Gruppen (Teil 1) Inhaltsverzeichnis. Vladislav Olkhovskiy

Größe: px
Ab Seite anzeigen:

Download "Gruppen (Teil 1) Inhaltsverzeichnis. Vladislav Olkhovskiy"

Transkript

1 Gruppen (Teil 1) Vladislav Olkhovskiy Inhaltsverzeichnis 1 Gruppen Definition Elementare Beispiele Verknüpfungstafeln (Cayley Tafeln) Elementare Eigenschaften Anwendungen und Beispiele Drehgruppen Diedergruppe Rubik s Cube Literatur 12 1

2 1 Gruppen 1.1 Definition Definition 1.1 Sei G eine nicht-leere Menge, e G ein (ausgezeichnetes) Element in G und : G G G eine Abbildung. Gelten die folgenden Eigenschaften, so nennen wir (G,, e) eine Gruppe: (i) Für alle x, y, z G gilt: ( (x, y), z) = (x, (y, z)) (Assoziativität) (ii) Für alle x G gilt (x, e) = x (iii) Für alle x G existiert ein y G, sodass (x, y) = e (Ex. eines rechtsneutralen Elements) (Existenz von rechtsinversen Elementen) Gilt zusätzlich: (iv) Für alle x, y G gilt (x, y) = (y, x). (Kommutativität) so nennen wir die Gruppe kommutativ oder abelsch. Bemerkung 1.2 Da die bisher verwendete Abbildungsschreibweise im Umgang mit Gruppen recht umständlich ist, verwenden wir ab jetzt eine Infixschreibweise: (x, y) := x y 1.2 Elementare Beispiele Beispiel 1: (Z, 0, +) ist eine Gruppe. 0 ist das neutrale Element, a Z existiert ein b Z, so dass: a+b=0, nämlich anhand der Wahl b := a. Für die Addition gilt die Assoziativität, es ist egal, in welcher Reihenfolge die Zahlen addiert werden, das Ergebnis ist stets gleich. Beispiel 2: (Q\{0}, 1, ) ist eine Gruppe. 1 ist das neutrale Element, a Q existiert ein b Q, so dass: a b = 1, nämlich anhand der Wahl b := 1 a. Für die Multiplikation gilt die Assoziativität, es ist egal, in welcher Reihenfolge die Zahlen multipliziert werden, das Ergebnis ist stets gleich. 2

3 1.3 Verknüpfungstafeln (Cayley Tafeln) Zur Definition einer Verknüpfung auf einer kleinen endlichen Menge G benutzt man oft die Form einer Tabelle, eine Methode die auf Arthur Cayley zurückgeht, der sie erstmals bei der Beschreibung von Gruppen einsetzte. Daher werden diese Verknüpfungstafeln auch oft Cayley-Tafeln genannt. Dabei schreibt man die Elemente der Menge G in einer festen Reihenfolge als Kopfzeile und Kopfspalte einer quadratischen Tabelle und schreibt an den Schnittpunkt der mit dem Element a beschrifteten Zeile und der mit dem Element b beschrifteten Spalte dasjenige Element von G hin, das sich bei der Verknüpfung a*b ergeben soll. Beispiel: Betrachte den Tripel (G, e, ) mit G = {a, e}. Die Verknüpfung sei durch folgende Cayley Tafel gegeben: e a e e a a a e Nun ist die Frage: Ist der Tripel (G,e, ) eine Gruppe? Die Antwort ist ja, denn: Abgeschlosseheit: In der Gruppentafel kommen nur die Elemente a und e vor, d.h die Verknüpfung ist abgeschlossen. Assoziativität: Zu prüfen ist, ob für alle x, y, z G gilt: (x y) z = x (y z). Durch nachrechnen findet man heraus, dass die Verknüfung assoziativ ist, beispielsweise gilt: (e e) a = e a = a und e (e a) = e a = a, also: (e e) a = e (e a). Man prüfe analog die restlichen 7 Kombinationen. Neutrales Element: Es gilt: a e = e a = a und e e = e. Damit ist e das neutrale Element für alle Elemente aus G. Inverses Element: Es gilt: a a = e und e e = e, d.h e und a sind zu sich selbst invers und somit existiert zu jedem Element aus der Gruppe ein inverses Element. Ist die Gruppe kommutativ?: Ja, denn es gilt: a e = a = e a. Nun betrachte man den Tripel (G, e, ) mit G = {e, a, b}. Nun ist das Ziel, die Verknüpfung so zu definieren, dass der Tripel (G, e, ) zu einer Gruppe wird. Am besten 3

4 erstellt man sich dazu eine Cayley Tafel. Man schaue sich zunächst die Definition der Gruppe an und mache sich folgende Überlegungen: Eine Gruppe hat ein neutrales Element, man bezeichne ihn hier mit e, damit erhält man bereits folgenden Verknüpfungstaffel-Puzzleteil: e a b e e a b a a?? b b?? Wie füllt man nun geeignet die Fragezeichenfelder aus, damit die Gruppenaxiome erfüllt werden? Dazu schlage ich vier Konstruktionen vor: Konstruktion 1: e a b e e a b a a a e b b e b Diese Konstruktion erfüllt tatsächlich, dass es zu jedem Element aus der Gruppe ein inverses Element gibt, dass es ein neutrales Element gibt. Allerdings wird hierbei die Assoziativität verletzt: (a a) b = a b = e, aber a (a b) = a e = a, Widerspruch. Konstruktion 2: e a b e e a b a a b a b b a a 4

