5.1 Das HuygensschePrinzip u. das KirchhoffscheBeugungsintegral

Größe: px
Ab Seite anzeigen:

Download "5.1 Das HuygensschePrinzip u. das KirchhoffscheBeugungsintegral"

Transkript

1 5. Beugung 5.1 Das Huygenssche Prinzip und das Kirchhoffsche Begungsintegral 5.2 Fraunhofer- und Fresnel-Näherung 5.3 Fourier-Optik 5.4 Optische Elemente im Wellenbild 5.5 Holografie

2 Beugung (Diffraktion) = Abweichung von geradliniger Ausbreitung des Lichts 5.1 Das HuygensschePrinzip u. das KirchhoffscheBeugungsintegral Huygens 1691: Jeder Punkt einer primären WF ist Ausgangspunkt kugelförmiger sekundärer Elementarwellen. Die WF zu einem späteren Zeitpunkt ist die Einhüllende dieser Elementarwellen.? Blende

3 Diskrete Überlagerung ebener Wellen mit Wellenvektor θ=0 M=0 θ=0 M=10 Die WF ergeben sich aus den Contourplotsder gradweisen Summe unten bei fester Zeit. Aus der gerichteten, aber unendlich ausgedehnten ebenen Welle entsteht mit zunehmender Zahl von k x -Komponenten ein räumlich eingeengter Zustand, der aber gekrümmte WF, also keine scharfe Ausbreitungsrichtung besitzt. Schließlich entsteht eine Kugelwelle. θ=0 M=30 θ=0 M=60 θ=0 M=90

4 Man kann natürlich auch Zustände mit unterschiedliche mittlerem Wellenvektor überlagern. (θ=0, M=15) + (θ=30, M=15) (θ=0, M=15) + (θ=45, M=15) In ausreichender Entfernung vom Zentrum lösen diese sich wieder auf, bleiben aber räumlich begrenzt.

5 Da auf A R inwärts gerichtet ist: A R Integral: Integrand bei ρ=r: Kirchoffsche Integralsatz (Integrale Form der Helmholz-Gleichung) Berechnung des Feldes im Punkt aus Feld auf einer umgebenden Fläche. Integrand: Beitrag der Elementarwelle ausgehend vom Element. Dies ist zunächst keine Kugelwelle al la Huygens! Anwendung auf Beugungsanordnung: H Schirm Q B P A = B + S + H P 0 S Blende Halbkugel (R -> ) 5

6 Kirchhoffsche Randbedingungen: auf S auf B (Annahmen! Gegenstand der rigorosen Beugungstheorie mit Frenelschen Formeln und Berücksichtigung der Polarisation.) einfallende Kugelwelle:,,, einsetzen in Integralsatz ( ) wenn (Fernfeld) Kirchoffsche Beugungsformel (KBF) Integrand: HuygensscheKugelwellen bis auf Phasenfaktor π/2 und Neigungsfaktor P 0 P Das Beugungsmuster entsteht durch Überlagerung aller dieser, von jedem Punkt der Blende ausgehenden Elementarwellen. Interferenz spielt dabei eine zentrale Rolle und wird von der Beugungsformel automatisch erfasst. Babinetsches Prinzip Betrachten zwei komplementäre Anordnungen A 1 =(B 1,S 1 ) und A 2 =(B 2, S 2 ) mit B 1 =S 2 und S 1 =B 2 : Feld, wenn nur A j vorhanden ist. Da B 1 + B 2 = vollständige Ebene 6

7 Folgerungen: (i) Für P mit, also als ob A 2 nicht vorhanden wäre (ii) Für P mit, also identische Intensitäten für A 1 und A 2. P P. Beiden Anordnungen liefern nach (ii) identische Intensitätsbeugungsmuster. 5.2 Fresnel- und Fraunhofer-Beugung Vereinfachung durch paraxiale Näherung Quelle sei soweit von Blende entfernt, dass hier WF = Ebenen (z.b. durch Einsatz einer Linse), so dass, z=0 x BE Q y z opt. Achse P Öffnungsweite (Apertur) (zugelassene transversale Ausdehnung der Anordnung), also mit Für Beobachtungsebene (BE) gelte, so dass im Integranden der KBF: 7

8 variiert auf der Skala von und muss daher vorsichtiger genähert werden einfallendes Feld auf B a) Fresnel-Näherung: b) Fraunhofer-Näherung: achsennaher Teil einer von B ausgehenden Kugelwelle Beugungsgeometrien werden durch die Fresnel-Zahl Modulation charakterisiert. 8

9 Es gilt: In Fresnel-Näherung wird angenommen, dass die Phasenänderung durch den 3. Term vernachlässigbar ist (za 4 /λz 4 <<1). Das ist identisch mit (also nicht N F << 1) Praxis: anwendbar ab z~10 λ, Integral aber nur numerisch berechenbar Fraunhofer-Beugung zusätzlich:, d.h., wenn a B die Apertur der Blende ist: Mit wachsendem Abstand Blende-Beobachtungsebene geht Fresnel- in Fraunhofer-Beugung über. Die Bedeutung der beiden Näherungen wird auch deutlich, wenn man eine punktförmige Blendenöffnung bei (x 0,y 0 ) betrachtet. Dann folgt aus der Kirchhoffschen Beugungsformel in paraaxialer Näherung Der Phasenunterschied zu dem Feld einer bei (x 0 + x,y 0 + y) befindlichen Punktöffnung am gleichen Ort (x,y,z) auf der Beobachtungsebene ist Die Fraunhofer-Näherung darf also nur angewendet werden, wenn der Abstand der beiden Punkte ( x 2 + y 2 ) 1/2 viel kleiner als die Wurzel aus dem Produkt aus Wellenlänge λ und der BE-Entfernung z ist. 9

10 Anwendung: Beugung am Spalt Fraunhofer-Beugung 2h 2d h=2d x Je kleiner d und h, um so mehr Licht tritt außerhalb der geometrische Schattengrenze auf! In ähnlicher Weise lassen sich die Beugungsmuster anderer Anordnungen (Lochblende, Doppelspalt, Gitter, usw. usf.) berechnen. 10

