9. Geführte Wellen. Im folgenden wird als einfachster Fall der planare Wellenleiter behandelt. cladding n C

Größe: px
Ab Seite anzeigen:

Download "9. Geführte Wellen. Im folgenden wird als einfachster Fall der planare Wellenleiter behandelt. cladding n C"

Transkript

1 9. Geführte Wellen Strahldivergenz begrenzt gerichtete Ausbreitung von Licht im freien Raum. Ausweg: Einengung des Lichts in einen Wellenleiter durch Ausnutzung von Totalreflexion am opesch dünneren Medium. Anwendung: Lichtleiter- nachrichtenübertragung (TelecommunicaEon)! Beispiele von Wellenleitern. Der gemusterte Teil ist das Material mit dem größeren Brechungsindex. Von links nach rechts: Planarer Wellenleiter, Streifenwellenleiter, opesche Faser. Solche Strukturen können mit verschiedenen Techniken definiert und mit hoher Genauigkeit hergestellt werden. Im folgenden wird als einfachster Fall der planare Wellenleiter behandelt. n(x) y x z cladding n C film n F d / 2 d / 2 Symmetrischer Fall: n C =n S < n F unendliche Ausdehnung in yz- Ebene substrate n S 2

2 Wir betrachten ein monochromaesches Feld (wie in der WellenopEk Kapitel 3 und 4). Substrat, Cladding und Film sein isotrope Medien, die gesamte Wellenleiterstruktur ist aber nicht mehr opesch isotrop, da sich der Brechungsindex in x- Richtung anders als in y- bzw. z- Richtung verhält. Folge: Die PolarisaEon muss explizit in Rechnung stellen werden. Anstelle der skalaren Helmholtz- Gleichung muss nun behandelt werden: E ( r) = iµ 0 ω H( r) H( r) = iω D( r) = iω 0 n 2 (x) E ( r) Die Symmetrie des Problems widerspiegelnder Lösungsansatz E ( r) = U(x)e iβz, H( r) = W (x)e iβz β: PropagaEonskonstante Rechnung: { U (x)e i βz } = e i βz U (x) U 0 (x) e i βz = e i βz U y 0 0 U z iβe iβz 0 U y 1 U z i β U y U x 0 Analog für W (x)e iβz. Komponentenweiser Vergleich ergibt das folgende DifferenEalgleichungssystem: 3

3 iβu y = iµ 0 ωw x (1) iβw y = i 0 ωn 2 U x (4) iβu x U z = iµ 0 ωw y (2) iβw x W z = i 0 ωn 2 U y (5) U y = iµ 0 ωw z (3) W y = i 0 ωn 2 U z (6) Dieses homogene DifferenEalgleichungssystem entkoppelt in 2x3 Gleichungen. Nämlich, (1), (3) und (5) bilden ein abge- schlossenes System für U y, W x, W z und (2), (4) und (6) ein solches für W y, U x, U z. Beide besitzen nur eine nichgriviale Lösung für besemmte Werte von β, den Eigenwerten. Die dazugehörigen nichgrivialen Lösungen sind die EigenfunkEonen. Die jeweiligen Eigenwertgleichungen sind, wie gleich zu sehen ist, unterschiedlich. Folglich hat (bis auf numerische Zufälligkeiten) das eine System nur die triviale Lösung für solche Eigenwerte, wo das andere eine nichgriviale Lösung hat und umgekehrt. Es gibt also zwei grundsätzliche elektromagneesche Zustände im Wellenleiter, die sich durch ihre PolarisaEonsausrichtung unterscheiden, siehe Abbildung nächste Seite. Man nennt diese transversal elektrische und transversal magneesche Wellen, je nach dem, welcher Feldvektor senkrecht zur Ausbreitungsrichtung steht. Eigenwert- probleme erfordern zur eindeuegen Lösung Randbedingungen. Hierzu wissen wir zunächst, dass sich alle zur Grenzfläche parallelen Komponenten (U y,u z,w y,w z ) dort steeg verhalten. Im einzelnen erhalten wir a) Transversal elektrische Wellen (TE): (3) (5) U y = iµ 0 ω W z = iµ 0 ω(iβw x + i 0 ωn 2 U y ) (1) also U y = (β 2 ω 2 n 2 )U c 2 y Die beiden magneeschen Feldkomponenten ergeben sich bei bekanntem U y über W x ~U y aus (1) und W z ~U y aus (3). Aus letzterem folgt insbesondere: Neben der SteEgkeit der FunkEon U y selbst verhält sich wegen der SteEgkeit von W z auch ihre Ableitung U y an der Grenzfläche steeg. 4

4 (Quelle:?) Lage der Feldkomponenten im planaren Wellenleiter für TE- und TM- Wellen. b) Transversal magneesche Wellen (TM): Analoge Rechnung wie für a), wobei man beachten muss, dass n an der Grenzfläche springt, ergibt W y n 2 ( ) = (β 2 ω 2 n 2 )W n 2 c 2 y Die beiden elektrischen Feldkomponenten ergeben sich bei bekanntem W y über U x ~W y aus (4) und U z ~ W y /n 2 aus (6). Hieraus folgt weiter: W y verhält sich steeg, aber W y springt an der Grenzfläche im Verhältnis der Brechungsindex- quadrate. Die Gleichungen für U y und W y repräseneeren die eigentlichen Eigenwertprobleme. Gesucht sind also die Eigenwerte β, für diese Gleichungen Lösungen besitzen, und die dazugehörigen EigenfunkEonen. Diese Lösungen nennt man Wellenleitermoden. Für den TE- Fall wird das im folgenden demonstriert. 5