5 Hierbei sieht man sofort, dass es zu a und b keine Inversen Elemente gibt. Damit scheidet diese Konstruktion direkt aus. Konstruktion 3: e a b e e a b a a e a b b b e Diese Konstruktion erfüllt tatsächlich, dass es zu jedem Element aus der Gruppe ein inverses Element gibt, dass es ein neutrales Element gibt. Allerdings wird hierbei wieder die Assoziativität verletzt: (a b) a = b a = a, aber a (b a) = a a = e, Widerspruch, also kann folgende Verknüpfungsvorschrift keine Gruppe erzeugen. Konstruktion 4: e a b e e a b a a b e b b e a Erst diese Konstruktion von macht den Tripel (G,e, ) zu einer Gruppe. Diese Gruppe ist sogar kommutativ. Bemerkung 1.3 Man halte drei Erkenntnisse fest: Die Kommutativität erkennt man an der Symmetrie der Verknüpfungstafel zur Hauptdiagonalen, die von links oben nach rechts unten verläuft. Ein neutrales Element macht sich dadurch bemerkbar, dass in seiner Zeile und seiner Spalte die Kopfzeile bzw. die Kopfspalte wiederholt wird. 5

6 Die Abgeschlossenheit der Gruppe wird dadurch zum Vorschein gebracht, dass in der Cayley Tabelle nur die Elemente aus der Menge G vorkommen. 1.4 Elementare Eigenschaften Lemma 1.4 Sei (G,, e) eine Gruppe und x, y X, sodass y rechtsinverses Element von x ist (x y = e), dann ist y auch linksinverses Element von x (y x = e). Beweis. Da y G existiert für y ein rechtsneutrales Element z G (y z = e). Es ergibt sich y x (i) =(y x) e (ii) = (y x) (y z) (iii) = y (x y) z (iv) = y e z (v) =y z (vi) = e. Dabei haben wir folgende Argumente verwendet: (i) Rechtsneutralität von e (ii) y z = e (iii) Assoziativität von (iv) x y = e (v) Rechtsneutralität von e (vi) y z = e Lemma 1.5 Sei (G,, e) eine Gruppe. Dann ist e auch ein linksneutrales Element, d.h. es gilt für alle x X auch e x = x. Beweis. Sei x X, dann gibt es ein y X mit x y = e. Es ergibt sich e x (i) = (x y) x (ii) = x (y x) (iii) = x e (iv) = x. Dabei haben wir folgende Argumente verwendet: 6

7 (i) x y = e (ii) Assoziativität von (iii) Siehe Lemma 1.4 (iv) Rechtsneutralität von e Lemma 1.6 Sei (G,, e) eine Gruppe. Dann ist e das einzige (rechts-)neutrale Element. Mit anderen Worten: Sei ẽ ein weiteres (rechts-)neutrales Element, dann gilt e = ẽ. Beweis. In obiger Situation ergibt sich e (i) = e ẽ (ii) = ẽ. Wir verwendeten (i) Neutralität von ẽ. (ii) Neutralität von e. Lemma 1.7 Sei (G,, e) eine Gruppe und x G. Dann gibt es nur ein einziges zu x inverses Element. Mit anderen Worten: Seien y, z X mit x y = x z = e, dann gilt bereits y = z. Beweis. In obiger Situation ergibt sich y = (i) = e y (ii) = (x z) y (iii) = (z x) y (iv) = z (x y) (v) = z e (vi) = z. Wir argumentierten: (i) Neutralität von e (ii) x z = e (iii) Siehe Lemma 1.4 (iv) Assoziativität von 7

8 (v) x y = e (vi) Neutralität von e Bemerkung 1.8 Wir haben bisher gesehen, dass rechtsneutrale Elemente auch linksneutrale Elemente sind. Ausserdem gibt es nur ein eindeutiges Element mit dieser Eigenschaft. Wir nennen dieses Element e G das neutrale Element oder Einselement von G. Ausserdem haben wir gezeigt, dass rechtsinverse Elemente auch linksinvers sind und es zu einem Element x G nur ein eindeutiges Element y G mit diesen Eigenschaften sind. Wir nennen dieses Element das inverse Element von x und schreiben x 1 := y. Insbesondere gilt (x 1 ) 1 = x. Lemma 1.9 Seien (G,, e) eine Gruppe und x, y, z G mit xy = xz. Dann gilt y = z. Diese Tatsache nennen wir auch Kürzungsregel. Beweis. Wir verknüpfen obige Gleichung mit x 1 G und erhalten x 1 x y = x 1 x z e y = e z y = z 2 Anwendungen und Beispiele 2.1 Drehgruppen Betrachte ein n-eck mit Eckpunkten p 1,..., p n. Bezeichne die Drehung um 360 n d und 360 k n Grad mit d k. Offensichtlich gilt: d l d k = d l+k und d n+k = d k Grad mit wobei die Hintereinanderausführung von Drehungen ist. Die Menge der Drehungen D = {d 0, d, d 2,..., d n 1 } für ein n N bildet eine Gruppe, denn: 8

