen und 167 Aufgaben mit Lösungen. 7., erweiterte und verbesserte Auflage WILEY- VCH

Klassische Mechanik. Friedhelm Kuypers. Mit 103 Beispielen und 167 Aufgaben mit Lösungen. 7., erweiterte und verbesserte Auflage WILEY- VCH Friedhelm Kuypers Klassische Mechanik Mit 103 Beispielen und 167 Aufgaben mit Lösungen 7., erweiterte und verbesserte Auflage WILEY- VCH WI LEY-VCH Verlag GmbH & Co. KGaA IX Inhaltsverzeichnis A Die Newtonsche

Mehr

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth REPETITORIUM DER HÖHEREN MATHEMATIK Gerhard Merziger Thomas Wirth 6 INHALTSVERZEICHNIS Inhaltsverzeichnis Fl Formelsammlung F2 Formelsammlung Alphabete 11 Zeichenindex 12 1 Grundbegriffe 14 1.1 Logische

Mehr

8.1 Begriffsbestimmung

8.1 Begriffsbestimmung 8 Gewöhnliche Differentialgleichungen 8 Gewöhnliche Differentialgleichungen 8.1 Begriffsbestimmung Wir betrachten nur Differentialgleichungen für Funktionen einer (reellen) Variablen. Definition: Für eine

Mehr

Klassische Mechanik. WILEY-VCH Verlag GmbH & Co. KGaA. Herbert Goldstein, Charles P. Poole, Jr., und John L Safko

Klassische Mechanik. WILEY-VCH Verlag GmbH & Co. KGaA. Herbert Goldstein, Charles P. Poole, Jr., und John L Safko Herbert Goldstein, Charles P. Poole, Jr., und John L Safko Klassische Mechanik Dritte, vollständig überarbeitete und erweiterte Auflage WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Inhaltsverzeichnis Vorwort

Mehr

Lineare Algebra Weihnachtszettel

Lineare Algebra Weihnachtszettel Lineare Algebra Weihnachtszettel 4..008 Die Aufgaben auf diesem Zettel sind zum Üben während der Weihnachtspause gedacht, sie dienen der freiwilligen Selbstkontrolle. Die Aufgaben müssen nicht bearbeitet

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 2 2 Gewöhnliche Differentialgleichungen 2. Einleitung Sei f : D R wobei D R 2. Dann nennt man y = f(x, y) (5) eine (gewöhnliche) Differentialgleichung (DGL) erster Ordnung. Als Lösung von (5) akzeptiert

Mehr