5 PropagaEonskonstanten und Feldverteilungen für TE- Wellenleitermoden Ansatz: U y (x) e ikx k 2 = ω 2 Dies bedeutet, dass im Film (- d/2 <x<d/2) der Wert n(x)=n F und außerhalb n(x) = n S eingesetzt werden muss. Die Lösungen U y in den jeweiligen Gebieten müssen dann durch die Randbedingungen aneinander angeschlossen werden. Zunächst können wir aber die Werte von β, die Wellenleitung realisieren, wie folgt einschränken: β 2 > ω 2 (i) : Es gibt keine Lösung mit k, also keine Wellenausbreitung schlechthin. β 2 < ω 2 c 2 n F 2 > ω 2 c 2 n S 2 c 2 n 2 (x) β 2 (ii) n 2 : Zu jedem β exiseert ein reelles k(β) Gesampeld ist ebene Welle. Das sind c 2 S < ω 2 Zustände, wie die nebenstehende Abbildung und die dazugehörige Rechnung zeigen, für die keine Totalreflexion auqrig. Man nennt diese Strahlungsmoden! c 2 n F 2 e i[k (β )x +βz ] k(β) β θ sinθ = β im Film = β β 2 + k 2 ω (β) n c F < n S n F = sinθ T mit dem Totalreflexionswinkel θ T (iii) ω 2 n 2 c 2 S < β 2 < ω 2 2 n c 2 F Explizite Lösung : Im Film ist k=±q reell, außerhalb aber imaginär k=±iγ, γ reell. Dabei dürfen nur solchen Lösungen berücksicheg werden, die im Unendlichen verschwinden. Die Lösungen sind also in x- Richtung lokalisierte Zustände. Man nennt diese Wellenleitermoden. Im Film: Symmetrie erfordert U y (x)=±u y (- x). (Das negaeve Vorzeichen ändert die Energiedichte nicht!). Durch Überlagerung der jeweiligen exponeneellen Phasenterme für q und q produzieren wir sin- und cos- FunkEonen, die die geforderten Symmetrie- eigenschaqen erfüllen. Also 6

6 U y (x) cos(qx) sin(qx) für d / 2 x d / 2 mit q = ω 2 c 2 n F 2 β 2 Außerhalb des Films: Hier darf nur die im jeweiligen Außengebiet abklingende FunkEon berücksichegt werden. Die SteEgkeit von U y an den Grenzflächen ergibt cos(qd / 2) U y (x) e γ ( x d /2) (x / x ) sin(qd / 2) für x d / 2 mit γ = β 2 ω 2 c 2 n S 2 Die noch ungenutzte Bedingung, dass sich auch die Ableitung von U y an den Grenzflächen steeg verhalten muss, schränkt die zugelassenen Werte von β weiter ein. Bildung der Ableitung im Film und außerhalb und gleichsetzten für x=d/2 (x=- d/2 liefert das gleiche Ergebnis) ergibt folgende kompakt aufgeschriebene Modengleichung v 2 ξ 2 = ±ξ[tanξ] ±1 mit der (reskalierten) Gesuchten und dem einzigen, den Wellenleiter charakterisierenden Parameter. Dabei haben wird gesetzt β = ω c n ξ = qd 2 = n F ω d 2 n 2 c 2 V = n 2 2 ω d F n S c 2 mit einem effekeven Brechungsindex n - für die Ausbreitung in z- Richtung. (Das Licht befindet sich in beiden Brechungsindexgebieten, so dass sich eine solche effekeve Größe ergibt.) 7

7 Graphische Lösung der Modengleichung Die rechte Seite ist die Tan- FunkEon (symmetrische Lösung, volle Kurve) oder die Cot- FunkEon (anesymmetrische Lösung, gestrichelte Kurve), leicht modifiziert durch einen linearen Vorfaktor, die linke Seite eine WurzelfunkEon (gepunktete Kurve), die bei ξ=0 den Wert V und ξ=v den Wert Null hat. Die durch Kreise markierten Schnigpunkte repräseneeren die Lösungen ξ υ, die wir mit υ abzählen Diese definieren bei gegebener Frequenz ω und gegebenem Design des Wellenleiters (n F, n s, d) die möglichen Werte der PropagaEonskonstanten β υ (über die dazugehörigen q υ und n- υ ). Wir erkennen: Es gibt einen diskreten, endlichen Satz von Lichtzuständen im Wellenleiter, die sogenannten geführten Moden. Ihre Zahl ist nach der obigen Abbildung durch N M = 1 + Integer V π / 2 = 1 + Integer 2d λ n F 2 n S 2 gegeben. Insbesondere gibt es mindestens eine geführte Mode. (Das ist aber nur richeg, wenn wie in der Rechnung der Brechungsindexsprung ideal abrupt ist, was in der Praxis nicht gegeben ist.) 8

