Tiefpunkt = relatives Minimum hinreichende Bedingung:

Größe: px
Ab Seite anzeigen:

Download "Tiefpunkt = relatives Minimum hinreichende Bedingung:"

Transkript

1 R. Brinkmann Seite Kurvendiskussion Vorbetrachtungen Um den Graphen einer Funktion zeichnen und interpretieren zu können, ist es erforderlich einiges über markante Punkte des Graphen und über seinen Verlauf im Definitionsbereich zu wissen. Derartige Untersuchungen von Funktionen auf ihre wichtigsten charakteristischen Eigenschaften nennt man Kurvendiskussion. Bei solchen Untersuchungen sollte man stets systematisch vorgehen und auch immer die gleiche Reihenfolge der Berechnungen und Betrachtungen einhalten, damit man keine wichtigen Eigenheiten der Funktion übersieht. Folgende Verfahrensweise hat sich sehr bewährt: 1. Definitionsbereich: Man bestimmt den Definitionsbereich der Funktion, denn nur innerhalb dieses Bereiches ist es sinnvoll, Untersuchungen über die Eigenschaften der Funktion anzustellen.. Symmetrien: Man stellt fest, ob die Funktion achsen oder punktsymmetrisch ist. bei Achsensymmetrie gilt: f ( x) = f ( x) In beiden Fällen braucht die Funktion bei Punktsymmetrie gilt: f ( x) = f ( x ) nur noch für x 0 untersucht zu werden. Speziell bei ganzrationalen Funktionen gilt: Eine ganzrationale Funktion ist genau dann achsensymmetrisch, wenn ihr Term nur Summanden mit geraden Exponenten enthält. Eine ganzrationale Funktion ist genau dann punktsymmetrisch, wenn ihr Term nur Summanden mit ungeraden Exponenten enthält.. Extrema: Bestimmen der relativen Extrema, man nennt sie auch Hoch- bzw. Tiefpunkte. Das sind auch die Punkte mit waagerechter Tangente. Hochpunkt = relatives Maximum Tiefpunkt = relatives Minimum hinreichende Bedingung: hinreichende Bedingung: f '( x1) = 0 f ''( x1) < 0 f '( x1) = 0 f ''( x1) > 0. Wendepunkte: Bestimmen der Wendepunkte, bzw. der Sattelpunkte. hinreichende Bedingung für Wendepunkte f ''( xw) = 0 f '''( xw) 0 Der Sattelpunkt ist ein Wendepunkt mit waagerechter Tangente. 5. Achsenschnittpunkte: Wird der x- Wert Null ( x = 0 ) in die Funktionsgleichung von f(x) eingesetzt, erhält man den Schnittpunkt mit der y- Achse. Schnittpunkt(e) mit der x- Achse erhält man durch nullsetzen des Funktionsterms von f(x). Schnittpunkt mit der y Achse Py( 0 ys) f ( 0 ) bestimmen Schnittpunkte mit der x Achse (Nullstellen) Pxi ( x i 0) f ( x) = 0 6. Der Graph: Mit allen bisher gesammelten Informationen lässt sich in den meisten Fällen nun der Graph zeichnen. Dazu wird zunächst eine Wertetabelle angelegt. Dabei zeigt es sich, welche Werte noch zu berechnen sind. Diese kann man entweder mit dem Taschenrechner bestimmen, oder für ganzzahlige Erstellt von R. Brinkmann p5_differentialrechnung_ : 1 von 11

2 R. Brinkmann Seite x- Werte mit dem HORNER-Schema. 7. Krümmungsverhalten und Monotonie: In der Wendestelle x W ändert sich die Krümmung des Graphen von f x Für die Krümmung in einem beliebigen Punkt x gilt: ( 0 ) > ( x ) < 0 bedeutet der Gra f '' x 0 bedeutet der Graph von f x ist linksgekrümmt (konvex) f'' ph von f x ist rechtsgekrümmt (konkav) 0 0 Monotonie: 1. Wenn f ' x 0 für alle x I ist, dann ist f x monoton wachsend im Intervall I Wenn f ' x 0 für alle x I ist, dann ist f x monoton fallend im Intervall I. Wenn f ' x > 0 für alle x I ist, dann ist f x streng monoton wachsend im Intervall I Wenn f '( x) < 0 für alle x I ist, dann ist f ( x ) streng monoton fallend im Interval l I Kurz: An den Wendestellen ändert sich das Krümmungsverhalten eines Graphen. Das Monotonieverhalten ändert sich an den Extremstellen. 8. Randpunkte des Definitionsbereiches: Untersuchung der Funktion in den Randpunkten des Definitionsbereichs. Wenn der Definitionsbereich nicht beschränkt ist, dann sind die beiden Grenzwerte lim f x und lim f x x x zu bestimmen. Anders ausgedrückt: Man betrachtet den Verlauf der Funktionswerte für große x- Werte in sowohl positiver als auch negativer Richtung und fragt sich, wohin gehen die Funktionswerte. Beispiel einer ausführlichen Kurvendiskussion 1. Definitionsmenge: 1 9 Funktionsgleichung: f ( x) = x x Definitionsmenge: Df = Die Funktion ist für alle reellen Zahlen definiert. Normalerweise gilt das immer für ganzrationale Funktionen. Es sei denn, man möchte die Definitionsmenge einschränken.. Symmetrien: Da alle Exponenten gerade sind, liegt eine Achsensymmetrie vor, Es gilt also: f ( x) = f ( x ) für alle x Der Vorteil bei vorliegen einer Achsensymmetrie besteht darin, dass Funktionswerte nur für positive x- Werte berechnet werden müssen. Für die entsprechend negativen x- Werte sind sie identisch. Erstellt von R. Brinkmann p5_differentialrechnung_ : von 11

3 R. Brinkmann Seite Extrema: Vorgehensweise zur Berechnung der Extrempunkte. Man bildet die ersten beiden Ableitungen der Funktion f(x). Nullsetzen der 1. Ableitung liefert die Stellen mit waagerechter Tangente. Setzt man diese Werte in die. Ableitung ein, so erhält man eine Aussage über die Art des vorliegenden Extremums. (Relatives Maximum oder relatives Minimum, bzw. kein Extrempunkt). Die Werte der Extremstellen x i eingesetzt in die Funktionsgleichung ergeben die Extremwerte und damit sind die Koordinaten der Extrempunkte bekannt. 1 9 Funktionsgleichung: f ( x) = x x Die Ableitungen: f '( x) = x x f ''( x) = x f '''( x) = 6x Hinreichende Bedingung für Extremstellen: f' x = 0 f'' x 0 f ' x = 0 x x = 0 x ausklammern x x = 0 Satz vom Nullprodukt x = 0 bzw. x = 0 x = 0 + x = x = x = bzw. x = Stellen mit waagerechter Tangente: x = 0 ; x = ; x = 1 Nachweis für relatives Maximum bzw. relatives Minimum: f '' x = f '' 0 = 0 = < 0 rel. Max. für x = x = 0 Hochpunkt ( 1) 1 E1 = = = > = E = = ( ) = ( ) = > = = f '' x f '' 8 0 rel. Min. für x x Tiefpunkt f '' x f '' 8 0 rel. Min. für x x Tiefpunkt E Die Extrempunkte: Hochpunkt für xe1 = 0 : 9 f( 0) = =,5 9 PMax 0 bzw. PMax ( 0,5) Tiefpunkt für xe = : f = = = 6,5 5 PMin1 bzw. PMin1 ( 6,5) Tiefpunkt für xe = : 5 f ( ) = f = =6,5 wegen Achsensymmetrie 5 PMin bzw. PMin 6,5 1 Erstellt von R. Brinkmann p5_differentialrechnung_ : von 11