9 Abgeschlossenheit: d l d k = d l+k D für k + l < n und d l d k = d l+k n D für k + l > n Assoziativität: Betrachte drei beliebige Abbildungen M,N,O, die die Punkte P,Q,R,S wie folgt abbilden: M : P Q, N : Q R, O : R S. Dann gilt: MN : P R, O : R S und M : P Q, NO : Q S, d.h (MN)O = M(NO). Neutrales Element: d k d 0 = d k, d 0 - Drehung um 0 Grad. Inverses Element: d k d n k = d 0, d n k - inverses Element. 2.2 Diedergruppe Die Diedergruppe D n besteht aus den Drehungen um das Vielfache von 360 n Grad eines regelmäßigen n-ecks um seinen Mittelpunkt als Drehzentrum und den n verschiedenen Achsenspiegelungen. Die Gruppenoperation ist die Hintereinanderausführung von Drehungen und Spiegelungen. Beispiel: Diedergruppe D 3 = {i, s 1, s 2, s 3, d 1, d 2 }, wobei s 1 : Spiegelung an der Achse a 1 s 2 : Spiegelung an der Achse a 2 s 3 : Spiegelung an der Achse a 3 d 1 : Drehung um 120 Grad gegen den Uhrzeigersinn mit Drehzentrum M d 1 : Drehung um 240 Grad gegen den Uhrzeigersinn mit Drehzentrum M i: identische Abbildung Die Gruppenoperation ist die Hintereinanderausführung von Spiegelungen und Drehungen. Die Verknüpfungstafel von D 3 sieht wie folgt aus: 9

10 i d 1 d 2 s 1 s 2 s 3 i i d 1 d 2 s 1 s 2 s 3 d 1 d 1 d 2 i s 2 s 3 s 1 d 2 d 2 i d 1 s 3 s 1 s 2 s 1 s 1 s 3 s 2 i d 2 d 1 s 2 s 2 s 1 s 3 d 1 i d 2 s 3 s 3 s 2 s 1 d 2 d 1 i 2.3 Rubik s Cube Erno Rubik, ein ungarischer Bildhauer, Architekt und Designer hat den weltbekannten Zauberwürfel, den sogenannten Rubik s Cube erfunden. In den 80ziger Jahren genoß das Spiel eine sehr große Beliebtheit und es wurde 1980 sogar als Bestes Solitärspiel ausgezeichnet. Ziel des Spiels ist es, den Würfel wieder in seine Grundstellung zu bewegen (d.h einheitliche Farbe auf jeder Seite des Würfels), nachdem zuvor die Seiten in eine zufällige Stellung gedreht wurden. 10

11 Nun wollen wir uns kurz anschauen, wie wir diesen Zauberwürfel mathematisch beschreiben können. Zunächst stellt man fest, dass es folgende Zugkombinationen gibt: V: vorne H: hinten R: rechts L: links O: oben U: unten Dabei sollte man darauf achten, von welcher Perspektive man es anschaut: x: Drehen des Würfels beim Betrachten der rechten Seite y: Drehen des Würfels beim Betrachten der oberen Seite z: Drehen des Würfels beim Betrachten der vorderen Seite Jede Stellung des Würfels ist eine Verknüpfung der sechs möglichen Zugkombinationen, die wir als Menge B := {V, H, R, L, O, U} definieren. Alle möglichen Permutationen bilden die Menge G. Man definiere: : G G G Hierbei erkennt man schnell, dass es sich (G,, i) um eine Gruppe handelt. Dabei ist i die Grundstellung. Außerdem kann man aus jeder beliebigen Ausgangsposition die Grundstellung erreichen. Bezeichne mit p die Ausgangsposition und mit p 1 die Zugfolge, anhand der wieder die Grundstellung erreicht werden kann. Nun folgt mit der Notation: p p 1 = i, wodurch wir ein (Rechts-)Inverses erhalten. Die Assoziativität ist auch gegeben. (Es ist ja egal, in welcher Reihenfolge wir bestimmte Zugkombinationen ausführen, als Ergebnis erhalten wir stets dasselbe.) Damit bildet der Tripel (G, i, ) eine Gruppe. Diese Gruppe enthält Elemente (Kombinatorik), denn es gibt: 8 Stellen, an denen sich die Eckwürfel befinden können (8!) 3 Drehpositionen, die jeder Eckwürfel einnehmen kann (3 8 ) 12 Stellen, auf die sich die Kantenwürfel verteilen (12!) 2 Drehpositionen, die jede Kante einnehmen kann (2 12 ) Außerdem gibt es drei Bedingungen, die gelten, wenn der Würfel verdreht, aber nicht auseinandergenommen wird: 11

12 Sieben der acht Eckwürfel lassen sich nach Belieben orientieren während die Orientierung des achten dadurch erzwungen wird (3). Elf der zwölf Kantenwürfel lassen sich nach Belieben orientieren während die Orientierung des zwölften dadurch erzwungen wird (2) Es lassen sich weder allein zwei Eckwürfel vertauschen, noch lassen sich allein zwei Kanten vertauschen. Die Anzahl der paarweisen Zweiertäusche muss immer gerade sein (2). Kleiner Hinweis für die Knobbler: Im Juli 2010 bewies Tomas Rokicki zusammen mit Morley Davidson, John Dethridge und Herbert Kociemba die Vermutung, dass für das Erreichen der Grundposition nie mehr als 20 Züge notwendig sind. Literatur [Fab] Vortrag von Fabian Grünig, Relationen, Abbildungen und Gruppen [CT] html [Gr] gruppen.htm [ZW] Zauberwürfel 12

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.) 3. Untergruppen 19 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten

Mehr

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau,

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau, Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 18 1.3 Gruppen Der Begriff der Gruppe ordnet sich in gewisser Weise dem allgemeineren Konzept der Verknüpfung (auf einer Menge) unter. So ist zum Beispiel