8 ν Variiert man die Frequenz (bei gegebenem Wellenleiter- design), so ändert sich β υ bzw. der effekeve Brechungs- index. Es entstehen also Dispersionskurven. PrakEscher- weise betrachtet man den inversen Zusammenhang und variiert β. Dann entstehen DispersionsrelaEonen Strahlungs- moden verboten c 2 = c 0 /n s c 1 = c 0 /n f ω ν (β) die aus mehren Zweigen bestehen, wie die nebenste- hende Abbildung zeigt. Für große Frequenzen nähern sich diese asymptoesch der Photongeraden des Films an. Physikalisch ist dies verständlich, da große Frequenzen kleine Wellenlängen bedeuten. Der Wellenleiterfilm verhält sich also zunehmend wie ein unendlich großes Medium. MathemaEsch ergibt sich dies wie folgt aus der graphischen Lösung: Wenn ω sehr groß wird, wird auch V sehr groß und damit ξ ν (ν+1)π/2. Der explizite Ausdruck für ξ zeigt, dass dieses bei steeg wachsendem ω nur endlich bleiben kann, wenn sich der effekeve Brechungs- index dem des Films annähert. Fällt ω dagegen, so nimmt V ab und ξ ν fällt, wie wir wiederum der grafischen Lösung entnehmen, bis der Wert ξ ν =V=ν π/2 erreicht wird. Für kleine Frequenzen wird die Mode nicht mehr geführt. Stellt man nach ω um, so erhält man für diese sogenannte cut- off frequency ω υ C = υ πc d n F 2 n S 2 Im Grenzfall starker Wellenleitung, d.h. für V >> 1 (also bei starker Brechungsindexdifferenz) und für Moden mit ν << N M, können analyesche Näherungsausdrücke angeben werden. Es gilt hier wieder ξ ν (ν+1)π/2 bzw. ( ω 2 n 2 c 2 F β 2 ) d 2 = (υ + 4 1)2 π 2 4 9

9 also ω υ 2 = c F 2 [β 2 + (ν + 1) 2 π 2 d 2] (c F = c / n F ) (In der Nähe des cut- offs versagt diese Näherung natürlich!). Stellen wir dies wiederum nach β um und setzen das Ergebnis in q ein, so folgt im Film q ν = (ν + 1) π d bzw. U y (x) cos[(ν + 1)π x ] für ν = 0,2, 4,... d sin[(ν + 1)π x ] für ν = 1,3,5,... d Das sind stehende Wellen, deren Feldstärke am Rand (und folglich auch außerhalb des Films) verschwindet, mit einer wachsenden Zahl von Knoten (Nulldurchgängen) im Film. In Wirklichkeit dringt das Licht auch ein wenig in das Substrat ein, so dass die in der Abbildung gezeigten Modenprofile entstehen. ν=0 U y (x) Quelle: Sahley, Teich, Grundlagen der Photonik) 10

10 c / n DispersionsrelaEon der Wellenleitermoden ist nichtlinear. Konsequenz: Sowohl Phasengeschwindigkeit als auch Gruppengeschwindigkeit v in Ausbreitungsrichtung hängen stark von der Frequenz bzw. G = dω / dβ Wellenlänge ab. Die Abbildung zeigt hierfür ein explizit gerechnetes Beispiel. Anstelle der Geschwindigkeiten ist der effekeve Brechungsindex für die Phase ( ) und für die Gruppe geploged. n v G = c / n G n n G Die Abbildung zeigt ein prakesches Problem bei der Lichtleiternachrichtenübertragung auf: Bei gegebener Frequenz treten zwischen den einzelnen Moden Laufzeitverzögerungen auf, die gegebenfalls kompensiert werden müssen. 11

11 Einkopplung von Licht in Wellenleiter Hier entscheidet sich, wie viele Moden des Wellenleiters angeregt werden. (Beachte: In der Abbildung ist gegenüber der obigen Nomenklatur x und y vertauscht und n 1 =n F, n 2 =n S ) Quelle: Sahley, Teich, Grundlagen der Photonik) 12

12 So telefonieren wir! Quelle: Sahley, Teich, Grundlagen der Photonik) 13

13 Integrierte OpEk Man kann Licht ähnlich wie Strom in opeschen Kreisen führen. Quelle: Sahley, Teich, Grundlagen der Photonik) Die Kopplung wird über die äußere Lichthaut bei Totalreflexion errericht (siehe Kapitel 3)! 14

14 TelekommunikaEon bei λ = 1.55 µm α[ db km ] = 1 L[km] 10 log 1 10 T α = 0.1 db km T = L/km 15

Ferienkurs Teil III Elektrodynamik

Ferienkurs Teil III Elektrodynamik Ferienkurs Teil III Elektrodynamik Michael Mittermair 27. August 2013 1 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 3 1.1 Wiederholung des Schwingkreises................ 3 1.2 der Hertz sche Dipol.......................

Mehr

Thomas Windel (Autor) Entwicklung einer planaren Messmethode zur Bestimmung von optischen Modenfeldern

Thomas Windel (Autor) Entwicklung einer planaren Messmethode zur Bestimmung von optischen Modenfeldern Thomas Windel (Autor) Entwicklung einer planaren Messmethode zur Bestimmung von optischen Modenfeldern https://cuvillier.de/de/shop/publications/083 Copyright: Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier,

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

Wir betrachten hier den Polarisationszustand einer Normalmode

Wir betrachten hier den Polarisationszustand einer Normalmode Kapitel 5 Die Polarisation elektromagnetischer Wellen 5.1 Einführung Der zeitliche Verlauf des reellen elektrischen Feldvektors E r r,t) bestimmt den Polarisationszustand des Feldes. Wir betrachten hier

Mehr

Vorbereitung zur Klausur Elektromagnetische Felder und Wellen

Vorbereitung zur Klausur Elektromagnetische Felder und Wellen Vorbereitung zur Klausur Elektromagnetische Felder und Wellen 1/50 J. Mähnß Stand: 9. August 2016 c J. Mähnß 2/50 Maxwellgleichungen Maxwellgleichungen allgemein 3/50 ( B = µ 0 j V + ε ) E 0 t E = B t