11 5. 3 Fourier-Optik (Kohärenzoptik) 2 Prinzipien (i) (ii) Fourier-Trafo (2D) Jede WF ist in ausreichender Entfernung vom Ursprung lokal aus ebenen Wellen zusammengesetzt Beispiel: Kugelwelle, WF: paraaxialer Anteil bei z z 0 : parabolische WF mit Krümmungsradius z 0, wird asymptotisch eben für z 0 -> Aufgabenstellung ebene Welle. Welches Bild gentsteht durch Beugung am Muster f? (Man sagt: gist die Antwort auf f) Antwort durch KirchhoffscheBeugungsformel: f(x,y ) im Integranden einsetzen und Grenzen ins Unendliche verschieben! Das so berechnete g(x,y) ist genau genommen die Feldamplitude am Ort (x,y,z) zum negativen Frequenzanteil. Zur Berechnung des reellen Gesamtfeldes muss dann der positive Frequenzanteil addiert bzw. bei der Energiedichte (Detektorsignal) das Betragsquadrat gebildet werden. 11

12 A) Fraunhofer-Beugung: also Fourier-Transformierte von f an den Raumfrequenzen Die Intensitätsverteilung des Bildes ist durch die Verteilung der Fourier-Komponenten des Musters gegeben! Man kann die Angelegenheit auch umdrehen: Kennen wir das Bild, so können wir auf die Fourier-Transformierte des Musters zurückschließen. Benutzen wird diese wiederum als Muster, so erhalten wir nun im Prinzip das ursprüngliche Muster als Bild zurück. Eine Anwendung dieser Tatsache ist die FresnelscheZonenplatte (siehe Abbildung). Mangel der Fraunhofer-Beugung: Wegen ist bzw., Beschränkung auf kleine Muster. B) Fresnel-Beugung: Untersuchen zuerst Antwort auf harmonische Funktion y : Raumfrequenzen Einsetzen in Beugungsformel: x =x-u, y =y-v x Fourier-Trafo der Gauß-Funktion ist wieder Gauß-Funktion, genau: 12

13 Fresnelsche Zonenplatte Das Beugungsbild einer Lochblende ist, wie im Versuch gezeigt, ein konzentrisches Ringsystem. Die Berechnung mit den Beugungsformeln führt auf spezielle Funktion (nämlich die Fresnel-Integrale), die hier nicht diskutiert werden sollen. Drehen wir das um und benutzen das Ringsystem als Bild, so wird einfallendes Licht wie bei einer Linse auf einen kleinen Fleck fokussiert. Das Problem ist, dass wir nur das Betragsquadrat des Musters kennen, aber auch die Phase die benötigen. Dies wird durch die holografische Aufnahme erreicht (siehe. Filigrane Zonenplatte, die dem Beugungsmuster einer punktförmigen Loch-Blende nahekommt. Einfache Zonenplatte mit binärem Hell- Dunkel-Kontrast. Estretentretenmultiple Brennpunkte in verschiedenen Beugungsordnungen auf. Vorteil: GroßesÖffnungsverhältnis(Scheinwerfer), Nachteil: ReduzierteDurchlässigkeit, Anwendungin Röntgenoptik, da hiern <1 (siehekapitel2) 13

14 also für das Bild am Ort z mit Das ist eine ebene Welle mit transversalen Wellenvektoren k x, k y des Musters und k z aus der Bedingung, dass sich kbzw. λnicht ändert. Beachte: f(x,y) ist hier komplexwertig. In der Praxis kann man aber nur reelle harmonisches Muster erzeugen. Diese haben dann die Komponenten 2 Wellen mit! Anwendungen hiervon sind z. B. das Optical Interconnecting, Imaging oder Scanning (siehe folgende Abbildungen) Verallgemeinerung: Jeder Fourier-Komponente des Musters entspricht eine ebene Welle mit definierter Ausbreitungsrichtung! Mathematisch: Das Integral wird kompliziert, weil k z die Raumfrequenzen ebenfalls enthält. [Sonst wäre das Ergebnis ja einfach f(x,y) ]. Das Bild am Ort (x,y) ist jetzt nicht mehr wie bei der Fraunhofer-Näherung durch eine einzelne Fourier-Komponente des Musters bestimmt, sondern eine Überlagerung aller Fourier-Komponenten. Durch die Verwendung einer Linse kann aber wieder eine einzelne Komponente herausgefiltert werden. Bevor das gezeigt wird, soll zunächst skizziert werden, wie man optische Elemente generell im Wellenbild beschreibt. 14

15 Beugung an einem harmonischen Muster (Es gibt auch eine 2. Welle, die nach θ x gebeugt wird) (aus: Saleh/Teich, Grundlagen der Photonik) 15

16 Optical Interconnecting Konzept der lokal harmonischen Fkt.: veränderlich auf Skala >> λ Rasterkoordinaten x 0, y 0 (aus: Saleh/Teich, Grundlagen der Photonik) lokale Raumfrequenzen 16

17 Imaging Scanner (aus: Saleh/Teich, Grundlagen der Photonik) 17

18 5. 4 Optische Elemente im Wellenbild Prinzip: Durchgang durch optisches Element erzeugt eine Verzerrung der WF gemäß unterschiedlichem optischem Weg nd! A) Planparallele Platte Brechungsgesetz B) Dünner Keil Ablenkwinkel Feldamplitude hinter Prisma 18

19 C) Beliebiges dünnes Element Deformation der WF durch Phasenverschiebung 19

20 D) Dünne Bikonvex-Linse Wir lassen jetzt auch schrägen Einfall zu (siehe Abbildung unten rechts). Dünne Linse und paraaxiale Näherung Phase am Linsenende Welle nach Linse Phase, ohne irrelevante konstante Beiträge Gleichung für WF mit Brennweite quadratische Ergänzung, (Beliebige Linsenform: 1/R -> 1/R 1 +1/R 2 mit korrektem Vorzeichen, geom. Optik) Das sind die WF einer Parabolwellemit Krümmungsradius f und Ursprung x 0 = (k x /k) f, y 0 = (k y /k) f Folge: Eine ebene Welle, die sich relativ zur optischen Achse im paraaxialen Bereich mit den Polarwinkeln θund ϕ ausbreitet, wird auf den Punkt fθ(cos ϕ, sin ϕ) der Brennebene fokussiert! 20

21 E) Fourier-Transformation mit einer Linse Beugungswellen einer bestimmten Fourierkomponentedes Bildes werden durch die Linse auf einen bestimmten Punkt der Brennebene fokussiert. Genauer: Die Komponente des Musters f(x,y) wird in Frensnel-Nährungauf den Punkt abgebildet. Das Intensitätsmuster auf einem sich in der Brennebene befindlichen Beobachtungsschirm ist also Damit kann man Bilder bearbeiten, wie die folgenden Abbildungen demonstrieren. 21

22 4f-Aufbau (aus: Saleh/Teich, Grundlagen der Photonik) 22

23 Optischer Hoch- und Tiefpass (Maske wird in der Fourier-Ebene platziert) (aus: Saleh/Teich, Grundlagen der Photonik) 23