Mehr

5. Gruppen, Ringe, Körper

5. Gruppen, Ringe, Körper 5. Gruppen, Ringe, Körper 5.1. Gruppen Die Gruppentheorie, als mathematische Disziplin im 19. Jahrhundert entstanden, ist ein Wegbereiter der modernen Mathematik. Beispielsweise folgt die Gruppe, die aus

Mehr

Halbgruppen, Gruppen, Ringe

Halbgruppen, Gruppen, Ringe Halbgruppen-1 Elementare Zahlentheorie Einige Bezeichnungen Halbgruppen, Gruppen, Ringe Die Menge N 0 der natürlichen Zahlen 0, 1, 2, Die Menge N = N 1 der von Null verschiedenen natürlichen Zahlen Die

Mehr

Einführung Gruppen, Beispiele, Konjugationsklassen

Einführung Gruppen, Beispiele, Konjugationsklassen Einführung Gruppen, eispiele, Konjugationsklassen Fabian Rühle 21.10.2015 Inhaltsverzeichnis 1 Definition von Gruppen und einfache eispiele 1 2 Die zyklische Gruppe n 2 3 Die Diedergruppe D n 3 4 Die Permutationsgruppe

Mehr

2. Symmetrische Gruppen

2. Symmetrische Gruppen 14 Andreas Gathmann 2 Symmetrische Gruppen Im letzten Kapitel haben wir Gruppen eingeführt und ihre elementaren Eigenschaften untersucht Wir wollen nun eine neue wichtige Klasse von Beispielen von Gruppen

Mehr

Gruppentheorie und Symmetrie in der Chemie

Gruppentheorie und Symmetrie in der Chemie Gruppentheorie und Symmetrie in der Chemie Martin Schütz Institut für theoretische Chemie, Universität Stuttgart Pfaffenwaldring 55, D-70569 Stuttgart Stuttgart, 26. April 2002 Mathematische Definition

Mehr

Axiomatische Beschreibung der ganzen Zahlen

Axiomatische Beschreibung der ganzen Zahlen Axiomatische Beschreibung der ganzen Zahlen Peter Feigl JKU Linz peter.feigl@students.jku.at 0055282 Claudia Hemmelmeir JKU Linz darja@gmx.at 0355147 Zusammenfassung Wir möchten in diesem Artikel die ganzen

Mehr

Modul Grundbildung Lineare Algebra und analytische Geometrie SoSe 2010

Modul Grundbildung Lineare Algebra und analytische Geometrie SoSe 2010 54 3 GRUPPEN Modul Grundbildung Lineare Algebra und analytische Geometrie SoSe 2010 Hinweis: Dieses Manuskript setzt das Skript aus dem letzten Semester fort. Es ist nur verständlich und von Nutzen für

Mehr

2.1 Eigenschaften und Beispiele von Gruppen Untergruppen Homomorphismen... 25

2.1 Eigenschaften und Beispiele von Gruppen Untergruppen Homomorphismen... 25 2 Gruppen Übersicht 2.1 Eigenschaften und Beispiele von Gruppen............................. 17 2.2 Untergruppen...................................................... 21 2.3 Homomorphismen..................................................

Mehr

Konstruktion der reellen Zahlen 1 von Philipp Bischo

Konstruktion der reellen Zahlen 1 von Philipp Bischo Konstruktion der reellen Zahlen 1 von Philipp Bischo 1.Motivation 3 1.1. Konstruktion von R im allgemeine 3 2.Voraussetzung 3 2.1Die Menge Q zusammen mit den beiden Verknüpfungen 3 2.2Die Rationalen Zahlen

Mehr

1 Modulare Arithmetik

1 Modulare Arithmetik $Id: modul.tex,v 1.11 2012/04/16 19:15:39 hk Exp $ $Id: gruppen.tex,v 1.11 2012/04/17 10:30:56 hk Exp $ 1 Modulare Arithmetik 1.3 Restklassen Wir waren gerade damit beschäftigt eine Beispiele zum Rechnen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare

Mehr

Symmetrie als fundamentale Idee Bezeichnungen (in dieser Vorlesung):

Symmetrie als fundamentale Idee Bezeichnungen (in dieser Vorlesung): Symmetrie als fundamentale Idee Bezeichnungen (in dieser Vorlesung): N := {1, 2, 3,...} (natürliche Zahlen ohne Null) N 0 := {0, 1, 2, 3,...} (natürliche Zahlen mit Null) Z := {..., 2, 1, 0, 1, 2, 3,...}

Mehr

4: Algebraische Strukturen / Gruppen

4: Algebraische Strukturen / Gruppen Stefan Lucks Diskrete Strukturen (WS 2009/10) 120 4: Algebraische Strukturen / Gruppen Definition 46 Sei G eine nichtleere Menge. Eine Funktion : G G G bezeichnen wir als Verknüpfung auf G. Das Paar (G,

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

2.2 Konstruktion der rationalen Zahlen

2.2 Konstruktion der rationalen Zahlen 2.2 Konstruktion der rationalen Zahlen Wie wir in Satz 2.6 gesehen haben, kann man die Gleichung a + x = b in Z jetzt immer lösen, allerdings die Gleichung a x = b im allgemeinen immer noch nicht. Wir

Mehr

Diskrete Strukturen. Restklassenringe WS 2013/2014. Vorlesung vom 24. Jänner 2014

Diskrete Strukturen. Restklassenringe WS 2013/2014. Vorlesung vom 24. Jänner 2014 Diskrete Strukturen WS 2013/2014 Vorlesung vom 24. Jänner 2014 Thomas Vetterlein Institut für Wissensbasierte Mathematische Systeme Johannes-Kepler-Universität Linz 10.1 Die Modulo-n-Relation Definition

Mehr

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich.