Mehr

Lösung zum Parabolspiegel

Lösung zum Parabolspiegel Lösung zum Parabolspiegel y s 1 s 2 Offensichtlich muss s = s 1 + s 2 unabhängig vom Achsenabstand y bzw. über die Parabelgleichung auch unabhängig von x sein. f F x s = s 1 + s 2 = f x + y 2 + (f x) 2

Mehr

16 Elektromagnetische Wellen

16 Elektromagnetische Wellen 16 Elektromagnetische Wellen In den folgenden Kapiteln werden wir uns verschiedenen zeitabhängigen Phänomenen zuwenden. Zunächst werden wir uns mit elektromagnetischen Wellen beschäftigen und sehen, dass

Mehr

1 Elektromagnetische Wellen im Vakuum

1 Elektromagnetische Wellen im Vakuum Technische Universität München Christian Neumann Ferienkurs Elektrodynamik orlesung Donnerstag SS 9 Elektromagnetische Wellen im akuum Zunächst einige grundlegende Eigenschaften von elektromagnetischen

Mehr

Vorbereitung. (1) bzw. diskreten Wellenzahlen. λ n = 2L n. k n = nπ L

Vorbereitung. (1) bzw. diskreten Wellenzahlen. λ n = 2L n. k n = nπ L Physikalisches Fortgeschrittenenpraktikum Gitterschwingungen Vorbereitung Armin Burgmeier Robert Schittny 1 Theoretische Grundlagen Im Versuch Gitterschwingungen werden die Schwingungen von Atomen in einem

Mehr

V. Führung und Speicherung elektromagnetischer Wellen

V. Führung und Speicherung elektromagnetischer Wellen Führung und Speicherung em. Wellen 1 V. Führung und Speicherung elektromagnetischer Wellen Felder an metallischen Oberflächen sehr wichtig für Anwendung: eitung und Speicherung von elektromagn. Wellen

Mehr

Brewster-Winkel - Winkelabhängigkeit der Reflexion.

Brewster-Winkel - Winkelabhängigkeit der Reflexion. 5.9.30 ****** 1 Motivation Polarisiertes Licht wird an einem geschwärzten Glasrohr reflektiert, so dass auf der Hörsaalwand das Licht unter verschiedenen Relexionswinkeln auftrifft. Bei horizontaler Polarisation

Mehr

2.1 Optische Grundlagen für Grenzflächen und Volumina von Festkörpern Transmissions- t und Reflexionskoeffizienten r Fresnelsche Gleichungen

2.1 Optische Grundlagen für Grenzflächen und Volumina von Festkörpern Transmissions- t und Reflexionskoeffizienten r Fresnelsche Gleichungen Theorie 2 2.1 Optische Grundlagen für Grenzflächen und Volumina von Festkörpern 2.1.1 Transmissions- t und Reflexionskoeffizienten r Fresnelsche Gleichungen Sonnenlicht ist physikalisch betrachtet eine

Mehr

1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen.

1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen. Universität Potsdam Institut für Physik und Astronomie Grundpraktikum 10/015 M Schallwellen Am Beispiel von Ultraschallwellen in Wasser werden Eigenschaften von Longitudinalwellen betrachtet. Im ersten

Mehr

Ebene elektromagnetische Wellen

Ebene elektromagnetische Wellen Kapitel 5 Ebene elektromagnetische Wellen 5.1 Ebene Wellen in nichtleitendem Medium Eine sehr wichtige Folgerung aus den Maxwell-Gleichungen ist die Existenz von Wellen, die den Energietransport beschreiben.

Mehr

Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion

Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion Aufgabe EStrich ist Lennard Jones Potential mit Exponentialfunktion Ansatz: Exponentialfunktion mit 3 Variablen einführen: a: Amplitude b:stauchung c:verschiebung_entlang_x_achse EStrich r_, ro_, _ : a

Mehr

3.6. Zweidimensionale Wellenleiter

3.6. Zweidimensionale Wellenleiter 3.6. Zweidimensionale Wellenleiter Zweidimensionale Wellenleiter sind nur in speziellen Fällen z.b. bei Zlindersmmetrie analtisch eakt lösbar. Für die in Halbleiterlasern verwendeten Wellenleiter eistieren

Mehr

Übungsblatt 1 Geometrische und Technische Optik WS 2012/2013

Übungsblatt 1 Geometrische und Technische Optik WS 2012/2013 Übungsblatt 1 Geometrische und Technische Optik WS 2012/2013 Gegeben ist eine GRIN-Linse oder Glasaser) mit olgender Brechzahlverteilung: 2 2 n x, y, z n0 n1 x y Die Einheiten der Konstanten bzw. n 1 sind

Mehr

Sessionsprüfung Elektromagnetische Felder und Wellen ( L)

Sessionsprüfung Elektromagnetische Felder und Wellen ( L) Sessionsprüfung Elektromagnetische Felder und Wellen (227-0052-10L) 22. August 2013, 14-17 Uhr, HIL F41 Prof. Dr. L. Novotny Bitte Beachten Sie: Diese Prüfung besteht aus 5 Aufgaben und hat 3 beidseitig

Mehr

Vorlesung Physik für Pharmazeuten PPh Optik

Vorlesung Physik für Pharmazeuten PPh Optik Vorlesung Physik für Pharmazeuten PPh - 10 Optik 02.07.2007 Wiederholung : Strom und Magnetismus B = µ 0 N I l Ampère'sche Gesetz Uind = d ( BA) dt Faraday'sche Induktionsgesetz v F L = Q v v ( B) Lorentzkraft

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

Übersicht Hohlleiter. Wellenausbreitung. Allgemeine Bemerkungen. Lösung der Maxwell'schen Gleichungen