24 5. 5 Holografie Aus dem Kalkül der Fourier-Optik folgt: Kann man die Fourier-Komponenten des Lichts, das von einem Objekt ausgeht als Muster festhalten, so kann durch bescheinen dieses Musters mit einer Referenzwelle das Objekt wieder (virtuell) generiert werden. Für eine einzelne Fourier-Komponente sähe das so aus: 2D-Detektor Objektwelle Referenzwelle Problem: Detektoren messen Intensität, nicht Feld (welche für eine einzelne Fourier-Komponente eine Konstante ist). Ausweg: Holografische Kodierung(Gabor 1947)? Durch Interferenz von Objekt- und Referenzwelle entsteht in der Detektorebene ein harmonisches Muster, das dann durch die Referenzwelle wieder ausgelesen werden kann. Was ist genau das Ergebnis? 24

25 a) Speicherung Hologramm(Durchlässigkeit) b) Abfrage Referenzwelle Objektwelle konjugierte Objektwelle Verallgemeinerung auf beliebige Felder unmittelbar hinterm Hologramm speziell mit Mehrdeutigkeit(ambiguity) 25

26 Holografisches Prinzip Speichern Abfragen Das wäre eine Fourier-Komponente des Lichts von einem beliebigem Objekt. 26

27 Hologramm eines beliebigen Objekts 27

28 Hologramm einer Punktquelle (Siehe: Fresnel-Zonenplatte) 28

29 Praktische Anordnung Speichern Abfragen 29

5.1 Das Huygenssche Prinzip u. das Kirchhoffsche Beugungsintegral

5.1 Das Huygenssche Prinzip u. das Kirchhoffsche Beugungsintegral 5. Beugung 5.1 Das Huygenssche Prinzip und das Kirchhoffsche Beugungsintegral 5.2 Fraunhofer- und Fresnel- Näherung 5.3 Fourier- OpDk 5.4 OpDsche Elemente im Wellenbild 5.5 Holografie Beugung (DiffrakDon)

Mehr

Versuch 3: Beugung am Spalt und Kreisblende

Versuch 3: Beugung am Spalt und Kreisblende Versuch 3: Beugung am Spalt und Kreisblende Dieser Versuch soll der Einführung der allgemeinen Beugungstheorie dienen. Beugungsphänomene werden in verschiedenen Erscheinungsformen zunächst nur beobachtet.

Mehr

Beugung am Gitter mit Laser ******

Beugung am Gitter mit Laser ****** 5.10.301 ****** 1 Motiation Beugung am Gitter: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). Die Beugung am Gitter erzeugt ein schönes Beugungsbild

Mehr

Versuch Nr. 18 BEUGUNG

Versuch Nr. 18 BEUGUNG Grundpraktikum der Physik Versuch Nr. 18 BEUGUNG Versuchsziel: Justieren eines optischen Aufbaus. Bestimmung der Wellenlänge eines Lasers durch Ausmessen eines Beugungsmusters am Gitter. Ausmessen der

Mehr

Fourier Optik. Zeit. Zeit

Fourier Optik. Zeit. Zeit Fourier Optik Beispiel zur Fourier-Zerlegung: diskretes Spektrum von Sinus-Funktionen liefert in einer gewichteten Überlagerung näherungsweise eine Rechteckfunktion Sin t Sin 3t Sin 5t Sin 7t Sin 9t Sin

Mehr

Othmar Marti Experimentelle Physik Universität Ulm

Othmar Marti Experimentelle Physik Universität Ulm Grundkurs IIIa für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Tipler, Gerthsen, Hecht Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3a-2002

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #22 27/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Optische Instrumente Allgemeine Wirkungsweise der optischen Instrumente Erfahrung 1. Von weiter

Mehr

8 Reflexion und Brechung

8 Reflexion und Brechung Universität Leipzig, Fakultät für Physik und Geowissenschaften Vorlesung zur Experimentalphysik III Wintersemester 28/29 Prof. Dr. Josef A. Käs Vorlesungsmitschrift zur Vorlesung vom 2.11.28 8 Reflexion

Mehr

Doppelspalt. Abbildung 1: Experimenteller Aufbau zur Beugung am Doppelspalt

Doppelspalt. Abbildung 1: Experimenteller Aufbau zur Beugung am Doppelspalt 5.10.802 ****** 1 Motivation Beugung am Doppelspalt: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). Der Unterschied der Intensitätsverteilungen

Mehr

Beugung von Mikrowellen an Spalt und Steg. Mikrowellen, elektromagnetische Wellen, Huygenssches Prinzip, Spalt, Steg, Beugung.

Beugung von Mikrowellen an Spalt und Steg. Mikrowellen, elektromagnetische Wellen, Huygenssches Prinzip, Spalt, Steg, Beugung. Verwandte Begriffe Mikrowellen, elektromagnetische Wellen, Huygenssches Prinzip, Spalt, Steg, Beugung. Prinzip Treffen elektromagnetische Wellen auf die Kante eines Objekts (beispielsweise Spalt und Steg),

Mehr

6.1.7 Abbildung im Auge

6.1.7 Abbildung im Auge 6.1.7 Abbildung im Auge Das menschliche Auge ist ein aussergewöhnlich hoch entwickeltes Sinnesorgan. Zur Abbildung wird ein optisches System bestehend aus Hornhaut, Kammerwasser, Linse sowie Glaskörper

Mehr

Ferienkurs Experimentalphysik III

Ferienkurs Experimentalphysik III Ferienkurs Experimentalphysik III 24. Juli 2009 Vorlesung Mittwoch - Interferenz und Beugung Monika Beil, Michael Schreier 1 Inhaltsverzeichnis 1 Phasendierenz und Kohärenz 3 2 Interferenz an dünnen Schichten

Mehr

Beugung am Gitter. Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes

Beugung am Gitter. Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes PeP Vom Kerzenlicht zum Laser Versuchsanleitung Versuch 2: Beugung am Gitter Beugung am Gitter Theoretische Grundlagen Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes beeinträchtigen.

Mehr

Beugung am Spalt und Gitter

Beugung am Spalt und Gitter Demonstrationspraktikum für Lehramtskandidaten Versuch O1 Beugung am Spalt und Gitter Sommersemester 2006 Name: Daniel Scholz Mitarbeiter: Steffen Ravekes EMail: daniel@mehr-davon.de Gruppe: 4 Durchgeführt

Mehr

Physikalisches Praktikum 3. Abbésche Theorie

Physikalisches Praktikum 3. Abbésche Theorie Physikalisches Praktikum 3 Versuch: Betreuer: Abbésche Theorie Dr. Enenkel Aufgaben: 1. Bauen Sie auf einer optischen Bank ein Modellmikroskop mit optimaler Vergrößerung auf. 2. Untersuchen Sie bei verschiedenen

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #21 30/11/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Brechungsgesetz Das Fermat sches Prinzip: Das Licht nimmt den Weg auf dem es die geringste Zeit

Mehr

Interferenz und Beugung

Interferenz und Beugung Interferenz und Beugung In diesem Kapitel werden die Eigenschaften von elektromagnetischen Wellen behandelt, die aus der Wellennatur des Lichtes resultieren. Bei der Überlagerung zweier Wellen ergeben

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch,Daniel Jost Dienstag

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch,Daniel Jost Dienstag Physik-Department Ferienkurs zur Experimentalphysik 3 Matthias Golibrzuch,Daniel Jost Dienstag Inhaltsverzeichnis Technische Universität München Das Huygensche Prinzip 2 Optische Abbildungen 2 2. Virtuelle

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 200/20 8. Übungsblatt - 3.Dezember 200 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe ( ) (7 Punkte) Gegeben sei

Mehr

Ferienkurs Experimentalphysik 3 - Übungsaufgaben Geometrische Optik

Ferienkurs Experimentalphysik 3 - Übungsaufgaben Geometrische Optik Ferienkurs Experimentalphysik 3 - Übungsaufgaben Geometrische Optik Matthias Brasse, Max v. Vopelius 24.02.2009 Aufgabe 1: Zeigen Sie mit Hilfe des Fermatschen Prinzips, dass aus der Minimierung des optischen

Mehr

Testaufgaben bitte zuhause lösen. Richtige Antworten werden im Internet demnächst bekannt gegeben. Bitte kontrollieren Sie Ihre Klausuranmeldung für

Testaufgaben bitte zuhause lösen. Richtige Antworten werden im Internet demnächst bekannt gegeben. Bitte kontrollieren Sie Ihre Klausuranmeldung für Testaufgaben bitte zuhause lösen. Richtige Antworten werden im Internet demnächst bekannt gegeben. Bitte kontrollieren Sie Ihre Klausuranmeldung für den 13.02.2003 unter www.physik.uni-giessen.de/ dueren/

Mehr

Versuch Draht: Nehmen Sie von den vorhandenen Objekten die Beugungsbilder auf, und erklären Sie diese qualitativ.

Versuch Draht: Nehmen Sie von den vorhandenen Objekten die Beugungsbilder auf, und erklären Sie diese qualitativ. 1 Versuch 411 Beugung an Hindernissen 1. Aufgaben Untersuchen Sie mit Hilfe einer CCD - Zeile die Intensitätsverteilung des gebeugten Lichtes an Spalt, Doppelspalt, Kante und dünnem Draht. a) im Fernfeld

Mehr

cg = = ei(!0 t k0 x) cos(!t dass die Gruppengeschwindigkeit

cg = = ei(!0 t k0 x) cos(!t dass die Gruppengeschwindigkeit 9.6 Phasen- und Gruppengeschwindigkeit 9.6 Phasen- und Gruppengeschwindigkeit Dass Geschwindigkeiten größer als die Lichtgeschwindigkeit im Vakuum werden können, ist interessant durch die Implikationen

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 5. Übungsblatt - 22.November 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (8 Punkte) Ein

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #45 am 18.07.2007 Vladimir Dyakonov Erzeugung von Interferenzen: 1) Durch Wellenfrontaufspaltung

Mehr

Institut für Angewandte Optik und Elektronik Fakultät für Informations-, Medien- und Elektrotechnik Fachhochschule Köln

Institut für Angewandte Optik und Elektronik Fakultät für Informations-, Medien- und Elektrotechnik Fachhochschule Köln Institut für Angewandte Optik und Elektronik Fakultät für Informations-, Medien- und Elektrotechnik Fachhochschule Köln Praktikumsanleitung: Holografie Versuch 4: Hologrammkopie 1 Versuchsziel Ziel dieses

Mehr

VIII Streuung und Beugung elektromagnetischer Wellen

VIII Streuung und Beugung elektromagnetischer Wellen Streuung und Beugung 1 VIII Streuung und Beugung elektromagnetischer Wellen a) Streuung WW einer Welle mit kleinem Objekt oder Ansammlung von Objekten. Die gestreute Welle enthält Informationen über das

Mehr

1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen.

1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen. Universität Potsdam Institut für Physik und Astronomie Grundpraktikum 10/015 M Schallwellen Am Beispiel von Ultraschallwellen in Wasser werden Eigenschaften von Longitudinalwellen betrachtet. Im ersten

Mehr

Astro Stammtisch Peine

Astro Stammtisch Peine Astro Stammtisch Peine ANDREAS SÖHN OPTIK FÜR DIE ASTRONOMIE ANDREAS SÖHN: OPTIK FÜR DIE ASTRONOMIE < 1 Grundsätzliches Was ist Optik? Die Optik beschäftigt sich mit den Eigenschaften des (sichtbaren)

Mehr

2. Optik. 2.1 Elektromagnetische Wellen in Materie Absorption Dispersion. (Giancoli)

2. Optik. 2.1 Elektromagnetische Wellen in Materie Absorption Dispersion. (Giancoli) 2. Optik 2.1 Elektromagnetische Wellen in Materie 2.1.1 Absorption 2.1.2 Dispersion 2.1.3 Streuung 2.1.4 Polarisationsdrehung z.b. Optische Aktivität: Glucose, Fructose Faraday-Effekt: Magnetfeld Doppelbrechender

Mehr

Übungsblatt 1 Geometrische und Technische Optik WS 2012/2013

Übungsblatt 1 Geometrische und Technische Optik WS 2012/2013 Übungsblatt 1 Geometrische und Technische Optik WS 2012/2013 Gegeben ist eine GRIN-Linse oder Glasaser) mit olgender Brechzahlverteilung: 2 2 n x, y, z n0 n1 x y Die Einheiten der Konstanten bzw. n 1 sind

Mehr

Optische Systeme (5. Vorlesung)

Optische Systeme (5. Vorlesung) 5.1 Optische Systeme (5. Vorlesung) Yousef Nazirizadeh 20.11.2006 Universität Karlsruhe (TH) Inhalte der Vorlesung 5.2 1. Grundlagen der Wellenoptik 2. Abbildende optische Systeme 2.1 Lupe / Mikroskop

Mehr

[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0.

[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0. Wellen ================================================================== 1. Transversal- und Longitudinalwellen ------------------------------------------------------------------------------------------------------------------

Mehr

III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator

III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator Hooksches Gesetz Harmonisches Potential allgemeine Lösung Federpendel Fadenpendel Feder mit Federkonstante

Mehr

Vorkurs Physik des MINT-Kollegs

Vorkurs Physik des MINT-Kollegs Vorkurs Physik des MINT-Kollegs Optik MINT-Kolleg Baden-Württemberg 1 KIT 03.09.2013 Universität desdr. Landes Gunther Baden-Württemberg Weyreter - Vorkurs und Physik nationales Forschungszentrum in der

Mehr

Lösungen zur Geometrischen Optik Martina Stadlmeier f =

Lösungen zur Geometrischen Optik Martina Stadlmeier f = Lösungen zur Geometrischen Optik Martina Stadlmeier 24.03.200. Dicke Linse a) nach Vorlesung gilt für die Brechung an einer gekrümmten Grenzfläche f = n2 n 2 n r Somit erhält man für die Brennweiten an

Mehr

Übungsblatt 4 Grundkurs IIIa für Physiker

Übungsblatt 4 Grundkurs IIIa für Physiker Übungsblatt 4 Grundkurs IIIa für Physiker Othmar Marti, othmar.marti@physik.uni-ulm.de 3. 6. 2002 1 Aufgaben für die Übungsstunden Reflexion 1, Brechung 2, Fermatsches Prinzip 3, Polarisation 4, Fresnelsche

Mehr

III. Elektrizität und Magnetismus Anhang zu 21. Wechselstrom: Hochspannungsleitung 22. Elektromagnetische Wellen

III. Elektrizität und Magnetismus Anhang zu 21. Wechselstrom: Hochspannungsleitung 22. Elektromagnetische Wellen 21. Vorlesung EP III. Elektrizität und Magnetismus Anhang zu 21. Wechselstrom: Hochspannungsleitung 22. Elektromagnetische Wellen IV Optik 22. Fortsetzung: Licht = sichtbare elektromagnetische Wellen 23.

Mehr

18.Elektromagnetische Wellen 19.Geometrische Optik. Spektrum elektromagnetischer Wellen Licht. EPI WS 2006/7 Dünnweber/Faessler

18.Elektromagnetische Wellen 19.Geometrische Optik. Spektrum elektromagnetischer Wellen Licht. EPI WS 2006/7 Dünnweber/Faessler Spektrum elektromagnetischer Wellen Licht Ausbreitung von Licht Verschiedene Beschreibungen je nach Größe des leuchtenden (oder beleuchteten) Objekts relativ zur Wellenlänge a) Geometrische Optik: Querdimension

Mehr

Lösung zum Parabolspiegel

Lösung zum Parabolspiegel Lösung zum Parabolspiegel y s 1 s 2 Offensichtlich muss s = s 1 + s 2 unabhängig vom Achsenabstand y bzw. über die Parabelgleichung auch unabhängig von x sein. f F x s = s 1 + s 2 = f x + y 2 + (f x) 2

Mehr

Aufgabe 2.1: Wiederholung: komplexer Brechungsindex

Aufgabe 2.1: Wiederholung: komplexer Brechungsindex Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Jens Repp / Eric Parzinger Kontakt: jens.repp@wsi.tum.de / eric.parzinger@wsi.tum.de Blatt 2, Besprechung: 23.04.2014 / 30.04.2014

Mehr

2 Mehrdimensionale mechanische Wellen

2 Mehrdimensionale mechanische Wellen TO Stuttgart OII 30 (Physik) Mehrdimensionale mechanische Wellen. Darstellung mehrdimensionaler Wellen Um die Beschreibung von mehrdimensionalen Wellen zu vereinfachen werden in Diagrammen nur die Wellenfronten

Mehr

Die dunklen Ringe liegen bei den Nullstellen dieser Besselfunktion: ϕ/2 = 1, 22π;2, 233π;3, 238π

Die dunklen Ringe liegen bei den Nullstellen dieser Besselfunktion: ϕ/2 = 1, 22π;2, 233π;3, 238π 8 Statt I sin ϕ/ I 0 ϕ/, erhält man I I 0 J 1(ϕ/) ϕ/ Die dunklen Ringe liegen bei den Nullstellen dieser Besselfunktion: ϕ/ = 1, π;, 33π;3, 38π Die Größe der Beugungsfigur läßt sich abschätzen, indem man

Mehr

Technische Raytracer

Technische Raytracer Technische Raytracer 2 s 2 (1 (n u) 2 ) 3 u 0 = n 1 n 2 u n 4 n 1 n 2 n u 1 n1 n 2 5 Abbildung 19.23 MM Double Gauss - U.S. Patent 2,532,751 Scale: 1.30 ORA 03-Jun-13 Abbildung Ein zweidimensionales Bild

Mehr

Kapitel 1 Optik: Bildkonstruktion. Spiegel P` B P G. Ebener Spiegel: Konstruktion des Bildes von G.

Kapitel 1 Optik: Bildkonstruktion. Spiegel P` B P G. Ebener Spiegel: Konstruktion des Bildes von G. Optik: Bildkonstruktion Spiegel P G P` B X-Achse Ebener Spiegel: g = b g b G = B Konstruktion des Bildes von G. 1. Zeichne Strahl senkrecht von der Pfeilspitze zum Spiegel (Strahl wird in sich selbst reflektiert)

Mehr

12. Vorlesung. I Mechanik

12. Vorlesung. I Mechanik 12. Vorlesung I Mechanik 7. Schwingungen 8. Wellen transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen 9. Schallwellen, Akustik Versuche: Wellenwanne: ebene

Mehr

7.7 Auflösungsvermögen optischer Geräte und des Auges

7.7 Auflösungsvermögen optischer Geräte und des Auges 7.7 Auflösungsvermögen optischer Geräte und des Auges Beim morgendlichen Zeitung lesen kann ein gesundes menschliche Auge die Buchstaben des Textes einer Zeitung in 50cm Entfernung klar und deutlich wahrnehmen

Mehr

4. Gleichungen im Frequenzbereich

4. Gleichungen im Frequenzbereich Stationäre Geräusche: In der technischen Akustik werden überwiegend stationäre Geräusche untersucht. Stationäre Geräusche sind zusammengesetzt aus harmonischen Schallfeldern p x,t = p x cos t x Im Folgenden

Mehr

(21. Vorlesung: III) Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen )

(21. Vorlesung: III) Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen ) . Vorlesung EP (. Vorlesung: III) Elektrizität und Magnetismus. Wechselstrom. Elektromagnetische Wellen ) IV) Optik = Lehre vom Licht. Licht = sichtbare elektromagnetische Wellen 3. Geometrische Optik

Mehr

Lloydscher Spiegelversuch

Lloydscher Spiegelversuch 1 Lloydscher Spiegelversuch 1.1 Fertige eine ausführliche gegliederte Versuchsbeschreibung an. 1.2. Erkläre das Zustandekommen von Interferenzen a) beim Doppelspalt, b) beim Fresnelschen Doppelspiegel,

Mehr

Auflösungsvermögen bei dunkelen Objekten

Auflösungsvermögen bei dunkelen Objekten Version: 27. Juli 2004 Auflösungsvermögen bei dunkelen Objekten Stichworte Geometrische Optik, Wellennatur des Lichts, Interferenz, Kohärenz, Huygenssches Prinzip, Beugung, Auflösungsvermögen, Abbé-Theorie

Mehr

UNIVERSITÄT BIELEFELD. Optik. GV Interferenz und Beugung. Durchgeführt am

UNIVERSITÄT BIELEFELD. Optik. GV Interferenz und Beugung. Durchgeführt am UNIVERSITÄT BIELEFELD Optik GV Interferenz und Beugung Durchgeführt am 10.05.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Daniel Fetting Marius Schirmer Inhaltsverzeichnis 1 Ziel

Mehr

Optische Fouriertransformation Juli 2004

Optische Fouriertransformation Juli 2004 Westfälische Wilhelms-Universität Münster Institut für Angewandte Physik Experimentelle Übungen für Fortgeschrittene Optische Fouriertransformation Juli 2004 Mit Hilfe der Fouriertransformation lassen

Mehr

Übungsblatt 04 Grundkurs IIIa für Physiker, Wirtschaftsphysiker und Physik Lehramt

Übungsblatt 04 Grundkurs IIIa für Physiker, Wirtschaftsphysiker und Physik Lehramt Übungsblatt 4 Grundkurs IIIa für Physiker, Wirtschaftsphysiker und Physik Lehramt Othmar Marti, (othmar.marti@physik.uni-ulm.de) 17., 23. und 24. 6. 23 1 Aufgaben Das Fermatsche Prinzip 1, Polarisation

Mehr

NG Brechzahl von Glas

NG Brechzahl von Glas NG Brechzahl von Glas Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik und Wellenoptik.......... 2 2.2 Linear polarisiertes

Mehr

Teilskript zur LV "Optik 1" Paraxiale Abbildungseigenschaften sphärischer Linsen Seite 1

Teilskript zur LV Optik 1 Paraxiale Abbildungseigenschaften sphärischer Linsen Seite 1 Teilskript zur LV "Optik " sphärischer Linsen Seite Objekt (optisch) Gesamtheit von Objektpunkten, von denen jeweils ein Bündel von Lichtstrahlen ausgeht Wahrnehmen eines Objektes Ermittlung der Ausgangspunkte

Mehr

Praktikum GI Gitterspektren

Praktikum GI Gitterspektren Praktikum GI Gitterspektren Florian Jessen, Hanno Rein betreut durch Christoph von Cube 9. Januar 2004 Vorwort Oft lassen sich optische Effekte mit der geometrischen Optik beschreiben. Dringt man allerdings

Mehr

Beugung und Interferenz

Beugung und Interferenz Beugung und Interferenz Irisierende Wolken An dünnen Wolkenschleiern sieht man bisweilen, in nicht zu großem Winkelabstand von der Sonne, perlmuttartige, zarte Farben in unregelmäßigen Flecken. Diese Erscheinung

Mehr

Einführung in die Gitterbeugung

Einführung in die Gitterbeugung Einführung in die Gitterbeugung Methoden der Physik SS2006 Prof. Szymanski Seibold Elisabeth Leitner Andreas Krieger Tobias EINLEITUNG 3 DAS HUYGENSSCHE PRINZIP 3 DIE BEUGUNG 3 BEUGUNG AM EINZELSPALT 3

Mehr

Beugung von Ultraschallwellen

Beugung von Ultraschallwellen M5 Beugung von Ultraschallwellen Die Beugungsbilder von Ultraschall nach Einzel- und Mehrfachspalten werden aufgenommen und ausgewertet. 1. Theoretische Grundlagen 1.1 Beugung (Diffraktion) Alle fortschreitenden

Mehr

Physik 2 (GPh2) am

Physik 2 (GPh2) am Name: Matrikelnummer: Studienfach: Physik 2 (GPh2) am 17.09.2013 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter

Mehr

Die Aufzeichnung dreidimensionaler Bilder. Caroline Girmen, Leon Pernak

Die Aufzeichnung dreidimensionaler Bilder. Caroline Girmen, Leon Pernak Die Aufzeichnung dreidimensionaler Bilder Caroline Girmen, Leon Pernak Ablauf Einführung Allgemeine Definition Geschichte Aufnahme Wiedergabe Besondere Hologrammtypen Dicke Hologramme Echtfarbige Hologramme

Mehr

Diraktive Optik mit einer CD und weitere einfache Versuche

Diraktive Optik mit einer CD und weitere einfache Versuche Diraktive Optik mit einer CD und weitere einfache Versuche Ilja Rückmann Universität Bremen Bad Honnef 2011 Ilja Rückmann (Universität Bremen) Diraktive Optik usw. Bad Honnef 2011 1 / 31 Gliederung 1 Diraktive

Mehr

Sessionsprüfung Elektromagnetische Felder und Wellen ( L)

Sessionsprüfung Elektromagnetische Felder und Wellen ( L) Sessionsprüfung Elektromagnetische Felder und Wellen (227-0052-10L) 22. August 2013, 14-17 Uhr, HIL F41 Prof. Dr. L. Novotny Bitte Beachten Sie: Diese Prüfung besteht aus 5 Aufgaben und hat 3 beidseitig

Mehr

13.1 Bestimmung der Lichtgeschwindigkeit

13.1 Bestimmung der Lichtgeschwindigkeit 13 Ausbreitung des Lichts Hofer 1 13.1 Bestimmung der Lichtgeschwindigkeit 13.1.1 Bestimmung durch astronomische Beobachtung Olaf Römer führte 1676 die erste Berechung zur Bestimmung der Lichtgeschwindigkeit

Mehr

Optik des Mikroskops

Optik des Mikroskops Master MIW University of Lübeck Biomedizinische Optik II Optik des Mikroskops Einfluss der Beleuchtung auf Auflösung, Kontrast und Bildstrukturen Alfred Vogel / April 2012 Strahlengang im modernen Mikroskop

Mehr

Institut für Angewandte Optik und Elektronik Fakultät für Informations-, Medien- und Elektrotechnik Fachhochschule Köln

Institut für Angewandte Optik und Elektronik Fakultät für Informations-, Medien- und Elektrotechnik Fachhochschule Köln Institut für Angewandte Optik und Elektronik Fakultät für Informations-, Medien- und Elektrotechnik Fachhochschule Köln Praktikumsanleitung: Holografie Versuch 1: Die ebene Welle 1 Versuchsziel Ziel des

Mehr

Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt

Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt Interferenz in dünnen Schichten Interferieren die an dünnen Schichten reflektierten Wellen miteinander, so können diese sich je nach Dicke der Schicht und Winkel des Einfalls auslöschen oder verstärken

Mehr

O8 Fraunhofersche Beugung

O8 Fraunhofersche Beugung Physikalische Grundlagen Grundbegriffe Huygens-Fresnelsches Prinzip Interferenz Beugungsordnungen Auflösungsvermögen Laser Zum Verständnis des Entstehens optischer Abbildungen ist die geometrische Optik

Mehr

Versuch O04: Fraunhofer-Beugung an einem und mehreren Spalten

Versuch O04: Fraunhofer-Beugung an einem und mehreren Spalten Versuch O04: Fraunhofer-Beugung an einem und mehreren Spalten 5. März 2014 I Lernziele Huygen sches Prinzip und optische Interferenz Photoelektronik als Messmethode II Physikalische Grundlagen Grundlage

Mehr

Dr. Thomas Kirn Vorlesung 12

Dr. Thomas Kirn Vorlesung 12 Physik für Maschinenbau Dr. Thomas Kirn Vorlesung 12 1 Wiederholung V11 2 Lichterzeugung: Wärmestrahlung Schwarzer Körper: Hohlraumstrahlung Wien sches Verschiebungsgesetz: λ max T = b = 2,9 10-3 m K Stefan

Mehr

Versuch P1-31,40,41 Geometrische Optik. Vorbereitung. Von Jan Oertlin. 2. Dezember 2009

Versuch P1-31,40,41 Geometrische Optik. Vorbereitung. Von Jan Oertlin. 2. Dezember 2009 Versuch P1-31,40,41 Geometrische Optik Vorbereitung Von Jan Oertlin 2. Dezember 2009 Inhaltsverzeichnis 1. Brennweitenbestimmung...2 1.1. Kontrolle der Brennweite...2 1.2. Genaue Bestimmung der Brennweite

Mehr

M. Fran90n HOLOGRAPHIE. Übersetzt und bearbeitet von I. Wilmanns. Mit 139 Abbildungen. Springer-Verlag Berlin Heidelberg NewYork 1972

M. Fran90n HOLOGRAPHIE. Übersetzt und bearbeitet von I. Wilmanns. Mit 139 Abbildungen. Springer-Verlag Berlin Heidelberg NewYork 1972 M. Fran90n HOLOGRAPHIE Übersetzt und bearbeitet von I. Wilmanns Mit 139 Abbildungen Springer-Verlag Berlin Heidelberg NewYork 1972 ---------_... Professor Dr. Maurice Franeon Institut d'optique, Universire

Mehr

Versuch O02: Fernrohr, Mikroskop und Teleobjektiv

Versuch O02: Fernrohr, Mikroskop und Teleobjektiv Versuch O02: Fernrohr, Mikroskop und Teleobjektiv 5. März 2014 I Lernziele Strahlengang beim Refraktor ( Linsenfernrohr ) Strahlengang beim Mikroskop Strahlengang beim Teleobjektiv sowie Einblick in dessen

Mehr

m s km v 713 h Tsunamiwelle Ausbreitungsgeschwindigkeit: g=9,81m/s 2,Gravitationskonstante h=tiefe des Meeresbodens in Meter

m s km v 713 h Tsunamiwelle Ausbreitungsgeschwindigkeit: g=9,81m/s 2,Gravitationskonstante h=tiefe des Meeresbodens in Meter Wellen Tsunami Tsunamiwelle Ausbreitungsgeschwindigkeit: v g h g=9,81m/s 2,Gravitationskonstante h=tiefe des Meeresbodens in Meter Berechnungsbeispiel: h=4000 m v 9,81 4000 198 km v 713 h m s Räumliche

Mehr

NTB Druckdatum: MAS. E-/B-Feld sind transversal, stehen senkrecht aufeinander und liegen in Phase. Reflexion Einfallswinkel = Ausfallswinkel

NTB Druckdatum: MAS. E-/B-Feld sind transversal, stehen senkrecht aufeinander und liegen in Phase. Reflexion Einfallswinkel = Ausfallswinkel OPTIK Elektromagnetische Wellen Grundprinzip: Beschleunigte elektrische Ladungen strahlen. Licht ist eine elektromagnetische Welle. Hertzscher Dipol Ausbreitung der Welle = der Schwingung Welle = senkrecht

Mehr

Wellenoptik I Interferenz und Beugung

Wellenoptik I Interferenz und Beugung Physik A VL40 (9.01.013) Interferenz und Beugung g Strahlenoptik vs. Wellenoptik Interferenz Kohärenz Zweistrahlinterferenz Interferometer als Messinstrumente Beugung Nahfeld und Fernfeld Fraunhofer-Beugung

Mehr

wir-sind-klasse.jimdo.com

wir-sind-klasse.jimdo.com 1. Einführung und Begriffe Eine vom Erreger (periodische Anregung) wegwandernde Störung heißt fortschreitende Welle. Die Ausbreitung mechanischer Wellen erfordert einen Träger, in dem sich schwingungsfähige

Mehr

21.Vorlesung. IV Optik. 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente

21.Vorlesung. IV Optik. 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente 2.Vorlesung IV Optik 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente Versuche Lochkamera Brechung, Reflexion, Totalreflexion Lichtleiter Dispersion (Prisma)

Mehr

Stiftsschule Engelberg Physik / Modul Optik 2./3. OG Schuljahr 2016/2017

Stiftsschule Engelberg Physik / Modul Optik 2./3. OG Schuljahr 2016/2017 4 Linsen 4.1 Linsenformen Optische Linsen sind durchsichtige Körper, welche (im einfachsten Fall) auf beiden Seiten von Kugelflächen oder auf der einen Seite von einer Kugelfläche, auf der anderen Seite

Mehr

Vorbereitung: Bestimmung von e/m des Elektrons

Vorbereitung: Bestimmung von e/m des Elektrons Vorbereitung: Bestimmung von e/m des Elektrons Carsten Röttele 21. November 2011 Inhaltsverzeichnis 1 Allgemeine Linsen 2 2 Bestimmung der Brennweite 3 2.1 Kontrolle einer Brennweite...........................

Mehr

c t t 1 Abbildung 5.1: Huygenssches Prinzip.

c t t 1 Abbildung 5.1: Huygenssches Prinzip. In diesem Kapitel wollen wir Phänomene untersuchen, die sich aus der räumlichen Begrenzung einer Welle durch eine (oder mehrere) Blenden ergeben. Hierbei ist im Allgemeinen eine direkte Untersuchung ausgehend

Mehr

Physik 4, Übung 4, Prof. Förster

Physik 4, Übung 4, Prof. Förster Physik 4, Übung 4, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Fragen und Aufgaben zur Vertiefung des Vorlesungsstoffes. Holographie - Grundlagen und Anwendungen (2012/2013)

Fragen und Aufgaben zur Vertiefung des Vorlesungsstoffes. Holographie - Grundlagen und Anwendungen (2012/2013) Holographie Grundlagen und Anwendungen Prof. Dr. R. Kowarschik Fragen und Aufgaben zur Vertiefung des Vorlesungsstoffes Holographie - Grundlagen und Anwendungen (2012/2013) 1. Was versteht man unter Schärfen-

Mehr

Schülerexperiment Beugungsbild und Ortsbild

Schülerexperiment Beugungsbild und Ortsbild Schülerexperiment Beugungsbild und Ortsbild Aus dem Schulunterricht ist bekannt, dass das Licht gebeugt wird, wenn der Strahlengang (einer ebenen Welle) senkrecht zur Ausbreitungsrichtung begrenzt wird.

Mehr

Praktikum Angewandte Optik Versuch: Aufbau eines Fernrohres

Praktikum Angewandte Optik Versuch: Aufbau eines Fernrohres Praktikum Angewandte Optik Versuch: Aufbau eines Fernrohres Historisches und Grundlagen: Generell wird zwischen zwei unterschiedlichen Typen von Fernrohren unterschieden. Auf der einen Seite gibt es das

Mehr

Spiegelsymmetrie. Tiefeninversion führt zur Spiegelsymmetrie Koordinatensystem wird invertiert

Spiegelsymmetrie. Tiefeninversion führt zur Spiegelsymmetrie Koordinatensystem wird invertiert Ebener Spiegel Spiegelsymmetrie Tiefeninversion führt zur Spiegelsymmetrie Koordinatensystem wird invertiert Konstruktion des Bildes beim ebenen Spiegel Reelles Bild: Alle Strahlen schneiden sich Virtuelles

Mehr

16 Elektromagnetische Wellen

16 Elektromagnetische Wellen 16 Elektromagnetische Wellen In den folgenden Kapiteln werden wir uns verschiedenen zeitabhängigen Phänomenen zuwenden. Zunächst werden wir uns mit elektromagnetischen Wellen beschäftigen und sehen, dass

Mehr

9.10 Beugung Beugung

9.10 Beugung Beugung 9.0 Beugung Abb. 9. Aufbau des Original Michelson-Morley Experiments von 887 mit einer massiven Granitplatte in einem Quecksilberbad (Wikipedia). 9.0 Beugung Bisher sind wir von der Idealisierung ebener

Mehr

Praktikum MI Mikroskop

Praktikum MI Mikroskop Praktikum MI Mikroskop Florian Jessen (Theorie) Hanno Rein (Auswertung) betreut durch Christoph von Cube 16. Januar 2004 1 Vorwort Da der Mensch mit seinen Augen nur Objekte bestimmter Größe wahrnehmen

Mehr

Profilkurs Physik ÜA 08 Test D F Ks b) Welche Beugungsobjekte führen zu folgenden Bildern? Mit Begründung!

Profilkurs Physik ÜA 08 Test D F Ks b) Welche Beugungsobjekte führen zu folgenden Bildern? Mit Begründung! Profilkurs Physik ÜA 08 Test D F Ks. 2011 1 Test D Gitter a) Vor eine Natriumdampflampe (Wellenlänge 590 nm) wird ein optisches Gitter gehalten. Erkläre kurz, warum man auf einem 3,5 m vom Gitter entfernten

Mehr

Experimentalphysik II

Experimentalphysik II Experimentalphysik II Wellenlehre und Optik: Wellen und Wellengleichung, Welle-Teilchen-Dualismus, Licht als Welle (Huygenssches Prinzip, Reflexion, Brechung und Beugung), Optik 3.1. Wellen und Wellengleichung

Mehr

Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus

Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus 7. Wellen Ausbreitung von Schwingungen -> Wellen Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus Welle entsteht durch lokale Anregung oder Störung eine Mediums, die sich

Mehr

Versuch of : Optisches Filtern

Versuch of : Optisches Filtern UNIVERSITÄT REGENSBURG Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum B Versuch of : Optisches Filtern 5. Auflage 2009 Dr. Stephan Giglberger Prof. Dr. Joe Zweck Inhaltsverzeichnis

Mehr

FK Ex 4 - Musterlösung Dienstag

FK Ex 4 - Musterlösung Dienstag FK Ex 4 - Musterlösung Dienstag Snellius Tarzan wird in einem ruhigen See am Punkt J von einem Krokodil angegriffen. Jane, die sich an Land mit gezücktem Buschmesser am Punkt T befindet, möchte ihm zu

Mehr

PROTOKOLL ZUM VERSUCH ABBÉSCHE THEORIE. Inhaltsverzeichnis

PROTOKOLL ZUM VERSUCH ABBÉSCHE THEORIE. Inhaltsverzeichnis PROTOKOLL ZUM VERSUCH ABBÉSCHE THEORIE CHRIS BÜNGER Betreuer: Dr. Enenkel Inhaltsverzeichnis 1. Versuchsbeschreibung 1 1.1. Ziel 1 1.2. Aufgaben 2 1.3. Amplituden- und Phasenobjekte 2 1.3.1. Amplitudenobjekte

Mehr

Interferenz und Beugung - Optische Instrumente

Interferenz und Beugung - Optische Instrumente Interferenz und Beugung - Optische Instrumente Martina Stadlmeier 25.03.2010 1 Inhaltsverzeichnis 1 Kohärenz 3 2 Interferenz 3 2.1 Interferenz an einer planparallelen Platte...............................

Mehr

Optronik. 2. Vorlesung: Optische Abbildung Linsenberechnung Matrixmethode Optische Systeme Abbildungsfehler

Optronik. 2. Vorlesung: Optische Abbildung Linsenberechnung Matrixmethode Optische Systeme Abbildungsfehler Optronik 2. Vorlesung: Optische Abbildung Linsenberechnung Matrixmethode Optische Systeme Abbildungsfehler 02.1 Gliederung 1. Optische Abbildung Mehrstufige Abbildung Lupen, Fernrohre 2. Optische Systeme

Mehr