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich. 3.5 Ringe und Körper Gehen wir noch mal zu den ganzen Zahlen zurück. Wir wissen: (Z, + ist eine Gruppe, es gibt aber als Verknüpfung noch die Multiplikation, es gibt ein neutrales Element bezüglich, es

Mehr

Wie kann man beweisen, dass (H, ) eine Gruppe ist?

Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) Wie kann man beweisen, dass (H, )

Mehr

Formale Grundlagen 2008W. Vorlesung im 2008S Institut für Algebra Johannes Kepler Universität Linz

Formale Grundlagen 2008W. Vorlesung im 2008S  Institut für Algebra Johannes Kepler Universität Linz Formale Grundlagen Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Definition Sei A eine Menge und ɛ A A A eine zweistellige

Mehr

Gruppe. Unter einer Gruppe (G, ) versteht man eine Menge G, auf der eine binäre Operation definiert ist:

Gruppe. Unter einer Gruppe (G, ) versteht man eine Menge G, auf der eine binäre Operation definiert ist: Gruppe Unter einer Gruppe (G, ) versteht man eine Menge G, auf der eine binäre Operation definiert ist: : G G G, d.h. jedem Elementepaar (a, b): a, b G ist ein Element a b G zugeordnet. Gruppe 1-1 Gruppe

Mehr

1 Algebraische Strukturen

1 Algebraische Strukturen Prof. Dr. Rolf Socher, FB Technik 1 1 Algebraische Strukturen In der Mathematik beschäftigt man sich oft mit Mengen, auf denen bestimmte Operationen definiert sind. Es kommt oft vor, dass diese Operationen

Mehr

4 Einige Grundstrukturen. Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper

4 Einige Grundstrukturen. Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper 4 Einige Grundstrukturen Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper Abbildungen Seien X und Y Mengen. Eine (einstellige) Abbildung f : X Y ordnet jedem x X genau ein Element

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

1 Anmerkungen zu Wohldefiniertheit

1 Anmerkungen zu Wohldefiniertheit 1 Anmerkungen zu Wohldefiniertheit Wohldefiniertheit muss bewiesen werden, wenn von vornherin nicht klar ist, ob eine angegebene Zuordnungsvorschrift eine Abbildung definiert. Hier gibt es zwei typische

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Mathematische Strukturen

Mathematische Strukturen Mathematische Strukturen Lineare Algebra I Kapitel 3 18. April 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

Algebraische Kurven. Holger Grzeschik

Algebraische Kurven. Holger Grzeschik Algebraische Kurven Holger Grzeschik 29.04.2004 Inhaltsübersicht 1.Einführung in die Theorie algebraischer Kurven 2.Mathematische Wiederholung Gruppen, Ringe, Körper 3.Allgemeine affine Kurven 4.Singuläre

Mehr

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

5 Grundlagen der Zahlentheorie

5 Grundlagen der Zahlentheorie 5 Grundlagen der Zahlentheorie 1 Primfaktorzerlegung Seienm, n N + := {k N k > 0} Man schreibt n n, gesprochen m teilt n oder m ist ein Teiler von n, wenn es eine positive natürliche Zahl k gibt mit mk

Mehr

Karlsruher Institut für Technologie Institut für Algebra und Geometrie

Karlsruher Institut für Technologie Institut für Algebra und Geometrie Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. Stefan Kühnlein Dipl.-Math. Jochen Schröder Einführung in Algebra und Zahlentheorie Übungsblatt 2 Aufgabe 1 (4 Punkte) Seien

Mehr

7. Ringe und Körper. 7. Ringe und Körper 49

7. Ringe und Körper. 7. Ringe und Körper 49 7. Ringe und Körper 49 7. Ringe und Körper In den bisherigen Kapiteln haben wir nur Gruppen, also insbesondere nur Mengen mit lediglich einer Verknüpfung, untersucht. In der Praxis gibt es aber natürlich

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 2 Beispiele für Gruppen Aus der Vorlesung Mathematik I sind schon viele kommutative Gruppen bekannt. Zunächst gibt es die additiven

Mehr

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

Rubiks Cube Anleitung für alle Würfel mit ungerader Anzahl an Kantensteinen

Rubiks Cube Anleitung für alle Würfel mit ungerader Anzahl an Kantensteinen Einleitung Für den klassischen 3X3X3 Zauberwürfel gibt es einige Anleitungen im Netz. Sucht man jedoch Lösungen für größere Würfel (5X5X5 oder 7X7X7), so wird es entweder schnell sehr kompliziert, grundlegend

Mehr

7 Vektorräume und Körperweiterungen

7 Vektorräume und Körperweiterungen $Id: vektor.tex,v 1.3 2009/05/25 15:03:47 hk Exp $ 7 Vektorräume und Körperweiterungen Wir sind gerade bei der Besprechung derjenigen Grundeigenschaften des Tensorprodukts, die mit vergleichsweise wenig

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

4. Vektorräume und Gleichungssysteme

4. Vektorräume und Gleichungssysteme technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof Dr H M Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 41 und 42 4 Vektorräume

Mehr

Drehung um einen Punkt um Winkel α.

Drehung um einen Punkt um Winkel α. Drehung um einen Punkt um Winkel α. Sei A R 2 und α R. Drehung um A um Winkel α ist eine Abbildung D A (α) : R 2 R 2 welche wie folgt definiert ist: D A (α) = T A D 0 (α) T ( A), wobei die Abbildung D

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Vektoren und Matrizen Einführung: Wie wir gesehen haben, trägt der R 2, also die Menge aller Zahlenpaare, eine Körperstruktur mit der Multiplikation (a + bi(c + di ac bd + (ad + bci Man kann jedoch zeigen,

Mehr

Spiel des Jahres KRITIKERPREIS HINWEISE: SEITE 3. Spiel des Jahres

Spiel des Jahres KRITIKERPREIS HINWEISE: SEITE 3. Spiel des Jahres 00719_HDL_DU 26-09-2007 11:51 Pagina 24 Spiel des Jahres Spiel des Jahres 1980 KRITIKERPREIS Sonderpreis Solitärspiel 1997 Jumbo International, Zaandam. RUBIK'S is a trademark of Seven Towns Ltd. used

Mehr

Vorlesung Diskrete Strukturen Gruppe und Ring

Vorlesung Diskrete Strukturen Gruppe und Ring Vorlesung Diskrete Strukturen Gruppe und Ring Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul Einführung in

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

Mengenlehre. ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN. Ronald Balestra CH Zürich Name: Vorname:

Mengenlehre. ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN. Ronald Balestra CH Zürich  Name: Vorname: Mengenlehre ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 21. August 2016 Inhaltsverzeichnis 1 Mengenlehre 1 1.1 Die Menge im mathematischen

Mehr

4 Kongruenz und Modulorechnung

4 Kongruenz und Modulorechnung 1 4 Kongruenz und Modulorechnung In unserer Zeitrechnung haben wir uns daran gewöhnt, nur mit endlich vielen Zahlen zu rechnen. Es ist gerade 3 Uhr und in 50 Stunden muss ich abreisen. Wie spät ist es

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Sei G eine Gruppe. Zeige, dass ( 1 ) 1 = Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Arbeitsblatt 3 Die Pausenaufgabe Aufgabe 3.1. Formuliere die binomischen

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Hackenbusch und Spieltheorie

Hackenbusch und Spieltheorie Hackenbusch und Spieltheorie Was sind Spiele? Definition. Ein Spiel besteht für uns aus zwei Spielern, Positionen oder Stellungen, in welchen sich das Spiel befinden kann (insbesondere eine besondere Startposition)

Mehr

4.13. Permutationen. Definition. Eine Permutation der Elementen {1,..., n} ist eine bijektive Abbildung

4.13. Permutationen. Definition. Eine Permutation der Elementen {1,..., n} ist eine bijektive Abbildung 43 Permutationen Definition Eine Permutation der Elementen {,, n} ist eine bijektive Abbildung σ : {,,n} {,,n} Es ist leicht zu sehen, dass die Hintereinanderführung zweier Permutationen ergibt wieder

Mehr

Vervollständigung Lateinischer Quadrate

Vervollständigung Lateinischer Quadrate Vervollständigung Lateinischer Quadrate Elisabeth Schmidhofer 01.12.2013 Inhaltsverzeichnis 1 Vorwort 3 2 Einleitung 4 2.1 Beispele.............................................. 4 3 Lateinische Quadrate

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

σ-algebren, Definition des Maßraums

σ-algebren, Definition des Maßraums σ-algebren, Definition des Maßraums Ziel der Maßtheorie ist es, Teilmengen einer Grundmenge X auf sinnvolle Weise einen Inhalt zuzuordnen. Diese Zuordnung soll so beschaffen sein, dass dabei die intuitiven

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Prof. Dr. R. Frank/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 11.02.2015 Name: Vorname:

Mehr

Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen

Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen Aufgabe 1: Es sei D die Menge aller rationalen Dedekind-Mengen, also D := { M 2 Q M is Dedekind-Menge }. Auf der Menge D definieren wir

Mehr

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich)

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich) Technische Universität München Andreas Wörfel Ferienkurs Analysis 1 für Physiker Lösung Montag WS 01/1 Aufgabe 1 Zum warm werden: Komplexe Zahlen - Lehrling Bestimmen Sie das komplex Konjugierte, den Betrag

Mehr

2 Die Menge der ganzen Zahlen. von Peter Franzke in Berlin

2 Die Menge der ganzen Zahlen. von Peter Franzke in Berlin Die Menge der ganzen Zahlen von Peter Franzke in Berlin Das System der natürlichen Zahlen weist einen schwerwiegenden Mangel auf: Es gibt Zahlen mn, derart, dass die lineare Gleichung der Form mx n keine

Mehr

Der Rubik-Würfel. Wie man 26 über ein Kardangelenk verbundene Steine sortiert

Der Rubik-Würfel. Wie man 26 über ein Kardangelenk verbundene Steine sortiert Mit dem»zauberwürfel«wollte Design-Professor Ernö Rubik seine Studenten räumliches Denken trainieren lassen. Aus seiner Erfindung wurde ein nunmehr 40 Jahre währender Hype, dessen Lösung ganz einfach ist,

Mehr

Kapitel 2. Abbildungsgeometrie

Kapitel 2. Abbildungsgeometrie Kapitel 2 Abbildungsgeometrie 1 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau Kapitel 2 Abbildungsgeometrie 2.1 2,3,4 Geradenspiegelungen 2.2 Sinn & Orientierung

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Permutationen und symmetrische Gruppe

Permutationen und symmetrische Gruppe Permutationen und symmetrische Gruppe Für eine beliebige Menge M bilden die Bijektionen von M in M, versehen mit der Komposition von Abbildungen als Operation, eine Gruppe, die sogenannte symmetrische

Mehr

Lösungen zur Vorrundenprüfung 2006

Lösungen zur Vorrundenprüfung 2006 Lösungen zur Vorrundenprüfung 2006 Zuerst einige Bemerkungen zum Punkteschema. Eine vollständige und korrekte Lösung einer Aufgabe ist jeweils 7 Punkte wert. Für komplette Lösungen mit kleineren Fehlern

Mehr

Über die algebraische Struktur physikalischer Größen

Über die algebraische Struktur physikalischer Größen Über die algebraische Struktur physikalischer Größen Alois Temmel Juni 2001 c 2001, A. Temmel Inhaltsverzeichnis 1 Physikalische Größen 3 1.1 Das internationale Einheitensystem............... 3 1.2 Die

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} Ganze Zahlen : Aus

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale Kapitel I Reelle Zahlen 1 Axiomatische Charakterisierung der reellen Zahlen R 2 Angeordnete Körper 3 Die natürlichen, die ganzen und die rationalen Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen

Mehr

Frage 8.3. Wozu dienen Beweise im Rahmen einer mathematischen (Lehramts-)Ausbildung?

Frage 8.3. Wozu dienen Beweise im Rahmen einer mathematischen (Lehramts-)Ausbildung? 8 Grundsätzliches zu Beweisen Frage 8.3. Wozu dienen Beweise im Rahmen einer mathematischen (Lehramts-)Ausbildung? ˆ Mathematik besteht nicht (nur) aus dem Anwenden auswendig gelernter Schemata. Stattdessen

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

II. Lineare Gleichungssysteme. 10 Matrizen und Vektoren. 52 II. Lineare Gleichungssysteme

II. Lineare Gleichungssysteme. 10 Matrizen und Vektoren. 52 II. Lineare Gleichungssysteme 52 II Lineare Gleichungssysteme II Lineare Gleichungssysteme 10 Matrizen und Vektoren 52 11 Der Gaußsche Algorithmus 58 12 Basen, Dimension und Rang 62 13 Reguläre Matrizen 66 14 Determinanten 69 15 Skalarprodukte

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

Konvergenz im quadratischen Mittel - Hilberträume

Konvergenz im quadratischen Mittel - Hilberträume CONTENTS CONTENTS Konvergenz im quadratischen Mittel - Hilberträume Contents 1 Ziel 2 1.1 Satz........................................ 2 2 Endlich dimensionale Vektorräume 2 2.1 Defintion: Eigenschaften

Mehr

1 Das Lemma von Burnside und seine Anwendungen

1 Das Lemma von Burnside und seine Anwendungen Das Lemma von Burnside und seine Anwendungen Mit dem Lemma von Burnside lassen sich Zählprobleme lösen, bei denen Symmetrien eine Rolle spielen. Betrachten wir als einführendes Beispiel die Anzahl der

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

2. Machen Sie sich klar, dass jede denkbare Festsetzung fur die noch fehlenden\ Dierenzen durch Werte in N 0 unschone\ Konsequenzen hat.

2. Machen Sie sich klar, dass jede denkbare Festsetzung fur die noch fehlenden\ Dierenzen durch Werte in N 0 unschone\ Konsequenzen hat. 3 Die ganzen Zahlen 3.1 Historisches Die { bisher noch nicht erklarte { Subtraktion ist in N 0 nicht uneingeschrankt durchfuhrbar. Die negativen Zahlen wurden noch zu Zeiten von Rene Descartes als falsche\

Mehr

Vorkurs Mathematik Abbildungen

Vorkurs Mathematik Abbildungen Vorkurs Mathematik Abbildungen Philip Bell 19. September 2016 Diese Arbeit beruht im Wesentlichen auf dem Vortrag Relationen, Partitionen und Abbildungen von Fabian Grünig aus den vorangehenden Jahren.

Mehr

Elliptische Kurven Einführendes Bsp.

Elliptische Kurven Einführendes Bsp. Elliptische Kurven Einführendes Bsp. Eine Menge von Kugeln wird als eine quadratische Pyramide angeordnet. Mit 1 Kugel oben, 4 weiteren darunter, dann 9 weiteren darunter usw. Wenn diese quadratische Kugelpyramide

Mehr

Natürliche Zahlen, Summen und Summenformeln

Natürliche Zahlen, Summen und Summenformeln Vorlesung Natürliche Zahlen, Summen und Summenformeln.1 Die natürlichen Zahlen Die natürlichen Zahlen sind diejenigen Zahlen mit denen wir zählen 0,1,,3,... Es gibt unendlich viele und wir schreiben kurz

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Poelchau-Oberschule Berlin A. Mentzendorff September 2007 Lineare Gleichungssysteme Inhaltsverzeichnis 1 Grundlagen 2 2 Das Lösungsverfahren von Gauß 4 3 Kurzschreibweise und Zeilensummenkontrolle 6 4

Mehr

$Id: gruppen.tex,v /04/24 15:25:02 hk Exp $ $Id: ring.tex,v /04/24 15:35:17 hk Exp $

$Id: gruppen.tex,v /04/24 15:25:02 hk Exp $ $Id: ring.tex,v /04/24 15:35:17 hk Exp $ $Id: gruppen.tex,v 1.13 2012/04/24 15:25:02 hk Exp $ $Id: ring.tex,v 1.11 2012/04/24 15:35:17 hk Exp $ 2 Gruppen 2.3 Zyklische Gruppen Wir hatten am Ende der letzten Sitzung bewiesen, dass in einer endlichen

Mehr

Unterrichtsreihe zur Parabel

Unterrichtsreihe zur Parabel Unterrichtsreihe zur Parabel Übersicht: 1. Einstieg: Satellitenschüssel. Konstruktion einer Parabel mit Leitgerade und Brennpunkt 3. Beschreibung dieser Punktmenge 4. Konstruktion von Tangenten 5. Beweis

Mehr

Notizen zu Transformationen und Permutationen. T (A) = {f : A A}

Notizen zu Transformationen und Permutationen. T (A) = {f : A A} Transformationen Notizen zu Transformationen und Permutationen Ist A eine Menge, so ist die Menge T (A) = {f : A A} bezüglich der Komposition (Hintereinanderausführung) als Operation und der identischen

Mehr

Vektorräume und Rang einer Matrix

Vektorräume und Rang einer Matrix Universität Basel Wirtschaftswissenschaftliches Zentrum Vektorräume und Rang einer Matrix Dr. Thomas Zehrt Inhalt:. Lineare Unabhängigkeit 2. Vektorräume und Basen 3. Basen von R n 4. Der Rang und Rangbestimmung

Mehr

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg Komplexe Funktionen für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Universität Hamburg SS 2006 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen

Mehr

Klassenstufen 7, 8. Fachbereich Mathematik Tag der Mathematik 9. November 2013

Klassenstufen 7, 8. Fachbereich Mathematik Tag der Mathematik 9. November 2013 Fachbereich Mathematik Tag der Mathematik 9. November 2013 Klassenstufen 7, 8 12 Aufgabe 1 (5+++5+2 Punkte). Meister Hora hat eine kuriose Uhr: Bei dieser springt der Stundenzeiger nicht wie üblich jede

Mehr

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2.

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2. Definition Die rechteckige Anordnung von m n Elementen a ij in m Zeilen und n Spalten heißt m n- Matrix. Gewöhnlich handelt es sich bei den Elementen a ij der Matrix um reelle Zahlen. Man nennt das Paar

Mehr

Brückenkurs Elementarmathematik

Brückenkurs Elementarmathematik Brückenkurs Elementarmathematik IV. Ungleichungen November 13, 2013 Inhalt 1 Ungleichungen 2 Umformungen von Ungleichungen 2.1 Äquivalenzumformungen 2.2 Addition und Multiplikation von Ungleichungen 3

Mehr

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen)

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen) Def Wiederholung Sei f : V U eine lineare Abbildung Das Bild von f ist die folgende Teilmenge von U: Bild f = {u U so dass es gibt ein Element v V mit f (v) = u} (Andere Bezeichnung: f (V) wird in Analysis-Vorlesung

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

Definition: Euklidischer Raum mit Skalarprodukt. Die kanonische Basis von Einheitsvektoren sind paarweise orthogonal zueinander:

Definition: Euklidischer Raum mit Skalarprodukt. Die kanonische Basis von Einheitsvektoren sind paarweise orthogonal zueinander: Definition: Euklidischer Raum mit Skalarprodukt Einsteinsche Summenkonvention (ES): über doppelt vorkommende Indizes wird summiert. Die kanonische Basis von Einheitsvektoren sind paarweise orthogonal zueinander:

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I (Wintersemester 2003/2004) Aufgabenblatt 9

Mehr

Symmetrien. Verschiedene Arten von Symmetrie. Achsensymmetrie Punktsymmetrie

Symmetrien. Verschiedene Arten von Symmetrie. Achsensymmetrie Punktsymmetrie Symmetrien Ist ein Gesicht symmetrisch? Welches ist das von Ferdinand Hodler gezeichnete Originalbild seiner Frau erthe? Weshalb? Verschiedene rten von Symmetrie Sind Schmetterling und Propeller gleich

Mehr

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl.

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl. Unterräume und Lineare Hülle 59 3. Unterräume und Lineare Hülle Definition.1 Eine Teilmenge U eines R-Vektorraums V heißt von V, wenn gilt: Unterraum (U 1) 0 U. (U ) U + U U, d.h. x, y U x + y U. (U )

Mehr

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A 133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des

Mehr

Lösung zur Aufgabe Würfel färben von Heft 20

Lösung zur Aufgabe Würfel färben von Heft 20 Lösung zur Aufgabe Würfel färben von Heft 20 (1) Jedes der 24 Teilquadrate grenzt an genau eine der acht Ecken. Da nach unserer Vorschrift die drei Teilquadrate an jeder Ecke unterschiedlich gefärbt sein

Mehr

1.2 Eigenschaften der ganzen Zahlen

1.2 Eigenschaften der ganzen Zahlen Lineare Algebra I WS 2015/16 c Rudolf Scharlau 13 1.2 Eigenschaften der ganzen Zahlen Dieser Abschnitt handelt von den gewöhlichen ganzen Zahlen Z und ihren Verknüpfungen plus und mal. Man kann die natürlichen

Mehr

4.4. Rang und Inversion einer Matrix

4.4. Rang und Inversion einer Matrix 44 Rang und Inversion einer Matrix Der Rang einer Matrix ist die Dimension ihres Zeilenraumes also die Maximalzahl linear unabhängiger Zeilen Daß der Rang sich bei elementaren Zeilenumformungen nicht ändert

Mehr