Übersicht Hohlleiter. Wellenausbreitung. Allgemeine Bemerkungen. Lösung der Maxwell'schen Gleichungen Übersicht Hohlleiter Vergleich: freie Wellen vs. Leitungswellen Ebene Welle im rechteckigen Hohlleiter "Geführte Wellenlänge" Übertragung von Signalen Moden Mathematische Herleitung (Rechteck) Aufteilung

Mehr

Übersicht Hohlleiter. Felder & Komponenten II. Copyright: Pascal Leuchtmann

Übersicht Hohlleiter. Felder & Komponenten II. Copyright: Pascal Leuchtmann Übersicht Hohlleiter Vergleich: freie Wellen vs. Leitungswellen Ebene Welle im rechteckigen Hohlleiter "Geführte Wellenlänge" Übertragung von Signalen Moden Mathematische Herleitung (Rechteck) Aufteilung

Mehr

Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern

Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern Elektromagnetische Felder und Wellen Klausur Herbst 2000 Aufgabe 1 (5 Punkte) Ein magnetischer Dipol hat das Moment m = m e z. Wie groß ist Feld B auf der z- Achse bei z = a, wenn sich der Dipol auf der

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen Name: Vorname: Matrikelnummer: Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12:

Mehr

Verbesserte Resonatoren: DFB-Struktur

Verbesserte Resonatoren: DFB-Struktur Verbesserte Resonatoren: DFB-Struktur FB-Resonatoren (=Kantenemitter) sind einfach herzustellen Nachteil: - Es werden sehr viele longitudinale Moden unterstützt - es gibt keine eingebaute Modenselektivität

Mehr

Kleine Schwingungen vieler Freiheitsgrade

Kleine Schwingungen vieler Freiheitsgrade Kleine Schwingungen vieler Freiheitsgrade Betrachte System mit f Freiheitsgraden: (z.b. N Teilchen in 3 Dim.: ) Koordinaten: Geschwindigkeiten: Kinetische Energie: "Massenmatrix" Nebenbemerkung: Bei fortgeschrittenen

Mehr

IO2. Modul Optik. Refraktion und Reflexion

IO2. Modul Optik. Refraktion und Reflexion IO2 Modul Optik Refraktion und Reflexion In der geometrischen Optik sind die Phänomene der Reflexion sowie der Refraktion (Brechung) von enormer Bedeutung. Beide haben auch vielfältige technische Anwendungen.

Mehr

mit der Anfangsbedingung u(x, 0) = cos(x), x R. (i) Laut besitzt die Lösung folgende Darstellung

mit der Anfangsbedingung u(x, 0) = cos(x), x R. (i) Laut besitzt die Lösung folgende Darstellung Mathematik für Ingenieure IV, Kurs-Nr. 094 SS 008 Lösungsvorschläge zu den Aufgaben für die Studientage am 0./.08.008 Kurseinheit 5: Die Wärmeleitungsgleichung Aufgabe : Gegeben ist das Anfangswertproblem

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) = Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...

Mehr

Übungsblatt 6 ( ) mit Lösungen

Übungsblatt 6 ( ) mit Lösungen 1) Wellengleichung Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 014/15 Übungsblatt 6 (09.01.015) mit Lösungen Eine Welle, die sich in positiver x-richtung mit der Geschwindigkeit

Mehr

Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a).

Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a). Aufgabe Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = Es gilt det(λa = (λ n det(a det I n = n? Nein (außer für n = Es gilt deti n = det(ab = det A det B? Ja det(a =

Mehr

Praktikum II PO: Doppelbrechung und eliptisch polatisiertes Licht

Praktikum II PO: Doppelbrechung und eliptisch polatisiertes Licht Praktikum II PO: Doppelbrechung und eliptisch polatisiertes Licht Betreuer: Norbert Lages Hanno Rein praktikum2@hanno-rein.de Florian Jessen florian.jessen@student.uni-tuebingen.de 26. April 2004 Made

Mehr

Übungsblatt

Übungsblatt Übungsblatt 3 3.5.27 ) Die folgenden vier Matrizen bilden eine Darstellung der Gruppe C 4 : E =, A =, B =, C = Zeigen Sie einige Gruppeneigenschaften: a) Abgeschlossenheit: Berechnen Sie alle möglichen

Mehr

5. Eigenschwingungen

5. Eigenschwingungen 5. Eigenschwingungen Bei Innenraumproblemen gibt es wie bei elastischen Strukturen Eigenschwingungen. Eigenschwingungen sind rein reelle Lösungen der Helmholtz-Gleichung bei homogenen Randbedingungen.

Mehr

Elektromagnetische Wellen

Elektromagnetische Wellen Laufende Nr.: Matriel-Nr Seite: Ruhr-Uniersität Bochum Lehrstuhl für Hochfrequenztechni Σ 60 Prüfungslausur im Fach: Eletromagnetische Wellen am 06.0.997, 9:00 bis :00 Bitte die folgenden Hinweise beachten:.

Mehr

Übungsblatt 6 ( ) mit Lösungen

Übungsblatt 6 ( ) mit Lösungen Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 011/1 Übungsblatt 6 (7.01.01) mit Lösungen Vorlesungen: Mo, Mi, jeweils 08:15-09:50 HG Übungen: Fr 08:15-09:45 oder Fr 1:15-13:45

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +

Mehr

Wellencharakter von Licht, Reflexion, Brechung, Totalreflexion

Wellencharakter von Licht, Reflexion, Brechung, Totalreflexion Übung 24 Optik Wellencharakter von Licht, Reflexion, Brechung, Totalreflexion Lernziele - verstehen, dass das Licht Wellencharakter besitzt. - verstehen, wie beim Fresnel'schen Spiegelversuch die beobachteten

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0.