4 R. Brinkmann Seite Wendepunkte: Vorgehensweise zur Berechnung der Wendepunkte: Zusätzlich zu den ersten beiden Ableitungen von f(x) bildet man noch die dritte. Die Nullstellen der zweiten Ableitung sind mögliche Wendestellen. Zur Überprüfung ob ein Wendepunkt vorliegt, werden die errechneten Nullstellen der zweiten Ableitung in die dritte Ableitung eingesetzt. Ist das Ergebnis ungleich Null, so bezeichnet der entsprechende x- Wert eine Wendestelle. Den dazugehörigen Funktionswert erhält man durch Einsetzen der x- Werte in den Term der Funktionsgleichung f(x). 1 9 Funktionsgleichung: f ( x) = x x Die Ableitungen: f '( x) = x x f ''( x) = x f '''( x) = 6x Hinreichende Bedingung für Wendestellen: f'' x = 0 f''' x 0 f'' x = 0 x = 0 + x = : x = x = x 1 = bzw. x = Mögliche Wendestellen: x W1 = ; xw = Nachweis auf Wendestellen: f '''( xw1) = f ''' = 6 0 ; f '''( xw) = f ''' = 6 0 Wendepunkt für x W1 W f( xw1) = f = = P W1 bzw. PW1 1,15,7 6 Wendepunkt für x = = 161 f ( xw) = f = f = wegen Achsensymmetrie P W bzw. P 6 W 1,15,7 ( ) Erstellt von R. Brinkmann p5_differentialrechnung_ : von 11

5 R. Brinkmann Seite Achsenschnittpunkte: a) Schnittpunkt mit der y Achse : f 0 9 = =,5 Py 0,5 b) Schnittpunkt mit der x Achse Nullstellen : 1 9 f( x) = 0 x x = 0 x 8x 9 = 0 Substitution x = z z 8z 9 = 0 quadratische Gleichung in z x1 p 8 p = 8;q= 9;D = q 9 5 = + = p 8 z1/ = ± D = 5 5 z1 9 ; z 1 0 keine Lösung ± = ± = = < 1 1 Rücksubstitution: z = x = 9 x = 9 x = ; x = ( ) Nullstellen bei: P 0 ; P 0 x 6. Wertetabelle mit Zusatzwerten: 1 9 f() 1 = 1 1 = ;f( 1) = f( 1) = 1 9 f (,5) = (,5) (,5),5 ; f (,5) = f (,5),5 P P P P = P P P P x Min W Max y W1 Min1 x1 x,5 1, ,15,5 f x,5 0 6,5,7,5,7 6,5 0,5 Erstellt von R. Brinkmann p5_differentialrechnung_ : 5 von 11

6 R. Brinkmann Seite Der Graph f( x) x Zusammenfassung : Achsensymmetrie Extrempunkte : Min1 Max ( ) Min ( ) ( ) P 6,5 ;P 6,5 P 0,5 Wendepunkte : P W1 ;P W 6 6 Achsenschnittpunkte : ( ) ( 0) ;P ( 0) P 0,5 ;P y x1 x Krümmung, Monotonie : konvex: ; und ; konkav: ; streng monoton fallend: ] ; [ und ] 0 ; [ streng monoton wachsend: ] ; 0 [ und] ; [ Randpunkte : lim x ± f x = Erstellt von R. Brinkmann p5_differentialrechnung_ : 6 von 11

7 R. Brinkmann Seite Krümmungsverhalten und Monotonie: Krümmung für x = links von P : 0 W f ''( ) = ( ) = 8 > 0 linkskrümmung (konvex) für ; Krümmung für x = 0 zwischen P und P : 0 W1 W f ''( 0) = < 0 rechtskrümmung (konkav) für ; Krümmung für x = ( rechts von P ): 0 f '' = = 8 > 0 linkskrümmung (konvex) für ; W ] [ ] [ ] [ ] [ streng monoton fallend für ; streng monoton wachsend für ; 0 streng monoton fallend für 0 ; streng monoton wachsend für ; 8. Randpunkte des Definitionsbereiches: lim f ( x) = lim x x lim x x x x = x x = lim x lim lim x lim f ( x) x x = = = x x x x ± 1 lim f x x 1 = lim x = x Erstellt von R. Brinkmann p5_differentialrechnung_ : 7 von 11

8 R. Brinkmann Seite Berechnungen mit dem GTR Casio fx-cg0 GTR f x = 1 x x 9 Berechnen Sie die Extrempunkte von Funktionsgleichung mit dem Grafikeditor eingeben und anzeigen: MENU 5 Graph { DRAW} bc bc 1a X, Θ,T ^ X, Θ,T x 9 a EXE Um den Graphen optimal anzuzeigen, wird das Betrachtungsfenster auf x: [ - ; ] und y: [ -7 ; 5 ] eingestellt. S V Window EXE EXE 7 EXE 5 EXE EXE { DRAW} S S rel. Max: G Solv MAX EXE { } ( 0,5) { } ( 6,5 );( 6,5) rel. Min: G Solv Min EXE EXE P max ( 0 -,5 ) ; P min1 ( - -6,5 ) ; P min ( -6,5 ) Mit [EXIT] gelangt man zurück in den Grafikeditor. Erstellt von R. Brinkmann p5_differentialrechnung_ : 8 von 11

9 R. Brinkmann Seite GTR Berechnen Sie die Wendepunkte von f( x) = 1 x x 9 Im Grafikeditor trägt man unterhalb von Y1 f' und f'' wie folgt ein: OPTN CALC d/ dx Y 1 X, Θ,T EXE { } { } { } { }{ }{ } { DRAW} OPTN CALC d / dx Y 1 X, Θ,T EXE Die Wendestelle liegt dort, wo die zweite Ableitung Null ist. S G Solv ROOT f '' selektieren { } EXE EXE EXE EXE 1, ; 1, Die Wendestellen liegen bei x w1 = -1,157.. und x w = 1,157.. Der zugehörige Wendepunkt hat die Koordinaten: S G Solv F6 Y CAL f x auswählen EXE S { } ( ) EXE EXE ( 1,157,7.. ) { } E (.) G Solv F6 Y CAL f x auswählen EXE EXE EX 1,157,7. P w1 ( -1, ,7..) ; P w ( 1, ,7..) Diese Werte sind ungenau, mit SolveN erfolgt die Berechnung präziser. Erstellt von R. Brinkmann p5_differentialrechnung_ : 9 von 11

10 R. Brinkmann Seite GTR Wendepunktkoordinaten in Bruchdarstellung mit SolveN Die Nullstellen von f''(x) = x - liefern die Wendestellen. Die Nullstellen von f''(x) also x w1 und x w werden mit SolveN berechnet und in Liste abgespeichert. SolveN( x ) List ; [] List 1 X x x 6 List [ ] X x x P w1 ;P w 6 6 Eingabeprozedur: MENU 1 { }{ } OPTN CALC SolveN X, θ,t x ) OPTN { LIST}{ List} EXE ; S S A OPTN { LIST}{ List} [ 1 ] X EXE bc bc 161 1a X, θ,t ^ X, θ,t x 9 a 6 S S A OPTN { LIST}{ List} [ ] X EXE bc bc 161 1a X, θ,t ^ X,,T θ x 9a 6 Erstellt von R. Brinkmann p5_differentialrechnung_ : 10 von 11

11 R. Brinkmann Seite GTR Berechnen Sie die Achsenschnittpunkte von f( x) = 1 x x 9 Die Grafik der Funktion ist im Betrachtungsfenster aufgerufen. Mit S [Sketch] {Cls} kann der Graph neu gezeichnet werden. Schnittpunkt mit der y-achse: S G Solv Y ICEPT EXE 0,5 { } Nullstellen oder Schnittpunkte mit der x-achse: S G Solv ROOT EX E 0 EXE 0 { } P y ( 0 -,5 ) und P x1 ( - 0) ; P x ( 0) 6GTR 1 9 Wertetabelle erstellen für f( x) = x x Für das Intervall [ - ; ] soll eine Wertetabelle mit der Schrittweite 1 erstellt werden. MENU 7 Tabelle { SET} ( ) { TABLE} EXE EXE 1 EXE EXE Wertetabelle (gerundet auf Stellen): P P P P ;P x1 min1 w1 y w x 1, y 9,75 0 6,5,7,5 Pw Pmin Px x 1 1,15 y,7 6,5 0 9,75 Erstellt von R. Brinkmann p5_differentialrechnung_ : 11 von 11

R. Brinkmann Seite

R. Brinkmann   Seite R. Brinkmann http://brinkmann-du.de Seite 1 1.08.016 Kurvendiskussion Vorbetrachtungen Um den Graphen einer Funktion zeichnen und interpretieren zu können, ist es erforderlich einiges über markante Punkte

Mehr

Kurvendiskussion. Mag. Mone Denninger 10. Oktober Extremwerte (=Lokale Extrema) 2. 5 Monotonieverhalten 3. 6 Krümmungsverhalten 4

Kurvendiskussion. Mag. Mone Denninger 10. Oktober Extremwerte (=Lokale Extrema) 2. 5 Monotonieverhalten 3. 6 Krümmungsverhalten 4 Mag. Mone Denninger 10. Oktober 2004 Inhaltsverzeichnis 1 Definitionsmenge 2 1.1 Verhalten am Rand und an den Lücken des Definitionsbereichs............................ 2 2 Nullstellen 2 3 Extremwerte

Mehr

Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften:

Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften: 1 KURVENDISKUSSION Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften: 1.1 Definitionsbereich Zuerst bestimmt man den maximalen Definitionsbereich

Mehr

Zusammenfassung der Kurvendiskussion

Zusammenfassung der Kurvendiskussion Zusammenfassung der Kurvendiskussion Diskussionspunkte 1 Größtmögliche Definitionsmenge D f 2 Symmetrieeigenschaften des Graphen G f 3 Nullstellen, Polstellen, Schnittpunkte mit der y-achse, Vielfachheit

Mehr

Aufgabe Was wissen Sie über die Symmetrie ganzrationaler Funktionen?

Aufgabe Was wissen Sie über die Symmetrie ganzrationaler Funktionen? R. Brinkmann http://brinkmann-du.de Seite 0.0.0 Lösungen VBKA Ganzrationale Funktionen I Zur Vorbereitung einer Klassenarbeit en: A A A A A A A4 A4 n n Was bedeutet: f(x) = a x + a x +... + a x + a x +

Mehr

streng monoton steigend. streng monoton fallend. Ist f eine in einem Intervall stetige und im Innern des Intervalls differenzierbare Funktion mit

streng monoton steigend. streng monoton fallend. Ist f eine in einem Intervall stetige und im Innern des Intervalls differenzierbare Funktion mit 3. Anwendungen ================================================================= 3.1 Monotonie Eine Funktion f heißt in ihrem Definitionsbereich D monoton steigend, wenn für alle x 1, x 2 D mit x 1 < x

Mehr

Analysis. Ganzrationale Funktionen: Nullstellen, Extrempunkte, Monotonie, Verhalten im Unendlichen, Tangente. Gymnasium Klasse 10

Analysis. Ganzrationale Funktionen: Nullstellen, Extrempunkte, Monotonie, Verhalten im Unendlichen, Tangente. Gymnasium Klasse 10 Analysis Ganzrationale Funktionen: Nullstellen, Extrempunkte, Monotonie, Verhalten im Unendlichen, Tangente Gymnasium Klasse 1 Hilfsmittel: wissenschaftlicher Taschenrechner Alexander Schwarz März 18 1

Mehr

Kurvendiskussion von Polynomfunktionen

Kurvendiskussion von Polynomfunktionen Kurvendiskussion von Polynomfunktionen Theorie: Für die weiteren Berechnungen benötigen wie die 1. f (x) und 2. f (x) Ableitung der zu untersuchenden Funktion f (x). Wir werden viele Gleichungen lösen

Mehr

R. Brinkmann Seite Klassenarbeit Mathematik Bearbeitungszeit 90 min. Di SG10 D Gruppe A NAME: Lösungen

R. Brinkmann  Seite Klassenarbeit Mathematik Bearbeitungszeit 90 min. Di SG10 D Gruppe A NAME: Lösungen R. Brinkmann http://brinkmann-du.de Seite 8..0 Klassenarbeit Mathematik Bearbeitungszeit 90 min. Di.06. SG0 D Gruppe A NAME: Lösungen Hilfsmittel: Taschenrechner Alle Ergebnisse sind soweit möglich durch

Mehr

Schwerpunktaufgaben zur Vorbereitung auf die Leistungsfeststellung

Schwerpunktaufgaben zur Vorbereitung auf die Leistungsfeststellung Schwerpunktaufgaben zur Vorbereitung auf die Leistungsfeststellung 1. Lösen Sie folgendes Gleichungssystem mit Hilfe des Gauß-Verfahrens. Überprüfen Sie Ihr Ergebnis mit dem Taschenrechner. ganzzahlig

Mehr

Polynome. Ein Term der Form. mit n und a 0 heißt Polynom. Die Zahlen a, a, a,... heißen Koeffizienten des Polynoms.

Polynome. Ein Term der Form. mit n und a 0 heißt Polynom. Die Zahlen a, a, a,... heißen Koeffizienten des Polynoms. Polynome Ein Term der Form a x + a x + a x + a x +... + a x + a x + a n n 1 n 2 n 3 2 1 2 3 4 n 2 n 1 n mit n und a 0 heißt Polynom. 1 Die Zahlen a, a, a,... heißen Koeffizienten des Polynoms. 1 2 3 Als

Mehr

Kurvendiskussion von Funktionsscharen

Kurvendiskussion von Funktionsscharen Kurvendiskussion von Funktionsscharen Die Untersuchung von Funktionsscharen unterscheidet sich nicht von der Untersuchung von normalen Funktionen. Einzig die Bestimmung der Ortskurven von Extremstellen

Mehr

Kurvendiskussion. Gesetzmäßigkeiten. Lineare Funktionen. Funktionsgleichung

Kurvendiskussion. Gesetzmäßigkeiten. Lineare Funktionen. Funktionsgleichung Kurvendiskussion Gesetzmäßigkeiten Lineare Funktionen Funktionsgleichung y = mx + c m: Steigung c: y-achsenabschnitt (Funktionswert für y, bei dem der Graph die y-achse schneidet Beispiel : y = x 3 mit

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

Basistext Kurvendiskussion

Basistext Kurvendiskussion Basistext Kurvendiskussion In einer Kurvendiskussion sollen zu einer vorgegebenen Funktion (bzw. Funktionsschar) Aussagen über ihrem Verlauf gemacht werden. Im Nachfolgenden werden die einzelnen Untersuchungspunkte

Mehr

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x.

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x. Skripten für die Oberstufe Kurvendiskussion x 3 f (x) x f (x)dx = e x H. Drothler 0 www.drothler.net Kurvendiskussion Zusammenfassung Seite Um Funktionsgraphen möglichst genau zeichnen zu können, werden

Mehr

3.2 Funktionsuntersuchungen mittels Differentialrechnung

3.2 Funktionsuntersuchungen mittels Differentialrechnung 3. Funktionsuntersuchungen mittels Differentialrechnung 46 3. Funktionsuntersuchungen mittels Differentialrechnung In diesem Abschnitt betrachten wir Funktionen f: D, welche je nach Bedarf zumindest ein-

Mehr

B Anwendungen der Differenzialrechnung

B Anwendungen der Differenzialrechnung B Anwendungen der Differenzialrechnung Kurvendiskussionen Um den Verlauf eines Funktionsgraphen zu bestimmen, kann eine Wertetabelle aufgestellt werden. Dies kann jedoch sehr mühselig sein und es ist nicht

Mehr

Differentialrechnung. Mathematik W14. Christina Sickinger. Berufsreifeprüfung. v 1 Christina Sickinger Mathematik W14 1 / 79

Differentialrechnung. Mathematik W14. Christina Sickinger. Berufsreifeprüfung. v 1 Christina Sickinger Mathematik W14 1 / 79 Mathematik W14 Christina Sickinger Berufsreifeprüfung v 1 Christina Sickinger Mathematik W14 1 / 79 Die Steigung einer Funktion Wir haben bereits die Steigung einer linearen Funktion kennen gelernt! Eine

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 7 Anwendungen der Differentialrechnung 7.1 Maxima und Minima einer Funktion................. 141 7.2 Mittelwertsatz............................ 144 7.3 Kurvendiskussion..........................

Mehr

GF MA Differentialrechnung A2

GF MA Differentialrechnung A2 Kurvendiskussion Nullstellen: Für die Nullstellen x i ( i! ) einer Funktion f gilt: Steigen bzw. Fallen: f ( x i ) = 0 f '( x) > 0 im Intervall I f ist streng monoton wachsend in I f '( x) < 0 im Intervall

Mehr

Differenzialrechnung

Differenzialrechnung Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =

Mehr

( ) 6 eine. 1. Führen Sie für die Funktion f mit vollständige Kurvendiskussion durch. eine. 5. Führen Sie für die Funktion f mit f ( x) = 2x

( ) 6 eine. 1. Führen Sie für die Funktion f mit vollständige Kurvendiskussion durch. eine. 5. Führen Sie für die Funktion f mit f ( x) = 2x . Führen Sie für die Funktion f mit vollständige Kurvendiskussion durch. Berücksichtigen Sie dabei die folgenden Punkte: f( ) 0 7 eine -Definitionsmenge; -Symmetrie; -Grenzwertverhalten; -Schnittpunkt

Mehr

Grundfunktion Wendepunkt Extrempunkt Nullstelle 1. Ableitung Extrempunkt Nullstelle - 2. Ableitung Nullstelle - -

Grundfunktion Wendepunkt Extrempunkt Nullstelle 1. Ableitung Extrempunkt Nullstelle - 2. Ableitung Nullstelle - - KURVENDISKUSSION Vorüberlegungen Die Kurvendiskussion ist ein wichtiges Teilgebiet der Mathematik, das speziell für die Matura von großer Bedeutung ist. Dabei untersucht man einen Graphen auf dessen geometrische

Mehr

Klassenarbeit Mathematik Bearbeitungszeit 90 min. Mo SG10D Gruppe A NAME: Lösungen

Klassenarbeit Mathematik Bearbeitungszeit 90 min. Mo SG10D Gruppe A NAME: Lösungen R. Brinkmann Seite 06..0 Klassenarbeit Mathematik Bearbeitungszeit 90 min. Mo..0 SG0D Gruppe A NAME: Lösungen Hilfsmittel: Taschenrechner Rechnen Sie wo möglich mit Brüchen. Bei auftretenden Wurzeln genügt

Mehr

Analysis f(x) = x 2 1. (x D f )

Analysis f(x) = x 2 1. (x D f ) Analysis 15 www.schulmathe.npage.de Aufgaben 1. Gegeben ist die Funktion f mit f(x) = x3 x 1 (x D f ) a) Geben Sie den maximalen Definitionsbereich der Funktion f an. Zeigen Sie, dass der Graph der Funktion

Mehr

Aufgaben zur e-funktion

Aufgaben zur e-funktion Aufgaben zur e-funktion 1.0 Gegeben ist die reelle Funktion f(x) = 2x 2x e 1 x2 mit x R (Abitur 2000 AII). 1.1 Untersuchen Sie das Symmetrieverhalten des Graphen der Funktion f und bestimmen Sie die Nullstellen

Mehr

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der

Mehr

Eigenschaften von Funktionen

Eigenschaften von Funktionen Eigenschaften von Funktionen Mag. Christina Sickinger HTL v 1 Mag. Christina Sickinger Eigenschaften von Funktionen 1 / 48 Gegeben sei die Funktion f (x) = 1 4 x 2 1. Berechnen Sie die Steigung der Funktion

Mehr

4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion.

4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion. 4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion. Definition 4.3. Es sei f : R D R eine auf D erklarte Funktion. Die Funktion f hat in a D eine globales oder

Mehr

Mathematik I Herbstsemester 2018 Kapitel 4: Anwendungen der Differentialrechnung

Mathematik I Herbstsemester 2018 Kapitel 4: Anwendungen der Differentialrechnung Mathematik I Herbstsemester 2018 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 55 4. Anwendungen der Differentialrechnung Monotonie Krümmung Linearisierung einer Funktion Extremwerte

Mehr

Übungsaufgaben zur Kurvendiskussion

Übungsaufgaben zur Kurvendiskussion SZ Neustadt Mathematik Torsten Warncke FOS 12c 30.01.2008 Übungsaufgaben zur Kurvendiskussion 1. Gegeben ist die Funktion f(x) = x(x 3) 2. (a) Untersuchen Sie die Funktion auf Symmetrie. (b) Bestimmen

Mehr

Kurvendiskussion einer ganzrationalen Funktion

Kurvendiskussion einer ganzrationalen Funktion Kurvendiskussion einer ganzrationalen Funktion Lernzuflucht 24. November 20 L A TEX M. Neumann Folgende Funktion soll in einer Kurvendiskussion bearbeitet werden: f(x) = x 4 2x 2 ; D = R () Diese Funktion

Mehr

wenn f ( x 0 ) der größte Funktionswert für alle x aus einer Umgebung Dieser größte Funktionswert f ( x 0 ) heißt relatives (lokales) Maximum

wenn f ( x 0 ) der größte Funktionswert für alle x aus einer Umgebung Dieser größte Funktionswert f ( x 0 ) heißt relatives (lokales) Maximum R. Brinkmann http://brinkmann-du.de Seite 06.0.008 Etrempunkte ganzrationaler Funktionen Vorbetrachtungen und Begriffserklärungen Beim zeichnen eines Funktionsgraphen war es bislang unbefriedigend, den

Mehr

(Quelle Abitur BW 2004) Gegeben sind die Schaubilder der Funktion mit, ihrer Ableitungsfunktion, einer Stammfunktion von und der Funktion mit.

(Quelle Abitur BW 2004) Gegeben sind die Schaubilder der Funktion mit, ihrer Ableitungsfunktion, einer Stammfunktion von und der Funktion mit. Aufgabe A5/04 Die Abbildung zeigt das Schaubild der Ableitungsfunktion einer Funktion. Welche der folgenden Aussagen über die Funktion sind wahr, falsch oder unentscheidbar? (1) ist streng monoton wachsend

Mehr

BKO WFH11 - Material Vertretung-Mathematik Übungsaufgaben Differentialrechnung einschließlich Wendepunkte 68

BKO WFH11 - Material Vertretung-Mathematik Übungsaufgaben Differentialrechnung einschließlich Wendepunkte 68 Übungsaufgaben Differentialrechnung einschließlich Wendepunkte 68 Aufgabe Terme umformen, Gleichungen lösen und Polynomdivision 1 Gegeben ist f mit f ( x ) = ( x + 2 ) ( x - 5 ) ; x IR. 2 Gegeben ist f

Mehr

Arbeitsblätter Förderplan EF

Arbeitsblätter Förderplan EF Arbeitsblätter Förderplan EF I.1 Nullstellen bestimmen Lösungen I.2 Parabeln: Nullstellen, Scheitelpunkte,Transformationen Lösungen I.3 Graphen und Funktionsterme zuordnen Lösungen II.1 Transformationen

Mehr

a) Prüfen Sie, ob die Graphen der Funktionen f und g orthogonal sind: f(x) = 1,5x 1; g(x) =

a) Prüfen Sie, ob die Graphen der Funktionen f und g orthogonal sind: f(x) = 1,5x 1; g(x) = 50 Kapitel 2: Rationale Funktionen und ihre Anwendungen 2.2.5 Orthogonale Geraden Geraden, die senkrecht aufeinander stehen, werden als zueinander orthogonale Geraden bezeichnet. Der Graph von g entsteht

Mehr

Aufgabe zum Thema: Gebrochen - rationale Funktionen

Aufgabe zum Thema: Gebrochen - rationale Funktionen Aufgabe zum Thema: Gebrochen - rationale Funktionen Eine gebrochen-rationale Funktion Z (x) hat als Zähler- N (x) funktion Z (x) eine lineare Funktion und als Nennerfunktion N (x) eine ganz-rationale Funktion

Mehr

Höhere Mathematik I für Ingenieurinnen und Ingenieure Beispiele zur 11. Übung

Höhere Mathematik I für Ingenieurinnen und Ingenieure Beispiele zur 11. Übung TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, 06. Dezember 06 Höhere Mathematik I für Ingenieurinnen und Ingenieure Beispiele zur. Übung In

Mehr

Klassenarbeit Mathematik Bearbeitungszeit 90 min. Di SG16-26D Gruppe A NAME:

Klassenarbeit Mathematik Bearbeitungszeit 90 min. Di SG16-26D Gruppe A NAME: R. Brinkmann Seite 8..03 Klassenarbeit Mathematik Bearbeitungszeit 90 min. Di.05.07 SG6-6D Gruppe A NAME: Hilfsmittel: Taschenrechner. Alle Ergebnisse sind soweit möglich durch Rechnung zu begründen..

Mehr

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 11. und 12. Übung

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 11. und 12. Übung TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, WS 017/18 Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 11. und 1. Übung

Mehr

Mathemathik-Prüfungen

Mathemathik-Prüfungen M. Arend Stand Juni 2005 Seite 1 1980: Mathemathik-Prüfungen 1980-2005 1. Eine zur y-achse symmetrische Parabel 4.Ordnung geht durch P 1 (0 4) und hat in P 2 (-1 1) einen Wendepunkt. 2. Diskutieren Sie

Mehr

LÖSUNGEN Kurvendiskussion

LÖSUNGEN Kurvendiskussion M. Sc.Petra Clauÿ Wintersemester 2015/16 Mathematische Grundlagen und Analysis 24. November 2015 LÖSUNGEN Kurvendiskussion Aufgabe 1. Bestimmen Sie die Gleichung der Tangente an den Graphen folgender Funktionen

Mehr

Mathematik LK M2, 2. KA Eigenschaften ganzr. Funktionen Lösung

Mathematik LK M2, 2. KA Eigenschaften ganzr. Funktionen Lösung Aufgabe 1: Grenzwerte 2 x 3 1.1 Berechne unter Anwendung der 3( +12 x 10 Grenzwertsätze für Funktionen: lim x 3 x 3 +2 x+10 2 x 2 x 3 +12 x 10 1+ 6 lim x 3 x 3 +2 x+10 = lim x 10 3) 2 x 2 x 2 3 x 3( 1

Mehr

Analysis 2. f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt:

Analysis 2.  f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: Analysis 2 www.schulmathe.npage.de Aufgaben 1. Gegeben ist die Funktion f durch f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: f (x) = 6(x

Mehr

Mathematik-Aufgabenpool > Kurvendiskussion gebrochen rationaler Funktionen I

Mathematik-Aufgabenpool > Kurvendiskussion gebrochen rationaler Funktionen I Michael Buhlmann Mathematik-Aufgabenpool > Kurvendiskussion gebrochen rationaler Funktionen I Einleitung: Eine gebrochen rationale Funktion (Polynom) f: D f -> R (mit maximaler Definitionsbereich D f)

Mehr

3.6 Verhalten an den Polstellen

3.6 Verhalten an den Polstellen 44 Kapitel 3. Gebrochen-rationale Funktionen Beispiel 3.5.3. f(x) = 2x2 + 5 2x 1 f(0) = 2 02 + 5 2 0 1 = 5 1 = 5 3.6 Verhalten an den Polstellen Die Polstellen teilen den Graph in mehrere Teile. Da der

Mehr

Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen

Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen Kurvendiskussion Ganzrationale Funktion Aufgaben und http://www.fersch.de Klemens Fersch 9. August 0 Inhaltsverzeichnis Ganzrationale Funktion Quadratische Funktionen f x) = ax + bx + c 8. Aufgaben...................................................

Mehr

1 Q12: Lösungen bsv 2.2

1 Q12: Lösungen bsv 2.2 Q: Lösungen bsv... 3. 4. Graphisches Bestimmen einer Integralfunktion a) Nullstellen (laut Graph): x = 0; x = VZT x < 0 x = 0 0 < x < x > f(x) - 0 + 0 - G Io TIP HOP b) Aus der Abbildung ergibt sich: VZT

Mehr

1.4 Schaubild von Schaubild von Schaubild von 1., /

1.4 Schaubild von Schaubild von Schaubild von 1., / Lösung A1 1.1 Das Integral ist größer als Null, da die Fläche die der Graph der - Funktion oberhalb der -Achse größer ist als die Fläche unterhalb der -Achse. 1.2 Aussagen über das Schaubild von sind:

Mehr

Abb lokales Maximum und Minimum

Abb lokales Maximum und Minimum .13 Lokale Extrema, Monotonie und Konvexität Wir kommen nun zu den ersten Anwendungen der Dierentialrechnung. Zwischen den Eigenschaten einer Funktion, dem Verlau des zugehörigen Graphen und den Ableitungen

Mehr

a) Begründen Sie, dass der Graph von f symmetrisch zum Punkt S 0 2 f) Ermitteln Sie eine Gleichung der Tangente im Punkt B

a) Begründen Sie, dass der Graph von f symmetrisch zum Punkt S 0 2 f) Ermitteln Sie eine Gleichung der Tangente im Punkt B I. Wendepunkte 1. Bestimmen Sie Art und Lage der Extrempunkte sowie die Wendepunkte des Graphen der Funktion f mit der angegebenen Funktionsgleichung. a) f(x) 1 b) 12 (x + 1) (x 2) (x + 6) f(x) 1 4 x4

Mehr

Analysis 7. f(x) = 4 x (x R)

Analysis 7.   f(x) = 4 x (x R) Analysis 7 www.schulmathe.npage.de Aufgaben Gegeben ist die Funktion f durch fx) = 4 x R) a) Führen Sie für die Funktion f eine Kurvendiskussion durch Nullstellen, Koordinaten der lokalen Extrempunkte,

Mehr

assume(type::real) //Definiert die Definitionsmenge über die reele a) f:=x->1/2*x^3-4*x^2+8*x // Definition einer Funktion mit der Variable "x".

assume(type::real) //Definiert die Definitionsmenge über die reele a) f:=x->1/2*x^3-4*x^2+8*x // Definition einer Funktion mit der Variable x. Wochenplan zu Wendestellen; Kurvendiskussion und Tangenten reset() //Entleert sämtliche Speicher! A1 assume(type::real) //Definiert die Definitionsmenge über die reele R a) f:=x->1/*x^-*x^+8*x // Definition

Mehr

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x.

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x. Analysis Aufgabe aus Abiturprüfung Bayern GK (abgeändert). Gegeben ist die Funktion f(x) = ( x )e ( x ). a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen

Mehr

Vollständige Kurvendiskussion mit Erläuterungen

Vollständige Kurvendiskussion mit Erläuterungen Vollständige Kurvendiskussion mit Erläuterungen Aufgabe: Gegeben ist die Funktion =³ 3 +. Führen Sie eine vollständige Kurvendiskussion durch. 1.) Ableitungen: =3 6+1 =6 6 =6 (relevant für die Steigung

Mehr

Beispiele für eine vollständige Kurvendiskussion

Beispiele für eine vollständige Kurvendiskussion Seite von Ganzrationale Funktionen Nur mit Ausklammern Beispiel. Diskutiere die Funktion f 8. Es handelt sich um eine ganzrationale Funktion dritten Grades.. Definitionsmenge: D.. Verhalten gegen : Da

Mehr

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt Aufgaben für Analysis in der Oberstufe Robert Rothhardt 14. Juni 2011 2 Inhaltsverzeichnis 1 Modellierungsaufgaben 5 1.1 Musterabitur S60................................ 5 1.2 Musterabitur 3.1.4 B / S61..........................

Mehr

Aufgabenstellung Teilaufgabe a) Anforderungsprofil Teilaufgabe a) Modelllösung Teilaufgabe a) (1)

Aufgabenstellung Teilaufgabe a) Anforderungsprofil Teilaufgabe a) Modelllösung Teilaufgabe a) (1) Aufgabenstellung Teilaufgabe a) Anforderungsprofil Teilaufgabe a) Modelllösung Teilaufgabe a) (1) Seite 1/8 Heinz Klaus Strick 2011 Die Wertetabelle des Graphen ergibt sich über die I-Option des WTR: Dass

Mehr

4.2 Differentialrechnung III

4.2 Differentialrechnung III 4. Differentialrechnung III Inhaltsverzeichnis 1 Überblick Extremal- und Wendepunkte Monotonie und erste Ableitung 3 Krümmung und zweite Ableitung 6 4 Extremalpunkte 7 5 Wendepunkte 1 6 Anwendungsaufgaben

Mehr

Da der Nenner immer positiv ist, folgt. g (x) > 0 2x(2 x) > 0 0 < x < 2 g (x) < 0 2x(2 x) < 0 x < 0 oder x > 2

Da der Nenner immer positiv ist, folgt. g (x) > 0 2x(2 x) > 0 0 < x < 2 g (x) < 0 2x(2 x) < 0 x < 0 oder x > 2 Da der Nenner immer positiv ist, folgt g (x) > 0 x( x) > 0 0 < x < g (x) < 0 x( x) < 0 x < 0 oder x > Also ist g auf (0,) streng monoton wachsend sowie auf (,0) und auf (, ) strengmonotonfallend.außerdemistg

Mehr

Abschlussprüfung Fachoberschule 2016 Mathematik

Abschlussprüfung Fachoberschule 2016 Mathematik Abschlussprüfung Fachoberschule 06 Aufgabenvorschlag A Funktionsuntersuchung /6 Gegeben ist die Funktion f mit der Funktionsgleichung f ( x) = x + x; x IR. Berechnen Sie die Funktionswerte f( x ) für folgende

Mehr

Mathematik GK m1/m2/m3, 2. Kl. Funktionenuntersuchung Lösung A

Mathematik GK m1/m2/m3, 2. Kl. Funktionenuntersuchung Lösung A Aufgabe 1: Kurvendiskussion Führe eine vollständige Funktionsuntersuchung für die Funktion f x = 1 2 x5 1 4 x4 3 2 x3 durch. Dazu gehören alle Teilaufaben, wie sie im Unterricht besprochen wurden und auf

Mehr

DEMO. Kurvendiskussionen. Die wichtigsten Methoden zur Untersuchung ganzrationaler Funktionen

DEMO. Kurvendiskussionen. Die wichtigsten Methoden zur Untersuchung ganzrationaler Funktionen ANALYSIS Ganzrationale Funktionen Kurvendiskussionen Die wichtigsten Methoden zur Untersuchung ganzrationaler Funktionen Hier geht es vor allem auch um das Verständnis: Nicht nur das Wie ist gefragt, sondern

Mehr

Analysis. Kurvenuntersuchung ganzrationale Funktionen. Nullstellen, Extrempunkte, Wendepunkte, Symmetrie, Verhalten im Unendlichen

Analysis. Kurvenuntersuchung ganzrationale Funktionen. Nullstellen, Extrempunkte, Wendepunkte, Symmetrie, Verhalten im Unendlichen Analysis Nullstellen, Extrempunkte, Wendepunkte, Symmetrie, Verhalten im Unendlichen Allg. Gymnasien: ab J / Q Berufliche Gymnasien: ab Klasse Berufskolleg Alexander Schwarz August 08 Aufgabe : Untersuche

Mehr

Der Differenzenquotient

Der Differenzenquotient Der Differenzenquotient Von den linearen Funktionen kennen wir den Begriff des Differenzenquotienten k = y 2 y 1 x 2 x 1 mit dem die Steigung einer Geraden festgelegt wird. Der Begriff des Differentialkoeffizienten

Mehr

Satz: Eine Funktion f ist monoton wachsend auf einem Intervall ]a, b[, wenn gilt: f (x) < 0 x ]a, b[

Satz: Eine Funktion f ist monoton wachsend auf einem Intervall ]a, b[, wenn gilt: f (x) < 0 x ]a, b[ Monotonie und erste Ableitung: Satz: Eine Funktion f ist monoton wachsend auf einem Intervall ]a, b[, wenn gilt: f (x) 0 x ]a, b[ Eine Funktion f ist monoton fallend auf einem Intervall ]a, b[, wenn gilt:

Mehr

1 x x2 3 mit D f = IR. Teilaufgabe 1.1 (5 BE) Berechnen Sie die Nullstellen der Funktion f und geben Sie das Symmetrieverhalten von G f.

1 x x2 3 mit D f = IR. Teilaufgabe 1.1 (5 BE) Berechnen Sie die Nullstellen der Funktion f und geben Sie das Symmetrieverhalten von G f. Abschlussprüfung Berufliche Oberschule 0 Mathematik Nichttechnik - A II - Lösung Teilaufgabe.0 Gegeben ist die reelle Funktion f( x) x x mit D f = IR. Teilaufgabe. (5 BE) Berechnen Sie die Nullstellen

Mehr

Diskussion einzelner Funktionen

Diskussion einzelner Funktionen Diskussion einzelner Funktionen. Wir betrachten die Funktion f mit f() = cos sin (a) Berechne f() für { π, π, π, π, } 5π und zeichne den Grafen von f im - Intervall [ π, ] 5π. Einheiten: cm auf der y-achse,

Mehr

Aufgaben zur e- und ln-funktion

Aufgaben zur e- und ln-funktion Aufgaben zur e- und ln-funktion 1.0 Gegeben ist die Funktion f(x) = 2x2 2 mit D. Ihr Graph sei G f. (Abitur 2008 AI) e x f =! 1.1 Geben Sie die Schnittpunkte von G f mit den Koordinatenachsen an. 1.2 Untersuchen

Mehr

Prüfungsteil 1, Aufgabe 3. Analysis. Nordrhein-Westfalen 2012 GK. Aufgabe a (1) Aufgabe a (2) Abitur Mathematik: Musterlösung

Prüfungsteil 1, Aufgabe 3. Analysis. Nordrhein-Westfalen 2012 GK. Aufgabe a (1) Aufgabe a (2) Abitur Mathematik: Musterlösung Abitur Mathematik: Prüfungsteil 1, Aufgabe 3 Nordrhein-Westfalen 2012 GK Aufgabe a (1) 1. SCHRITT: BEDINGUNG FÜR PUNKTSYMMETRIE ZUM URSPRUNG PRÜFEN Der Graph der Funktion : ist genau dann punktsymmetrisch

Mehr

Station 1: Funktionen beschreiben

Station 1: Funktionen beschreiben Station 1: Funktionen beschreiben Betrachte folgende Funktion und versuche, die unten gestellten Fragen zu beantworten. Bei jeder Antwortmöglichkeit steht ein Buchstabe, den du in die dafür vorgesehenen

Mehr

bestimmt werden. Allein die Regel (5.4) würde wegen g(x) = 2, folglich erhalten wir den korrekten lim

bestimmt werden. Allein die Regel (5.4) würde wegen g(x) = 2, folglich erhalten wir den korrekten lim bestimmt werden. Allein die Regel (5.4) würde wegen f (x) lim x g (x) = lim 2e 2x = lim x e x x 2ex = 0 dengrenzwert0für(5.5)liefern.dasistaberfalsch,dennwegen lim 0 ist lim x g(x) = 2, folglich erhalten

Mehr

Übungsaufgaben II zur Klausur 1

Übungsaufgaben II zur Klausur 1 Übungsaufgaben II zur Klausur. Ableitungen 0. Führen Sie für g mit f ( +,9 8 eine vollständige Kurvendiskussion (siehe S. 9f durch. Markieren Sie alle von Ihnen bestimmten Punkte in der abschließenden

Mehr

Aufgaben zur Funktionsdiskussion: Grundkurs Nr. 2 a 2 +b 2 =c 2 Materialbörse Mathematik

Aufgaben zur Funktionsdiskussion: Grundkurs Nr. 2 a 2 +b 2 =c 2 Materialbörse Mathematik Zeichenerklärung: [ ] - Drücken Sie die entsprechende Taste des Graphikrechners! [ ] S - Drücken Sie erst die Taste [SHIFT] und dann die entsprechende Taste! [ ] A - Drücken Sie erst die Taste [ALPHA]

Mehr

Mathematisches Thema Quadratische Funktionen 1. Art Anwenden. Klasse 10. Schwierigkeit x. Klasse 10. Mathematisches Thema

Mathematisches Thema Quadratische Funktionen 1. Art Anwenden. Klasse 10. Schwierigkeit x. Klasse 10. Mathematisches Thema Quadratische Funktionen 1 1.) Zeige, dass die Funktion in der Form f() = a 2 + b +c geschrieben werden kann und gebe a, b und c an. a) f() = ( -5) ( +7) b) f() = ( -1) ( +1) c) f() = 3 ( - 4) 2.) Wie heißen

Mehr

Aufstellen der Funktionsgleichung aus gegebenen Bedingungen

Aufstellen der Funktionsgleichung aus gegebenen Bedingungen R. Brinkmann http://brinkmann-du.de Seite..0 Aufstellen der Funktionsgleichung aus gegebenen Bedingungen Wir erinnern uns, um die Funktionsgleichung einer Parabel zu bestimmen waren die Koordinaten von

Mehr

Gemischte Aufgaben zur Differentialund Integralrechnung

Gemischte Aufgaben zur Differentialund Integralrechnung Gemischte Aufgaben zur Differentialund Integralrechnung W. Kippels 0. Mai 04 Inhaltsverzeichnis Aufgaben. Aufgabe.................................... Aufgabe.................................... Aufgabe...................................

Mehr

Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Extremstellen-Bedingungen

Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Extremstellen-Bedingungen Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Etremstellen-Bedingungen Häufig sind Ableitungsfunktionsterme leichter zu handhaben als die Terme der Ausgangsfunktonen, weil sie niedrigere Eponenten

Mehr

Abiturprüfung Mathematik 2007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik 007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (8 Punkte) Das Schaubild einer Polynomfunktion. Grades geht durch den Punkt S(0/) und hat den 3 Wendepunkt

Mehr

I. Verfahren mit gebrochen rationalen Funktionen:

I. Verfahren mit gebrochen rationalen Funktionen: I. Verfahren mit gebrochen rationalen Funktionen: 1. Definitionslücken bestimmen: Nenner wird gleich 0 gesetzt! 2. Prüfung ob eine hebbare Definitionslücke vorliegt: Eine hebbare Definitionslücke liegt

Mehr

Beispielseite (Band 1) 2. Ganzrationale Funktionen 2.4 Nullstellen bei Funktionen 3. Grades

Beispielseite (Band 1) 2. Ganzrationale Funktionen 2.4 Nullstellen bei Funktionen 3. Grades Beispielseite (Band ). Ganzrationale Funktionen.4 Nullstellen bei Funktionen. Grades Funktionen. Grades ohne Absolutglied Bei ganzrationalen Funktionen. Grades ohne Absolutglied beginnt die Nullstellenberechnung

Mehr

( 0 ( x) d) Die Funktionsgleichung der Funktion 1 lautet: f( Für x 2 = 0 : Wähle die Werte -1 und 1. Überprüfe x1 = 1,

( 0 ( x) d) Die Funktionsgleichung der Funktion 1 lautet: f( Für x 2 = 0 : Wähle die Werte -1 und 1. Überprüfe x1 = 1, Differentialrechnung IV (Wendepunkte) (Kap 7) (Haben Sie Probleme bei der Bearbeitung dieser Aufgaben versuchen Sie diese in Ihrer Kleingruppe mit Hilfe des Arbeitsbuchs Mathematik zu klären Führt dies

Mehr

Abitur 2013 Mathematik Infinitesimalrechnung II

Abitur 2013 Mathematik Infinitesimalrechnung II Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 213 Mathematik Infinitesimalrechnung II Teilaufgabe Teil 1 1 (5 BE) Geben Sie für die Funktion f mit f(x) = ln(213 x) den maximalen Definitionsbereich

Mehr

Arbeitsblatt 29: Kurvendiskussion Klausur

Arbeitsblatt 29: Kurvendiskussion Klausur Erläuterungen und Aufgaben Zeichenerklärung: [ ] - Drücke die entsprechende Taste des Graphikrechners! [ ] S - Drücke erst die Taste [SHIFT] und dann die entsprechende Taste! [ ] A - Drücke erst die Taste

Mehr

1.2 Weisen Sie rechnerisch nach, dass das Schaubild der Funktion mit 4P! bei 1 einen Sattelpunkt aufweist.

1.2 Weisen Sie rechnerisch nach, dass das Schaubild der Funktion mit 4P! bei 1 einen Sattelpunkt aufweist. Aufgabe A1 1.1 Erläutere anhand einer Skizze, ob das Integral 3P größer, kleiner oder gleich Null ist. 1.2 Für eine Funktion gilt: (1) 0 für 2 und 1 (2) 23 (3) 13 (4) 2 (5) 1 6 Welche Aussagen lassen sich

Mehr

ANALYSIS. 3. Extremwertaufgaben (folgt)

ANALYSIS. 3. Extremwertaufgaben (folgt) ANALYSIS 1. Untersuchung ganzrationaler Funktionen 1.1 Symmetrie 2 1.2 Ableitung 2 1.3 Berechnung der Nullstellen 3 1.4 Funktionsuntersuchung I 4 1.5 Funktionsuntersuchung II 6 2. Bestimmung ganzrationaler

Mehr

Funktionen untersuchen

Funktionen untersuchen Funktionen untersuchen Mögliche Fragestellungen Definition: lokale und globale Extrema Monotonie und Extrema Notwendige Bedingung für Extrema Hinreichende Kriterien, Vergleich Krümmungsverhalten Neumann/Rodner

Mehr

Inhaltsverzeichnis. Beispiel einer Abiturprüfung 18

Inhaltsverzeichnis. Beispiel einer Abiturprüfung 18 VB 004 Inhaltsverzeichnis Kurvendiskussion Einführung Ableitungen einer Funktion 3 Monotonieverhalten der Funktion 3 Wie bekommen wir nun raus, wo eine Funktion steigt oder fällt? 3 Symmetrieverhalten

Mehr

3.3 Linkskurve, Rechtskurve Wendepunkte

3.3 Linkskurve, Rechtskurve Wendepunkte 166 FUNKTIONSUNTERSUCHUNGEN 3.3 Linkskurve, Rechtskurve Wendepunkte Einführung (1) Anschauliche Erklärung des Begriffs Wendepunkt Bei Motorradrennen lässt sich beobachten, wie sich die Motorradfahrer beim

Mehr

Abkürzungen & Begriffe

Abkürzungen & Begriffe A Bedeutungen Abkürzungen & Begriffe Abzisse ist ein normaler x-wert [ Ordinate] arcsin, arccos, arctan sind die korrekten Bezeichnungen für: sin -, cos -, tan -. [Die üblichen Bezeichnungen sin -, cos

Mehr

12 M-Gk1/5 Led Übungen zur 1. Klausur 3. September Kurvendiskussion. Im Folgenden sei die Funktion f(x) = 1 6 x3 1 2 x 1 3 gegeben!

12 M-Gk1/5 Led Übungen zur 1. Klausur 3. September Kurvendiskussion. Im Folgenden sei die Funktion f(x) = 1 6 x3 1 2 x 1 3 gegeben! 12 M-Gk1/5 Led Übungen zur 1. Klausur 3. September 2008 1. Kurvendiskussion. Im Folgenden sei die Funktion f(x) = 1 6 x3 1 2 x 1 3 gegeben! a) Untersuche den Graphen von f(x) auf Standardsymmetrien (Punktsymmetrie

Mehr

Ganzrationale Funktionen. 3. bis 5. Grades. Die wichtigsten Aufgabentypen. Alle Methoden ganz ausführlich. Datei Nr Stand 1.

Ganzrationale Funktionen. 3. bis 5. Grades. Die wichtigsten Aufgabentypen. Alle Methoden ganz ausführlich. Datei Nr Stand 1. Analysis Funktionentraining Ganzrationale Funktionen. bis. Grades Die wichtigsten Aufgabentypen Alle Methoden ganz ausführlich Datei Nr. 60 Stand. Oktober 06 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR

Mehr

Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2012 Mathematik

Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2012 Mathematik Seite 1 von 1 Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 01 Mathematik 1. Aufgabenart Analysis. Aufgabenstellung Aufgabe 1: Untersuchung ganzrationaler Funktionen Aufgabe

Mehr

2) 2 4 in der größtmöglichen Definitionsmenge

2) 2 4 in der größtmöglichen Definitionsmenge Abschlussprüfung Berufliche Oberschule 009 Mathematik 13 Nichttechnik - A I - Lösung Teilaufgabe 1.0 Gegeben ist die Funktion f( x) ln ( x ) 4 in der größtmöglichen Definitionsmenge D f IR. Ihr Graph wird

Mehr

2015, MNZ. Jürgen Schmidt. Vorkurs. Mathematik. Ableiten. Tag WS 2015/16

2015, MNZ. Jürgen Schmidt. Vorkurs. Mathematik. Ableiten. Tag WS 2015/16 Vorkurs 4. Mathematik Ableiten WS 2015/16 Tag Einführendes Beispiel Vernachlässigen wir den Luftwiderstand, so können wir in hinreichender Näherung für den freien Fall eines Körpers s(t) = 5t 2 als Weg-Zeit-Abhängigkeit

Mehr