[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0. Wellen ================================================================== 1. Transversal- und Longitudinalwellen ------------------------------------------------------------------------------------------------------------------

Mehr

2. Vorlesung Partielle Differentialgleichungen

2. Vorlesung Partielle Differentialgleichungen 2. Vorlesung Partielle Differentialgleichungen Wolfgang Reichel Karlsruhe, 22. Oktober 204 Institut für Analysis KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz

Mehr

V. Führung und Speicherung elektromagnetischer Wellen

V. Führung und Speicherung elektromagnetischer Wellen elder an perfekten eitern 8 ' Führung und Speicherung em Wellen " n Metall(= Vakuum= wegen auf OF im Medium : + (' + : Oberflächenladungsdichte stellt sicher daß im eiter Null und außerhalb des eiters

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 07. 05. 2007 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. 2/1 Wellen in

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astronomie Auf dem Hügel 71 kbasu@astro.uni-bonn.de Website: www.astro.uni-bonn.de/tp-l

Mehr

NG Brechzahl von Glas

NG Brechzahl von Glas NG Brechzahl von Glas Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik und Wellenoptik.......... 2 2.2 Linear polarisiertes

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 5. Übungsblatt - 22.November 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (8 Punkte) Ein

Mehr

Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus

Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus 7. Wellen Ausbreitung von Schwingungen -> Wellen Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus Welle entsteht durch lokale Anregung oder Störung eine Mediums, die sich

Mehr

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4. 4. Die ebene Platte 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.4-1 Schallabstrahlung einer unendlichen ebenen Platte: Betrachtet

Mehr

Teil IV. Elektromagnetische Strahlung im Vakuum. 9. Das elektromagnetische Feld im Vakuum E = 0; B = 0; t ; t. (9.1) ( B) = ( t 2. (9.2) t = t B. t 2.

Teil IV. Elektromagnetische Strahlung im Vakuum. 9. Das elektromagnetische Feld im Vakuum E = 0; B = 0; t ; t. (9.1) ( B) = ( t 2. (9.2) t = t B. t 2. 9. Das eletromagnetische Feld im Vauum 9.1 Homogene Wellengleichungen Im Vauum ρ = 0; j = 0 lauten die Maxwell-Gleichungen Teil IV = 0; B = 0; = B t ; B = ɛ 0 µ 0 t. 9.1 letromagnetische Strahlung im Vauum

Mehr

X.4 Elektromagnetische Wellen im Vakuum

X.4 Elektromagnetische Wellen im Vakuum X.4 Elektromagnetische Wellen im Vakuum 173 X.4 Elektromagnetische Wellen im Vakuum In Abwesenheit von Quellen, ρ el. = 0 j el. = 0, nehmen die Bewegungsgleichungen (X.9) (X.11) für die elektromagnetischen

Mehr

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Sebastian Wild Freitag, 6.. Inhaltsverzeichnis Die WKB-Näherung. Grundlegendes............................. Tunnelwahrscheinlichkeit.......................

Mehr

Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche" Punkte mit inhomogenen K

Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche Punkte mit inhomogenen K Kapitel IV Projektive Geometrie In diesem Kapitel wird eine kurze Einführung in die projektive Geometrie gegeben. Es sollen unendlich ferne Punkte mit Hilfe von homogene Koordinaten eingeführt werden und

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Wellen und Leitungen, Übersicht, S. Rupp 1

Wellen und Leitungen, Übersicht, S. Rupp 1 Wellen und Leitungen Übersicht Stephan Rupp Nachrichtentechnik www.dhbw-stuttgart.de 1 Inhaltsübersicht Wellen und Leitungen Schwingungen und Wellen Reflexionen Anpassung Wellenausbreitung in Zweileitersystemen

Mehr

3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z

3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z R Es sei f : R n D R eine einmal stetig differenzierbare Funktion, für die in einer Umgebung eines Punkte a = a 1, a,, a n D gilt: fa 1, a,, a n = 0, f xn a 1, a,, a n 0 Dann gibt es eines Umgebung U des

Mehr

1 Fourier-Reihen und Fourier-Transformation

1 Fourier-Reihen und Fourier-Transformation Fourier-Reihen und Fourier-ransformation Fourier-Reihen und Fourier-ransformation J.B.J. de Fourier beobachtete um 8, dass sich jede periodische Funktion durch Überlagerung von sin(t) und cos(t) darstellen

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Musterlösung Montag 14. März 2011 1 Maxwell Wir bilden die Rotation der Magnetischen Wirbelbleichung mit j = 0: ( B) = +µµ 0 ɛɛ 0 ( E) t und verwenden wieder die Vektoridenditäet

Mehr

Polarisationsapparat

Polarisationsapparat 1 Polarisationsapparat Licht ist eine transversale elektromagnetische Welle, d.h. es verändert die Länge der Vektoren des elektrischen und magnetischen Feldes. Das elektrische und magnetische Feld ist

Mehr

4.1. Vektorräume und lineare Abbildungen

4.1. Vektorräume und lineare Abbildungen 4.1. Vektorräume und lineare Abbildungen Mengen von Abbildungen Für beliebige Mengen X und Y bezeichnet Y X die Menge aller Abbildungen von X nach Y (Reihenfolge beachten!) Die Bezeichnungsweise erklärt

Mehr

4. Gleichungen im Frequenzbereich

4. Gleichungen im Frequenzbereich Stationäre Geräusche: In der technischen Akustik werden überwiegend stationäre Geräusche untersucht. Stationäre Geräusche sind zusammengesetzt aus harmonischen Schallfeldern p x,t = p x cos t x Im Folgenden

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Pr[X t+1 = k] = Pr[X t+1 = k X t = i] Pr[X t = i], also. (q t+1 ) k = p ik (q t ) i, bzw. in Matrixschreibweise. q t+1 = q t P.

Pr[X t+1 = k] = Pr[X t+1 = k X t = i] Pr[X t = i], also. (q t+1 ) k = p ik (q t ) i, bzw. in Matrixschreibweise. q t+1 = q t P. 2.2 Berechnung von Übergangswahrscheinlichkeiten Wir beschreiben die Situation zum Zeitpunkt t durch einen Zustandsvektor q t (den wir als Zeilenvektor schreiben). Die i-te Komponente (q t ) i bezeichnet

Mehr

9. Übungsblatt zur Mathematik I für Maschinenbau

9. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 9. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-4.. Aufgabe G (Koordinatentransformation)

Mehr

Physik 4, Übung 2, Prof. Förster

Physik 4, Übung 2, Prof. Förster Physik 4, Übung, Prof. Förster Christoph Hansen Emailkontakt 4. April 03 Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit.

Mehr

Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder

Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder Bei der Behandlung reeller elektromagnetischer Felder im Fourierraum ist man mit der Tatsache konfrontiert, dass

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen Mathematik für Physiker III WS 2012/2013 Freitag 211 $Id: implizittexv 18 2012/11/01 20:18:36 hk Exp $ $Id: lagrangetexv 13 2012/11/01 1:24:3 hk Exp hk $ 1 Umkehrfunktionen und implizite Funktionen 13

Mehr

E 3. Ergänzungen zu Kapitel 3

E 3. Ergänzungen zu Kapitel 3 E 3. Ergänzungen zu Kapitel 3 1 E 3.1 Kritisches Verhalten des van der Waals Gases 2 E 3.2 Kritisches Verhalten des Ising Spin-1/2 Modells 3 E 3.3 Theorie von Lee und Yang 4 E 3.4 Skalenhypothese nach

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur

Elektromagnetische Felder und Wellen: Lösung zur Klausur Elektromagnetische Felder und Wellen: zur Klausur 2014-2 1 Aufgabe 1 ( 7 Punkte) Eine ebene Welle der Form E = (E x, ie x, 0) exp{i(kz + ωt)} trifft aus dem Vakuum bei z = 0 auf ein Medium mit ε = 6 und

Mehr

4.7 Lineare Systeme 1. Ordnung

4.7 Lineare Systeme 1. Ordnung 3. Die allgemeine Lösung der inhomogenen Differentialgleichung lautet damit yx = y hom x + y inh x = c x + c 2 x + 8 x + 4 xlnx2 4 xlnx = C x + C 2 x + 4 xlnx2 4 xlnx. Wir haben c 2 + 8 zu C 2 zusammengefasst.

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astronomie Auf dem Hügel 71 kbasu@astro.uni-bonn.de Website: www.astro.uni-bonn.de/tp-l

Mehr

Serie 4: Gradient und Linearisierung

Serie 4: Gradient und Linearisierung D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 4: Gradient und Linearisierung Bemerkungen: Die Aufgaben der Serie 4 bilden den Fokus der Übungsgruppen vom 7./9. März.. Wir betrachten die

Mehr

wobei A die Amplitude der einlaufenden Welle, B diejenige der reflektierten, und C die Amplitude der transmittierten Welle bezeichnen.

wobei A die Amplitude der einlaufenden Welle, B diejenige der reflektierten, und C die Amplitude der transmittierten Welle bezeichnen. Dieter Suter - 359 - Physik B2 6.2. Reflexion und Brechung 6.2.1. Reflexion: Grundlagen Z: Reflexion in 1D Transmission hergeleitet: Grenzflächen sind hierbei Punkte, an denen sich der Wellenwiderstand

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

2x x 2 sin z x 2 y cos z. 3 (2x + x 2 sin z + x 2 y cos z)

2x x 2 sin z x 2 y cos z. 3 (2x + x 2 sin z + x 2 y cos z) Elektromagnetische Felder Lösung zur Klausur om 9. März 22. a) δ(r) = für r und f(r) δ(r) dr = f() b) Normalkomponenten on D für σ = sowie on B Tangentialkomponenten on H für K = sowie on E c) Richtungsableitung:

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

Lösungen: 2. Übung zur Vorlesung Optoelektronik I

Lösungen: 2. Übung zur Vorlesung Optoelektronik I Gerken/Lemmer SS 2004 Lösungen: 2. Übung zur Vorlesung Optoelektronik I Aufgabe 3: Berechnung von Wellenleitermoden (a) Um die Wellenleitermoden der gegebenen Struktur zu finden, plotten wir die Amplitude

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2012-2 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12: Aufgabe 13: Aufgabe

Mehr

10.6. Implizite ebene Kurven und Tangenten

10.6. Implizite ebene Kurven und Tangenten 0.6. Implizite ebene Kurven und Tangenten Im Gegensatz zu expliziten Darstellungen sind weder implizite noch Parameterdarstellungen einer Kurve eindeutig. Der Übergang von impliziten zu expliziten Darstellungen

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 5

Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur Herbst Die Ladung in dem Raumbereich resultiert aus der Raumladungsdichte

Elektromagnetische Felder und Wellen: Lösung zur Klausur Herbst Die Ladung in dem Raumbereich resultiert aus der Raumladungsdichte Elektromagnetische Felder und Wellen: Lösung zur Klausur Herbst 27 Aufgabe Im freien Raum wird das elektrische Feld E E x a ) 2 ey gemessen. Wie groß ist die elektrische Ladung in einem würfelförmigen

Mehr

fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt 1 für beliebiges k N und x 0. a 2 x 1 x 3 y 2 ) 2

fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt 1 für beliebiges k N und x 0. a 2 x 1 x 3 y 2 ) 2 fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt Aufgabe Induktion). a) Beweisen Sie, dass + 3 + 5 +... + n )) ein perfektes Quadrat genauer n ) ist. b) Zeigen Sie: + + +...

Mehr

1 0 1, V 3 = M, und λ A = λa

1 0 1, V 3 = M, und λ A = λa Aufgabe 57. Magische Quadrate Eine reelle 3 3-Matrix A = a 11 a 12 a 13 a 21 a 22 a 23 heißt magisches Quadrat, falls alle Zeilensummen, alle Spaltensummen und die beiden Diagonalsummen a 11 + a 22 + a

Mehr

Aufgabe 2.1: Wiederholung: komplexer Brechungsindex

Aufgabe 2.1: Wiederholung: komplexer Brechungsindex Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Jens Repp / Eric Parzinger Kontakt: jens.repp@wsi.tum.de / eric.parzinger@wsi.tum.de Blatt 2, Besprechung: 23.04.2014 / 30.04.2014

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwerte und Eigenvektoren Siehe Analysis (von der Hude, Folie 20: Definition 2.3. Ein Vektor x R n heißt Eigenvektor der quadratischen n n-matrix A zum Eigenwert λ R, wenn gilt Ax = λx Die Eigenwerte

Mehr

Wissenswertes zum Einsatz von Lichtleitern

Wissenswertes zum Einsatz von Lichtleitern Wissenswertes zum Einsatz von Lichtleitern Dr. Jörg-Peter Conzen Vice President NIR & Process Bruker Anwendertreffen, Ettlingen den 13.11.2013 Innovation with Integrity Definition: Brechung Brechung oder

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Theoretische Physik II Quantenmechanik

Theoretische Physik II Quantenmechanik Michael Czopnik Bielefeld, 11. Juli 014 Fakultät für Physik, Universität Bielefeld Theoretische Physik II Quantenmechanik Sommersemester 014 Lösung zur Probeklausur Aufgabe 1: (a Geben Sie die zeitabhängige

Mehr

12. Vorlesung. I Mechanik

12. Vorlesung. I Mechanik 12. Vorlesung I Mechanik 7. Schwingungen 8. Wellen transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen 9. Schallwellen, Akustik Versuche: Wellenwanne: ebene

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartment E13 WS 2011/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung

Mehr

Schwingungen. Inhaltsverzeichnis. TU München Experimentalphysik 1 DVP Vorbereitungskurs. Andreas Brenneis; Rebecca Saive; Felicitas Thorne

Schwingungen. Inhaltsverzeichnis. TU München Experimentalphysik 1 DVP Vorbereitungskurs. Andreas Brenneis; Rebecca Saive; Felicitas Thorne TU München Experimentalphysik 1 DVP Vorbereitungskurs Andreas Brenneis; Rebecca Saive; Felicitas Thorne Schwingungen Donnerstag, der 31.07.008 Inhaltsverzeichnis 1 Einleitung: Schwingungen und Wellen 1

Mehr

Grundlagen der Physik 2 Lösung zu Übungsblatt 12

Grundlagen der Physik 2 Lösung zu Übungsblatt 12 Grundlagen der Physik Lösung zu Übungsblatt Daniel Weiss 3. Juni 00 Inhaltsverzeichnis Aufgabe - Fresnel-Formeln a Reexionsvermögen bei senkrechtem Einfall.................. b Transmissionsvermögen..............................

Mehr

6 Elektromagnetische Schwingungen und Wellen

6 Elektromagnetische Schwingungen und Wellen 6 Elektroagnetische Schwingungen und Wellen Elektroagnetischer Schwingkreis Schaltung it Kondensator C und Induktivität L. Kondensator wird periodisch aufgeladen und entladen. Tabelle 6.1: Vergleich elektroagnetischer

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 213 Prof. Dr. Erich Walter Farkas Kapitel 7: Lineare Algebra Kapitel 7.5: Eigenwerte und Eigenvektoren einer quadratischen Matrix Prof. Dr. Erich Walter Farkas Mathematik

Mehr

SCHWINGUNGEN WELLEN. Schwingungen Resonanz Wellen elektrischer Schwingkreis elektromagnetische Wellen

SCHWINGUNGEN WELLEN. Schwingungen Resonanz Wellen elektrischer Schwingkreis elektromagnetische Wellen Physik für Pharmazeuten SCHWINGUNGEN WELLEN Schwingungen Resonanz elektrischer Schwingkreis elektromagnetische 51 5.1 Schwingungen Federpendel Auslenkung x, Masse m, Federkonstante k H d xt ( ) Bewegungsgleichung:

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

Photonische Kristalle

Photonische Kristalle Kapitel 2 Photonische Kristalle 2.1 Einführung In den letzten 20 Jahren entwickelten sich die Photonischen Kristalle zu einem bevorzugten Gegenstand der Grundlagenforschung aber auch der angewandten Forschung

Mehr

Akustik. t 1 > t 0. x = c t

Akustik. t 1 > t 0. x = c t Akustik Wir kehren jetzt von der Wärmestrahlung (im Sinne der Thermodynamik eines Photonengases) zurück zu einem normalen Gas (oder gar einem Festkörper) und betrachten, wie sich eine Störung im Medium

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr