Simulation quantenmechanischer Systeme

Größe: px
Ab Seite anzeigen:

Download "Simulation quantenmechanischer Systeme"

Transkript

1 Simulation quantenmechanischer Systeme Hauptseminar: Physik des Quantencomputers (SS13) Johannes Janssen Institut für Theoretische Festkörperphysik Optic fibre Photon source (SPDC) C R z (jα)h R R y (β)p V H H X Calcite beam displacer 0 D1 R z (jγ)h HR z (ω k ) D2 D3 Measurement in the 0/1 basis R z (jγ) 1 KIT Universität des Johannes Landes Baden-Württemberg Janssen - Simulation und quantenmechanischer Systeme Institut für Theoretische Festkörperphysik nationales Forschungszentrum in der Helmholtz-Gemeinschaft

2 Übersicht Motivation und Ziel Beliebige Systeme Systeme mit lokaler Wechselwirkung Digitale Quantensimulation Iterative Phase Estimation Algorithm 1. und 2. Quantisierung Energien des H 2 Moleküls Johannes Janssen - Simulation quantenmechanischer Systeme Institut für Theoretische Festkörperphysik

3 Motivation und Ziel Warum überhaupt simulieren? Modell überprüfen, experimentell nicht realisierbar keine analytische Lösung Wie simulieren? Wir schauen uns die Zeitentwicklung an, um etwas über das System zu lernen. Was ist eine gute Simulation? skaliert, also Speicher und Zeitaufwand steigen höchstens polynomiell mit Systemgröße Simulationsdauer Genauigkeit Johannes Janssen - Simulation quantenmechanischer Systeme Institut für Theoretische Festkörperphysik

4 Idee R. P. Feynman (1982): Simulating Physics with Computers nature isn t classical, dammit, and if you want to make a simulation of nature, you d better make it quantum mechanical spin waves in a spin lattice imitat[e] Bose-particles in the field theory analoge Quantensimulation Aufgabe: work out the classes of different kinds of quantum mechanical systems which are really intersimulatable Johannes Janssen - Simulation quantenmechanischer Systeme Institut für Theoretische Festkörperphysik

5 Beliebige quantenmechanische Systeme beliebiges System Systemgröße: N Quantenzahlen Hilbertraum H wächst exponentiell mit N Zeitentwicklung: U = e iht H N Spin 1 2 Teilchen: dim H = 2 N U C 2N 2 N klassischer Digitalcomputer allein die Wellenfunktion benötigt exponentiell viel Speicher (O(2 N )) Zeitentwicklung = exponentiell große Matrixgleichung (O(4 N )) Quantencomputer Wellenfunktion benötigt nur polynomiell viele Qbits (N) aber, da H und damit U beliebig i. A. exponentiell viele Gates nötig um U darzustellen (O(4 N )) I. A. benötigt auch ein Quantencomputer exponentiell viele Rechenschritte um ein System zu simulieren Johannes Janssen - Simulation quantenmechanischer Systeme Institut für Theoretische Festkörperphysik

6 Systeme mit lokaler Wechselwirkung Sei H = l i=1 H i, wobei H i auf einen m i dimensionalen Unterraum wirkt, mit maximal k der N Quantenzahlen. Zeitentwicklung Suzuki Trotter: e δ(a+b) = e δa e δb + O(δ 2 ) e iht (e ih 1t/n... e ih l t/n ) n nötige Rechenschritte: T n l i=1 m 2 i nlm 2 ε n(e iht/n 1 iht/n) sup normalerweise wächst l nur polynomiell (Modell nächster Nachbarn) Um Systeme mit lokaler Wechselwirkung zu simulieren, benötigt ein Quantencomputer maximal polynomiell viele Rechenschritte Johannes Janssen - Simulation quantenmechanischer Systeme Institut für Theoretische Festkörperphysik

7 Systeme mit lokaler Wechselwirkung Beispiel: Heisenberg Modell mit N Spin 1 2 Teilchen H = J S i S j <i,j> Nachbarn pro Teilchen: p = 2d H i beschreibt die Wechselwirkung zwischen zwei Teilchen (m = 2) p N 2 H = H i, H i = JS αi S βi i=1 Darstellung der Wellenfunktion N Qbits, nötige Rechenschritte: T n l mi 2 i=1 = 2nNp 2Np/ε Johannes Janssen - Simulation quantenmechanischer Systeme Institut für Theoretische Festkörperphysik

8 Systeme mit lokaler Wechselwirkung Vergleich klassischer Digitalcomputer Zeitentwicklung kann analog vereinfacht werden aber allein das Darstellen der Wellenfunktion benötigt exponentiell viel Speicher für große Systeme sind daher Näherungslösungen nötig, indem z. B. die erlaubten Wellenfunktionen eingeschränkt werden DFT Monte Carlo Simulation Johannes Janssen - Simulation quantenmechanischer Systeme Institut für Theoretische Festkörperphysik

9 Digitale Quantensimulation Allgemeine Vorgehensweise 1 Zustand präparieren 0 ψ Grundzustand (z. B. adiabatisch) kanonisches Ensemble (z. B. Metropolis Algorithmus) 2 Zeitentwicklung ψ e iht ψ = e 2πiϕ ψ, wobei H ψ = ɛ ψ, ɛ = 2πϕ t Suzuki Trotter Formeln (auch höherer Ordnung) 3 Messung von Observablen ϕ bestimmen Phase Estimation Algorithm (PEA) Johannes Janssen - Simulation quantenmechanischer Systeme Institut für Theoretische Festkörperphysik

10 (Iterative) Phase Estimation Algorithm PEA schon bekannt vom Shor Algorithmus 0 H H ϕ ψ U ψ muss N 2 2m durchgeführt werden, um ϕ auf m binäre Stellen zu bestimmen IPEA an der Tafel (PDF) 0 H R z (ω k ) H ϕ k ψ U 2k 1 ψ m Iterationen, um ϕ auf m binäre Stellen zu bestimmen Johannes Janssen - Simulation quantenmechanischer Systeme Institut für Theoretische Festkörperphysik

11 Erste und zweite Quantisierung am Beispiel eines Moleküls Erste Quantisierung Hamiltonoperator ohne Spinfreiheitsgrade: ( ) h H = 2 2 h i 2M i i 2 2 j + e2 Z i Z j 2m j e 4πε 0 R i<j i R j + 1 r i<j i r j + Z i R i,j i r j }{{}}{{} T V Diskretisierung von kontinuierlichen Variablen Zeitentwicklung: e iht (U QFT eitt/n U QFT e ivt/n ) n ψ QFT QFT U ψ V T 1 QFT 1 n mal Johannes Janssen - Simulation quantenmechanischer Systeme Institut für Theoretische Festkörperphysik

12 Erste und zweite Quantisierung am Beispiel eines Moleküls Zweite Quantisierung semi klassisch (Born Oppenheimer Näherung), d.h. Kernpositionen R i sind klassische Parameter der Simulation Übergang in den Fock Raum: H H(a i, a i) = h pq a pa q + 1 pq 2 h pqrs a pa qa r a s, pqrs dabei sind h pq und h pqrs klassiche Integrale Jordan Wigner Transformation: ( ) ( a j = σm z σ j, a j = σm z m<j m<j ) σ + j Johannes Janssen - Simulation quantenmechanischer Systeme Institut für Theoretische Festkörperphysik

13 Energien des H 2 Moleküls auf Basis von Photonen realisiertes Experiment atomare 1s Orbitale bilden (anti )bindendes Molekülorbital: g, u vier Einzelelektronen Zustände: g, g, u, u antisymmetrische Kombination mittels Slater Determinate: Φ 1 = g, g = 1 ( g, g g, g ) 2 Φ 2 = g, u Φ 3 = g, u Φ 4 = g, u Φ 5 = g, u Φ 6 = u, u aus Symmetriegründen ist H blockdiagonal in vier Unterräumen {Φ 1, Φ 6 }, {Φ 2 }, {Φ 3, Φ 4 }, {Φ 5 } Bestimmung der Eigenwerte von H (1,6), H (3,4) mittels IPEA Johannes Janssen - Simulation quantenmechanischer Systeme Institut für Theoretische Festkörperphysik

14 Energien des H 2 Moleküls Control qubit 0 H R z (ω k ) H Measurement in the 0/1 basis R z (jα) 10 8 Ground state (G) 1st excited state (E1) Register qubits n U 2k-1 n U j = R y (β) R z (jγ) R y ( β) Energy (MJ/mol) nd excited state (E2) 3rd excited state (E3) Photon source (SPDC) Optic fibre C R z (jα)h R H = 0, R V = 2/3 SPCM Analysis/prep λ/4 λ/2 Fibre coupler R H = 0, R V = 1 Interference filter Atomic separation (pm) R R y (β)p V H H X Calcite beam displacer 0 D1 R z (jγ)h HR z (ω k ) D3 Bildquelle: [Aspuru10] D2 Measurement in the 0/1 basis R z (jγ) Johannes Janssen - Simulation quantenmechanischer Systeme Institut für Theoretische Festkörperphysik

15 Ausblick Nächste Schritte Zustand nicht klassisch präparieren (Grundzustand z.b. adiabatisch) direkte Berechnung des Zeitentwicklungsoperators U Skalierung Quantenfehlerkorrektur nötig U 2k braucht i. A. doppelt so viele Gates wie U k aber im IEPA wächst die Genauigkeit von 2 k auf 2 2k Elementary quantumgates required per time step thousands Li 200 He H H H Number of particles Bildquelle: [Aspuru08] O Total qubits required to store the wavefunction Li 100 He H 50 H H O Johannes Janssen - Simulation quantenmechanischer Systeme Institut für Theoretische Festkörperphysik

16 Literatur I R. P. Feynman Simulating Physics with Computers doi: /bf , 1982 S. Llyod Universal Quantum Simulators doi: /science , 1996 M. H. Yung, J. D. Whitfield, S. Boixo, D. G. Tempel, A. Aspuru Guzik Introduction to Quantum Algorithms for Physics and Chemistry arxiv: , 2012 M. Dobšíček, G. Johansson, V. Shumeiko, G. Wendin Arbitrary accuracy iterative quantum phase estimation algorithm using a single ancillary qubit: A two-qubit benchmark doi: /physreva , Johannes Janssen - Simulation quantenmechanischer Systeme Institut für Theoretische Festkörperphysik

17 Literatur II B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, A. G. White Towards quantum chemistry on a quantum computer doi: /nchem.483, 2010 I. Kassala, S. P. Jordanb, P. J. Lovec, M. Mohsenia, and A. Aspuru-Guzika Polynomial-time quantum algorithm for the simulation of chemical dynamics doi: /pnas , Johannes Janssen - Simulation quantenmechanischer Systeme Institut für Theoretische Festkörperphysik

Quanten-Fehler-Korrektur

Quanten-Fehler-Korrektur Quanten-Fehler-Korrektur Hauptseminar Physik des Quantencomputers, SS 2013 Martin Koppenhöfer Institut für Theoretische Festkörperphysik (TFP) Correct Error M M 0 KIT 04.06.2013 Universität des M. Landes

Mehr

Quantencomputer mit Spins in Quantenpunkten

Quantencomputer mit Spins in Quantenpunkten Vortrag von Seminar Physik des Quantencomputers, Institut für Theoretische Festkörperphysik KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Quantenzahlen. A B z. Einführung in die Struktur der Materie 67

Quantenzahlen. A B z. Einführung in die Struktur der Materie 67 Quantenzahlen Wir haben uns bis jetzt nur mit dem Grundzustand des H + 2 Moleküls beschäftigt Wie sieht es aus mit angeregten Zuständen wie z.b. 2p Zuständen im H Atom? Bezeichnung der Molekülorbitale

Mehr

Simulating Physics with Computers

Simulating Physics with Computers Simulating Physics with Computers Richard P. Feynman Streckenzugverfahren nach Euler Feynman will über Computer nachdenken, die die Natur nicht nur imitieren sondern sie exakt nachahmen/emulieren. Da die

Mehr

Universelle Quantengatter

Universelle Quantengatter Universelle Quantengatter Physik des Quantencomputers Alexander Jakub Kwiatkowski Fakultät für Physik, KIT 24. April 2012 A.J.Kwiatkowski (Fakultät für Physik, KIT) Universelle Quantengatter 24.04.12 1

Mehr

Quanteninformation/ Quantencomputer

Quanteninformation/ Quantencomputer Quanteninformation/ Quantencomputer Jonas Heinze Proseminar SS 2013 Jonas Heinze (University of Bielefeld) Quanteninformation/ Quantencomputer 2013 1 / 20 Übersicht 1 Kurzer Einstieg in die Informatik

Mehr

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2 H + 2 Die molekulare Bindung : Quantenmechanische Lösung Aufstellen der Schrödingergleichung für das H + 2 Molekülion und Lösung Wichtige Einschränkung: Die Kerne sind festgehalten H Ψ(r) = E Ψ(r) (11)

Mehr

Das H + 2 -Molekülion

Das H + 2 -Molekülion Das Näherungen für das elektronische Problem und Kernbewegungen 7. Dezember 2011 Schrödinger-Gleichung des s Abbildung: Arthur Beiser; Atome, Moleküle, Festkörper; Vieweg, Braunschweig 1983 ( K/E 2 2 +

Mehr

Quanteninformation und mögliche Anwendungen in der Kommunikationstechnik

Quanteninformation und mögliche Anwendungen in der Kommunikationstechnik Quanteninformation und mögliche Anwendungen in der Kommunikationstechnik David Hellmers, 14. Juni 2016 Übersicht Motivation Quanteninformatik Qubits Quanten-Gates Quantenkommunikation Quantenkanal Quantenkryptographie

Mehr

QU Darstellung durch 1-Partikel-System mit zwei Eigenzuständen 0 und 1. (z.b. Spin, Polarisierung, Grund- und erregter Zustand eines

QU Darstellung durch 1-Partikel-System mit zwei Eigenzuständen 0 und 1. (z.b. Spin, Polarisierung, Grund- und erregter Zustand eines 1 Klassische vs. Quantencomputer 1.1 Bits und Qubits KL Darstellung durch gemeinsamen Zustand vieler Elektronen. Diskretisierung durch Schwellwert bezüglich einer Observablen. (z.b. Spannung am Kondensator).

Mehr

Proseminar CiS November Quantencomputer. Tom Petersen

Proseminar CiS November Quantencomputer. Tom Petersen Proseminar CiS November 2011 Quantencomputer Tom Petersen Die Idee des Quantencomputers - Fortschreitende Miniaturisierung - Es existieren technische Grenzen, auch wenn sie durch neue Verfahren immer weiter

Mehr

11. Quantenchemische Methoden

11. Quantenchemische Methoden Computeranwendung in der Chemie Informatik für Chemiker(innen) 11. Quantenchemische Methoden Jens Döbler 2004 "Computer in der Chemie", WS 2003-04, Humboldt-Universität VL11 Folie 1 Grundlagen Moleküle

Mehr

Dekohärenz und die Entstehung klassischer Eigenschaften aus der Quantenmechanik

Dekohärenz und die Entstehung klassischer Eigenschaften aus der Quantenmechanik Dekohärenz und die Entstehung klassischer Eigenschaften aus der Quantenmechanik G. Mahler Spezialvorlesung SS 006 7. 4. 006 Einführung und Übersicht Warum und in welchem Sinn ist Kohärenz»untypisch«? 04.

Mehr

Kohärenz, Verschränkung und Verschränkungsmaße I

Kohärenz, Verschränkung und Verschränkungsmaße I Kohärenz, Verschränkung und Verschränkungsmaße I Bernd Kübler Bernd Kübler Kohärenz, Verschränkung und Verschränkungsmaße 1 Motivation Theoretische Werkzeuge zur Handhabung von Qubits sind unerlässlich

Mehr

Die Hartree-Fock-Methode

Die Hartree-Fock-Methode February 11, 2016 1 Herleitung der Hartree-Fock-Gleichung 2 Das Heliumatom Gauß sche s-basis Roothaan-Hall-Gleichung Moleküle Herleitung der Hartree-Fock-Gleichung Betrachten wir zunächst das H 2 -Molekül:

Mehr

Einleitung nichtrel. Wasserstoatom (spinlos) rel. Wasserstoatom (für spin 1 2 -Teilchen) Orbitale des (rel.) Wasserstoatoms Ausblick und oene Fragen

Einleitung nichtrel. Wasserstoatom (spinlos) rel. Wasserstoatom (für spin 1 2 -Teilchen) Orbitale des (rel.) Wasserstoatoms Ausblick und oene Fragen Florian Wodlei Seminar aus höherer QM Überblick 1 Einleitung Motivation Was ist ein Orbital? Überblick 1 Einleitung Motivation Was ist ein Orbital? 2 Überblick 1 Einleitung Motivation Was ist ein Orbital?

Mehr

Quantencomputer mit supraleitenden Systemen

Quantencomputer mit supraleitenden Systemen Quantencomputer mit supraleitenden Systemen von Steven Weitemeyer E KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz Gemeinschaft www.kit.edu Gliederung Supraleitung

Mehr

Elektronenstrukturrechungen

Elektronenstrukturrechungen Seminar zur Theorie der Atome, Kerne und kondensierten Materie WS 13/14 Elektronenstrukturrechungen Basissätze und Elektronenkorrelation Bastian Schäfer 9.1.014 Inhaltsverzeichnis 1 Einleitung 1 Lösung

Mehr

Stichworte zur Quantentheorie

Stichworte zur Quantentheorie Stichworte zur Quantentheorie Franz Embacher 1 und Beatrix Hiesmayr Unterlagen zum Workshop Quantenkryptographie und Quantencomputer im Rahmen der 58. Fortbildungswoche Physik/Chemie Institut für Theoretische

Mehr

9. Moleküle. 9.1 Wasserstoff-Molekül Ion H Wasserstoff-Molekül H Schwerere Moleküle 9.4 Angeregte Moleküle. Physik IV SS

9. Moleküle. 9.1 Wasserstoff-Molekül Ion H Wasserstoff-Molekül H Schwerere Moleküle 9.4 Angeregte Moleküle. Physik IV SS 9.1 Wasserstoff-Molekül Ion H + 9. Wasserstoff-Molekül H 9.3 Schwerere Moleküle 9.4 Angeregte Moleküle 9.1 9.1 Wasserstoff-Molekül Ion H + Einfachstes Molekül: H + = p + e p + Coulomb-Potenzial: Schrödinger-Gleichung:

Mehr

Quanten Fourier Transformation & Shors Faktorisierungs Algorithmus

Quanten Fourier Transformation & Shors Faktorisierungs Algorithmus Quanten Fourier Transformation & Shors Faktorisierungs Algorithmus Universität Siegen 4. Juli 2006 Inhaltsverzeichnis Quantenfouriertransformation 1 Quantenfouriertransformation Rechnen mit Qubits diskrete

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Jan von Cosel (janvoncosel@gmx.de) Haleh

Mehr

Quantenrechner. Ideen der Informatik Kurt Mehlhorn

Quantenrechner. Ideen der Informatik Kurt Mehlhorn Quantenrechner Ideen der Informatik Kurt Mehlhorn Übersicht Vorteile von Quantenrechnern Qbits und Überlagerungen Quantenrechner Grovers Algorithmus Technische Realisierung Zusammenfassung Quantenrechner

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Sarah Römer (roemer@em.uni-frankfurt.de) Simona Scheit (simona.scheit@googlemail.com) Juanma

Mehr

Quantenfehlerkorrektur

Quantenfehlerkorrektur korrektur korrektur 14. Juli 2005 Seminar: Quantencomputing korrektur Einleitung Ideales (fehlerfreies) Quantencomputing liefert schnelle Algorithmen Ideales Quantencomputing ohne Bedeutung für die Praxis

Mehr

Da Atome viele ununterscheidbare Elektronen besitzen, sind ihre Zustände durch interelektronische Coulomb- und Austausch-Wechselwirkungen bestimmt.

Da Atome viele ununterscheidbare Elektronen besitzen, sind ihre Zustände durch interelektronische Coulomb- und Austausch-Wechselwirkungen bestimmt. 12 Moleküle Slide 267 Vorbemerkungen Da Atome viele ununterscheidbare Elektronen besitzen, sind ihre Zustände durch interelektronische Coulomb- und Austausch-Wechselwirkungen bestimmt. Je 2 Elektronen

Mehr

Quantenteleportation

Quantenteleportation Quantenteleportation Tim Robert Würfel Fakultät für Physik Universität Bielefeld Physikalisches Proseminar 2013 1 von 34 Würfel, Tim Robert Quantenteleportation Gliederung Motivation 1 Motivation 2 Physikalische

Mehr

Ultrakalte Atome in optischen Gittern als Quantensimulatoren Seminar Optik/Photonik

Ultrakalte Atome in optischen Gittern als Quantensimulatoren Seminar Optik/Photonik Ultrakalte Atome in optischen Gittern als Quantensimulatoren Seminar Optik/Photonik http://www.ptb.de/de/org/4/nachrichten4/ 2006/Bilder/grund11 432 1.jpg Johann Förster Institut für Physik Humboldt-Universität

Mehr

Theoretische Chemie / Computerchemie

Theoretische Chemie / Computerchemie Theoretische Chemie / Computerchemie Bernd Hartke Theoretische Chemie Institut für Physikalische Chemie Christian-Albrechts-Universität Kiel Max-Eyth-Straße 2 Erdgeschoß, Raum 29 Tel.: 43/88-2753 hartke@pctc.uni-kiel.de

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Topic: Helium-Atom Vorlesung: Mo 10h-12h, Do9h-10h Übungen: Do 8h-9h Web site: http://www.theochem.uni-frankfurt.de/tc1

Mehr

Einführung in die Computerchemie

Einführung in die Computerchemie Einführung in die Computerchemie Dassia Egorova Theoretische Chemie, Max-Eyth-Str. 1, E.G., Raum 4 theochem.pctc.uni-kiel.de degorova@gmail.com Inhälte Moleküldynamik Rechenmethoden der Quantenchemie QM/MM...

Mehr

Der Quantencomputer. Unterschiede zum Digitalrechner und Nutzungsmöglichkeiten. Dresden, Simon Willeke

Der Quantencomputer. Unterschiede zum Digitalrechner und Nutzungsmöglichkeiten. Dresden, Simon Willeke Fakultät Informatik Institut für Technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architketur Der Quantencomputer Unterschiede zum Digitalrechner und Nutzungsmöglichkeiten Simon

Mehr

Quantencomputing mit supraleitenden Schaltungen

Quantencomputing mit supraleitenden Schaltungen Quantencomputing mit supraleitenden Schaltungen Simon Sudermann Institut für Theoretische Festkörperphysik 1 KIT Universität des Landes Baden-Württemberg und 14.05.13 nationales Forschungszentrum in der

Mehr

Verallgemeinerung des Lieb schen Variationsprinzips

Verallgemeinerung des Lieb schen Variationsprinzips Verallgemeinerung des Lieb schen Variationsprinzips gemeinsame Arbeit mit V. Bach, S. Breteaux und E. Menge Hans Konrad Knörr LG Angewandte Stochastik FernUniversität in Hagen Ghiffa, 25. September 2014

Mehr

LS Kopplung. = a ij l i l j. W li l j. = b ij s i s j. = c ii l i s i. W li s j J = L + S. L = l i L = L(L + 1) J = J(J + 1) S = s i S = S(S + 1)

LS Kopplung. = a ij l i l j. W li l j. = b ij s i s j. = c ii l i s i. W li s j J = L + S. L = l i L = L(L + 1) J = J(J + 1) S = s i S = S(S + 1) LS Kopplung in many electron systems there are many li and si the coupling to for total momentum J depends on the energetic ordering of the interactions orbital momenta interaction W li l j = a ij l i

Mehr

Seminar zur Nanoelektronik 2008: Quantencomputer. Jan-Philip Gehrcke. Julius-Maximilians-Universität Würzburg. 17. Juli 2008

Seminar zur Nanoelektronik 2008: Quantencomputer. Jan-Philip Gehrcke. Julius-Maximilians-Universität Würzburg. 17. Juli 2008 Seminar zur Nanoelektronik 2008: Quantencomputer Jan-Philip Gehrcke Julius-Maximilians-Universität Würzburg 17. Juli 2008 Übersicht 1 Motivation Quantencomputer 2 Logische Operationen 3 Anforderungen bei

Mehr

Vorlesung 21. Identische Teilchen und das Pauli-Prinzip

Vorlesung 21. Identische Teilchen und das Pauli-Prinzip Vorlesung 1 Identische Teilchen und das Pauli-Prinzip Identische Teilchen: Jede Art von Teilchen in der Natur definieren wir durch ihre Eigenschaften, z.b. Massen, Spins, Ladungen usw. Das bedeutet, dass

Mehr

Theoretische Chemie (TC II) Computational Chemistry

Theoretische Chemie (TC II) Computational Chemistry Theoretische Chemie (TC II) Computational Chemistry Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Dr. Matthias Ruckenbauer (matruc@theochem.uni-frankfurt.de) Dr. Haleh Hashemi

Mehr

E 7. Ergänzungen zu Kapitel 7

E 7. Ergänzungen zu Kapitel 7 E 7. Ergänzungen zu Kapitel 7 1 E 7.1 Ising Spin-1/2 System (D = 1) 2 E 7.2 Ising Spin-1/2 System (D = 2) G. Kahl & F. Libisch (E136) Statistische Physik I Erg. zu Kapitel 7 7. Juni 2016 1 / 12 E 7.1 Ising

Mehr

Theoretische Chemie (TC II) Computational Chemistry

Theoretische Chemie (TC II) Computational Chemistry Theoretische Chemie (TC II) Computational Chemistry Lecture 2 28/10/2011 Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Vorlesung: Mi 11h30-13h, Fr 8h-9h30 Praktikum (gemäß Ankündigung, statt Vorlesung):

Mehr

Diskrete Symmetrien C, P, T

Diskrete Symmetrien C, P, T Hauptseminar 2006 Symmetrien in Kern und Teilchenphysik Diskrete Symmetrien C, P, T Marcus Heinrich 03. Mai 2005 03. Mai 06 Marcus Heinrich 1 Gliederung Multiplikative Quantenzahlen Paritätsoperator P

Mehr

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil 1. Grundlagen der Quantenmechanik (a) Wellenfunktion: Die Wellenfunktion Ψ(x, t) beschreibt den quantenmechanischen Zustand eines Teilchens am Ort x zur

Mehr

Chern-Simons Theorie. Thomas Unden, Sabrina Kröner 01. Feb Theorie der kondensierten Materie. Fraktionaler Quanten-Hall-Effekt

Chern-Simons Theorie. Thomas Unden, Sabrina Kröner 01. Feb Theorie der kondensierten Materie. Fraktionaler Quanten-Hall-Effekt Chern-Simons Theorie Thomas Unden, Sabrina Kröner 01. Feb. 2012 Theorie der kondensierten Materie Fraktionaler Quanten-Hall-Effekt Seite 2 Chern-Simons Theorie Thomas Unden, Sabrina Kröner 01. Feb. 2012

Mehr

8.2. Der harmonische Oszillator, quantenmechanisch

8.2. Der harmonische Oszillator, quantenmechanisch 8.. Der harmonische Oszillator, quantenmechanisch Quantenmechanische Behandlung Klassisch: Rückstellkraft für ein Teilchen der Masse m sei zur Auslenkung : 0.5 0.0 0.5 D m Bewegungsgleichung: m D F -D

Mehr

Quantencomputer. Der Shor-Algorithmus. Präsentation von Oleg Yuschuk

Quantencomputer. Der Shor-Algorithmus. Präsentation von Oleg Yuschuk Quantencomputer Der Shor-Algorithmus Präsentation von Oleg Yuschuk Der Shor Algorithmus Peter W. Shor (* 14. August 1959 in New York) Algorithmus zum Faktorisieren von Zahlen auf dem Quantencomputer Besonderheit:

Mehr

Seminar: Quantenmechanik und Quantencomputer Vortrag 9: Optische Photonen Inhaltsverzeichnis

Seminar: Quantenmechanik und Quantencomputer Vortrag 9: Optische Photonen Inhaltsverzeichnis Seminar: Quantenmechanik und Quantencomputer Vortrag 9: Optische Photonen Inhaltsverzeichnis 1 Einführung 1.1 Vorteile der Photonen als Träger des Qubits: 1. Qubit Repräsentation 1. Erzeugung und Messung

Mehr

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 10. Vorlesung. Pawel Romanczuk WS 2016/17

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 10. Vorlesung. Pawel Romanczuk WS 2016/17 Theoretical Biophysics - Quantum Theory and Molecular Dynamics 10. Vorlesung Pawel Romanczuk WS 2016/17 http://lab.romanczuk.de/teaching Zusammenfassung letzte VL Der Spin Grundlegende Eigenschaften Spin

Mehr

Ordnungsberechnung und Faktorisierung

Ordnungsberechnung und Faktorisierung sberechnung Information, Codierung, Komplexität 2 SS 2007 14. Juni 2007 Voraussetzungen: sberechnung U ist unitäre Transformation mit EV ψ zum EW e 2πiϕ kontrollierte U j -Operationen auf ψ sind durchführbar

Mehr

Verschränkung. Kay-Sebastian Nikolaus

Verschränkung. Kay-Sebastian Nikolaus Verschränkung Kay-Sebastian Nikolaus 24.10.2014 Überblick 1. Definition und Allgemeines 2. Historische Hintergründe, Probleme 2.1 Einstein-Podolsky-Rosen-Paradoxon 2.2 Erklärung, Bell sche Ungleichungen

Mehr

Theoretische Chemie (TC II) Computational Chemistry

Theoretische Chemie (TC II) Computational Chemistry Theoretische Chemie (TC II) Computational Chemistry Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Dr. Matthias Ruckenbauer (matruc@theochem.uni-frankfurt.de) Dr. Haleh Hashemi

Mehr

Algorithmen für Quantencomputer II Der Shor Algorithmus

Algorithmen für Quantencomputer II Der Shor Algorithmus Der Shor Algorithmus Hauptseminar Theoretische Physik Universität Stuttgart, SS 2011 Inhalte des Vortrags Motivation: wie findet man Primfaktoren auf klassischem Wege? Zwei Sätze der Zahlentheorie und

Mehr

Vorlesungsmitschrift. Quantencomputer. 2002/2003 Prof. Dr. Grädel. Jan Möbius,David Bommes. 9. Dezember 2002

Vorlesungsmitschrift. Quantencomputer. 2002/2003 Prof. Dr. Grädel. Jan Möbius,David Bommes. 9. Dezember 2002 Vorlesungsmitschrift Quantencomputer WS /3 Prof. Dr. Grädel Jan Möbius,David Bommes 9. Dezember Inhaltsverzeichnis Einleitung. Historischer Überblick......................................... Experiment................................................

Mehr

Welche Prinzipien bestimmen die quantenmechanischen Zustände, beschrieben durch ihre Quantenzahlen, die die Elektronen eines Atoms einnehmen?

Welche Prinzipien bestimmen die quantenmechanischen Zustände, beschrieben durch ihre Quantenzahlen, die die Elektronen eines Atoms einnehmen? phys4.021 Page 1 12. Mehrelektronenatome Fragestellung: Betrachte Atome mit mehreren Elektronen. Welche Prinzipien bestimmen die quantenmechanischen Zustände, beschrieben durch ihre Quantenzahlen, die

Mehr

Theoretische Chemie (TC II) Computational Chemistry

Theoretische Chemie (TC II) Computational Chemistry Theoretische Chemie (TC II) Computational Chemistry Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Pierre Eisenbrandt (peisenbr@theochem.uni-frankfurt.de)

Mehr

Das Jaynes-Cummings-Modell

Das Jaynes-Cummings-Modell Das Jaynes-Cummings-Modell Brem Samuel Hauer Jasper Lachmann Tim Taher Halgurd Wächtler Christopher Projekt in Quantenmechanik II - WS 2014/15 12. Februar 2015 Brem, Hauer, Lachmann, Taher, Wächtler Das

Mehr

Grundlagen der Theoretischen Chemie (TC 1)

Grundlagen der Theoretischen Chemie (TC 1) Grundlagen der Theoretischen Chemie (TC 1) Vorlesung: Mo 10h-12h, Do 9h-10h Übungen: Do 8h-9h (2 Gruppen: H1, B3; Betreuung: J. Plötner, IB) Vorlesungsmaterial + Übungen: http://www.chimie.ens.fr/umr8642/quantique/tc1-l6.pdf

Mehr

Ultrakalte Atome in optischen Gittern

Ultrakalte Atome in optischen Gittern Ultrakalte Atome in optischen Gittern Seminarvortrag Matthias Küster Gliederung Motivation Beschreibung des Potentials optischer Gitter Tight-binding-Modell Bloch -Experiment Ausblick 2 Motivation Möglichkeit

Mehr

Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e [

Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e [ Vorlesung 4 Teilchen im externen Elektromagnetischen Feld Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e v B c ]. 1) Das elektrische

Mehr

Übungen zur Modernen Theoretischen Physik I SS 14. (a) (1 Punkt) Zunächst schauen wir uns die Zeitableitung der Wahrscheinlichkeitsdichte

Übungen zur Modernen Theoretischen Physik I SS 14. (a) (1 Punkt) Zunächst schauen wir uns die Zeitableitung der Wahrscheinlichkeitsdichte Karlsruher Institut für Technologie Institut für Theoretische Festkörperphysik Übungen zur Modernen Theoretischen Physik I SS 14 Prof. Dr. Gerd Schön Lösungen zu Blatt 2 Andreas Heimes, Dr. Andreas Poenicke

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Madhava Niraghatam (niraghatam@chemie.uni-frankfurt.de)

Mehr

Bachelorarbeit Bose-Hubbard-Modell

Bachelorarbeit Bose-Hubbard-Modell Bachelorarbeit Bose-Hubbard-Modell Simon Fernbach 1 Gliederung Einleitung Grundlagen Bose-Hubbard-Modell Numerische Behandlung Ergebnisse Zusammenfassung Quelltext Literaturverzeichnis 2 Einleitung Das

Mehr

Quantenrechner. Ideen der Informatik

Quantenrechner. Ideen der Informatik Quantenrechner Ideen der Informatik Kurt Mehlhorn Adrian Neumann 16. Januar 2014 Übersicht Vorteile von Quantenrechnern Qbits und Überlagerungen Quantenrechner Grovers Algorithmus Technische Realisierung

Mehr

Bloch Oszillationen. Klassisch chaotische Streuung. Klassisch chaotische Streuung

Bloch Oszillationen. Klassisch chaotische Streuung. Klassisch chaotische Streuung Bloch Oszillationen periodische Oszillation keine systematische Dispersion Modell der gekippten Bänder: Zwei Zeitskalen: Bloch-Zeit Antriebsperiode Annahme: mit teilerfremden ganzen Zahlen Hamilton-Operator

Mehr

Quantencomputer. Tobias Tyborski HU Berlin

Quantencomputer. Tobias Tyborski HU Berlin Quantencomputer Tobias Tyborski HU Berlin Quantencomputer Vortragsübersicht 1. allgemeine Informationen - Stand der Technik, Definitionen 2. Wie rechnet der QC? - single-qubit-gate, two-qubit-gate 3. physikalische

Mehr

Quantum Computing. Seminar: Informatikanwendungen in Nanotechnologien. Wladislaw Debus

Quantum Computing. Seminar: Informatikanwendungen in Nanotechnologien. Wladislaw Debus Seminar: Informatikanwendungen in Nanotechnologien 20.06.2006 Inhalt 1 Einführung 2 Aufbau eines Quantencomputers Qubits Quantenregister Schaltkreise 3 Komplexitätsklassen 4 Quantenalgorithmen Faktorisierung

Mehr

Algorithmen für Quantencomputer I

Algorithmen für Quantencomputer I 1. Institut für Theoretische Physik Universität Stuttgart 19. Juli 2011 1 Grundlagen (Wiederholung) QuBit Register Gatter 2 3 Bit-Flip-Fehler Phasen-Flip-Fehler 4 Prinzip eines Quantenalgorithmus QuBit

Mehr

Moleküle und Wärmestatistik

Moleküle und Wärmestatistik Moleküle und Wärmestatistik Vorlesung 22.08.2008 Inhaltsverzeichnis Moleküle 2. Born-Oppenheimer Näherung (adiabatische Näherung).... 3.2 LCAO Näherung......................... 4.3 Molekülorbitalnäherung.....................

Mehr

2) Störungstheorie und Variationsverfahren Burgd. 9 oder was tun, wenn die S-Glg. nicht exakt lösbar ist Schwabl 11

2) Störungstheorie und Variationsverfahren Burgd. 9 oder was tun, wenn die S-Glg. nicht exakt lösbar ist Schwabl 11 2) Störungstheorie und Variationsverfahren Burgd. 9 oder was tun, wenn die S-Glg. nicht exakt lösbar ist Schwabl 11 Ziel Herleitung und Anwendung von Näherungsmethoden zur Lösung der Schödinger-Glg. 2.1)

Mehr

Gitterfeldtheoretische Behandlung des harmonischen Oszillators in der Pfadintegralformulierung in Euklidischer Raum-Zeit

Gitterfeldtheoretische Behandlung des harmonischen Oszillators in der Pfadintegralformulierung in Euklidischer Raum-Zeit Gitterfeldtheoretische Behandlung des harmonischen Oszillators in der Pfadintegralformulierung in Euklidischer Raum-Zeit Präsentation zur Bachelorarbeit September 2014 Einleitung Modelle in der Physik

Mehr

Ferienkurs Quantenmechanik 2009

Ferienkurs Quantenmechanik 2009 Ferienkurs Quantenmechanik 2009 Grundlagen der Quantenmechanik Vorlesungsskript für den 3. August 2009 Christoph Schnarr Inhaltsverzeichnis 1 Axiome der Quantenmechanik 2 2 Mathematische Struktur 2 2.1

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

3.4 Grundlagen der quantenmechanischen Beschreibung

3.4 Grundlagen der quantenmechanischen Beschreibung - - 3.4 Grundlagen der quantenmechanischen Beschreibung 3.4. Vorgehen Wie bei anderen spektroskopischen Experimenten wird auch in der NMR oder ESR ein Spektrum dadurch bestimmt, dass unterschiedliche Frequenzen

Mehr

Iterative Methoden zur Lösung von linearen Gleichungssystemen

Iterative Methoden zur Lösung von linearen Gleichungssystemen Iterative Methoden zur Lösung von linearen Gleichungssystemen (13.12.2011) Ziel Können wir wir die zeitabhängige Schrödinger-Gleichung lösen? φ(t) = e iht ψ(0) Typischerweise sind die Matrizen, die das

Mehr

Quantentrajektorien: dem Atom beim Zerfall zusehen. Seminar-Vortrag von Sanah Altenburg

Quantentrajektorien: dem Atom beim Zerfall zusehen. Seminar-Vortrag von Sanah Altenburg Quantentrajektorien: dem Atom beim Zerfall zusehen Seminar-Vortrag von Sanah Altenburg Seminar Quanten- und nichtlineare Optik Sanah Altenburg 1 Motivation Dem Atom beim Zerfall zusehen Seminar Quanten-

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 17.01.013 Parametrisierte Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Einführung in Quantencomputer

Einführung in Quantencomputer Einführung in Quantencomputer Literatur M. Homeister, (jetzt FB Informatik und Medien an der Fachhochschule Brandenburg) Quantum Computing verstehen, Springer Vieweg Verlag (25) E. Rieffel und W. Polak,

Mehr

Quantenphysik aus klassischen Wahrscheinlichkeiten

Quantenphysik aus klassischen Wahrscheinlichkeiten Quantenphysik aus klassischen Wahrscheinlichkeiten Unterschiede zwischen Quantenphysik und klassischen Wahrscheinlichkeiten Quanten Teilchen und klassische Teilchen Quanten Teilchen klassische Teilchen

Mehr

Quantenfehlerkorrekturcodes

Quantenfehlerkorrekturcodes Quantenfehlerkorrekturcodes Christian Hartler 2. Dezember 2009 Übersicht Unterschiede zwischen klassischem Computer und Quantencomputer Christian Hartler () Quantenfehlerkorrekturcodes Dezember 2009 2

Mehr

Probeklausur zur Vorlesung Physik III Sommersemester 17 (Dated: )

Probeklausur zur Vorlesung Physik III Sommersemester 17 (Dated: ) Probeklausur zur Vorlesung Physik III Sommersemester 17 (Dated: 22.5.2017) Vorname und Name: Matrikelnummer: Hinweise Drehen Sie diese Seite nicht um, bis die Prüfung offiziell beginnt! Bitte legen Sie

Mehr

Drei mal fünf ist fünfzehn Neue Bestleistung bei Quantencomputern

Drei mal fünf ist fünfzehn Neue Bestleistung bei Quantencomputern Quanten.de Newsletter März/April 2002, ISSN 1618-3770 Drei mal fünf ist fünfzehn Neue Bestleistung bei Quantencomputern Günter Sturm, ScienceUp Sturm und Bomfleur GbR, Camerloherstr. 19, D-85737 Ismaning

Mehr

Literatur zum Quantenchaos:

Literatur zum Quantenchaos: von Interesse für Untersuchungen zum Quantenchaos sind: Zeit Energie (Fourier-Transformation) Dynamik Eigenschaften von Energiespektren Eigenschaften der Eigenzustände gibt es chaotische Eigenfunktionen?

Mehr

6.2 Kovalente Bindung + + r B. r AB. πε0. Ĥ Nicht separierbar. Einfachstes Molekül: Hamiltonoperator: Kinetische Energie. Potentielle Energie

6.2 Kovalente Bindung + + r B. r AB. πε0. Ĥ Nicht separierbar. Einfachstes Molekül: Hamiltonoperator: Kinetische Energie. Potentielle Energie 6. Kovalente indung Einfachstes Molekül: - r H + r + + r e Hamiltonoperator: Ĥ ħ ħ ħ = + m m Kern Kern e me Elektron Kinetische Energie + e 1 1 1 4 πε r r r Kern Kern e nziehung bstoßung Kern Kern e nziehung

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2016 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 2. Vorlesung, 17. 3. 2016 Wasserstoffspektren, Zeemaneffekt, Spin, Feinstruktur,

Mehr

Motivation Phasenbestimmung

Motivation Phasenbestimmung Motivation Phasenbestimmung Problem Spezialfall der Phasenbestimmung Gegeben: Zustand z = 1 n y {0,1} n( 1)x y y Gesucht: x F n Für n = 1 ist der Zustand z = 1 ( 0 + ( 1) x 1 ) = H x. Es gilt H z = x,

Mehr

Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse

Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse Karlsruher Institut für Technologie Ulrich Husemann Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie

Mehr

Gesamtdrehimpuls Spin-Bahn-Kopplung

Gesamtdrehimpuls Spin-Bahn-Kopplung Gesamtdrehimpuls Spin-Bahn-Kopplung > 0 Elektron besitzt Bahndrehimpuls L und S koppeln über die resultierenden Magnetfelder (Spin-Bahn-Kopplung) Vektoraddition zum Gesamtdrehimpuls J = L + S Für J gelten

Mehr

H LS = W ( r) L s, (2)

H LS = W ( r) L s, (2) Vorlesung 5 Feinstruktur der Atomspektren Wir betrachten ein Wasserstoffatom. Die Energieeigenwerte des diskreten Spektrums lauten E n = mα c n, (1 wobei α 1/137 die Feinstrukturkonstante, m die Elektronmasse

Mehr

Theoretische Physik III Quantenmechanik I (SS09) Übungsblatt 08 (20 + π + eπ Punkte) 1 Ausgabe Abgabe Besprechung n.v.

Theoretische Physik III Quantenmechanik I (SS09) Übungsblatt 08 (20 + π + eπ Punkte) 1 Ausgabe Abgabe Besprechung n.v. Theoretische Physik III Quantenmechanik I (SS09) Übungsblatt 08 (20 + π + eπ Punkte) 1 Ausgabe 24.06.09 Abgabe 01.07.09 Besprechung n.v. Aufgabe 1 (Auswahlregeln) Die Wechselwirkung (engl. interaction)

Mehr

Über teleparallele Gravitationstheorien

Über teleparallele Gravitationstheorien Diplomkolloquium Über teleparallele Gravitationstheorien Uwe Münch 24. September 1997 Übersicht: Geometrische Größen Gravitation als Eichtheorie der Translationen: Teleparallelismus-Theorien Alternative

Mehr

Theoretische Chemie (TC II) Computational Chemistry

Theoretische Chemie (TC II) Computational Chemistry Theoretische Chemie (TC II) Computational Chemistry Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Jürgen Plötner (ploetner@theochem.uni-frankfurt.de) Matthias Ruckenbauer (matruc@theochem.uni-frankfurt.de)

Mehr

Shift-Invarianz, periodische Funktionen, diskreter Logarithmus, hidden-subgroup-problem

Shift-Invarianz, periodische Funktionen, diskreter Logarithmus, hidden-subgroup-problem Shift-Invarianz, periodische Funktionen, diskreter Logarithmus, hidden-subgroup-problem Quantencomputing SS 202 5. Juni 202 5. Juni 202 / 20 Shift-Invarianz der Fourier-Transformation Shift-Invarianz der

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Konstantin Falahati (k.falahati@yahoo.com) Jan von Cosel (jvcosel@theochem.uni-frankfurt.de)

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Madhava Niraghatam (niraghatam@chemie.uni-frankfurt.de)

Mehr

Moleküle und Wärmestatistik

Moleküle und Wärmestatistik Moleküle und Wärmestatistik Musterlösung.08.008 Molekülbindung Ein Molekül bestehe aus zwei Atomkernen A und B und zwei Elektronen. a) Wie lautet der Ansatz für die symmetrische Wellenfunktion in der Molekülorbitalnäherung?

Mehr

Quantenphysik aus klassischen Wahrscheinlichkeiten C. Wetterich. nicht

Quantenphysik aus klassischen Wahrscheinlichkeiten C. Wetterich. nicht Quantenphysik aus klassischen Wahrscheinlichkeiten C. Wetterich Gott würfelt Gott würfelt nicht Quanten Teilchen und klassische Teilchen Quanten Teilchen klassische Teilchen Teilchen-Welle Dualität Unschärfe

Mehr

3. Feinstruktur von Alkalispektren: Die gelbe D-Linie des Na ist ein Dublett, sollte aber nur eine Linie sein.

3. Feinstruktur von Alkalispektren: Die gelbe D-Linie des Na ist ein Dublett, sollte aber nur eine Linie sein. 13. Der Spin Experimentelle Fakten: 2. Normaler Zeeman-Effekt ist die Ausnahme: Meist sieht man den anormalen Zeeman-Effekt (Aufspaltung beobachtet, für die es keine normale Erklärung gab wegen Spin).

Mehr

(a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 100km/h) keine Rolle?

(a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 100km/h) keine Rolle? FK Ex 4-07/09/2015 1 Quickies (a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 100km/h) keine Rolle? (b) Wie groß ist die Energie von Lichtquanten mit einer Wellenlänge von

Mehr

4.2) Mehrelektronenatome

4.2) Mehrelektronenatome 4.) Mehrelektronenatome Elektronen besetzen Zustände mit verschiedenen Kombinationen von n,l,m,s Reihenfolge der Füllung bestimmt durch Wechselwirkung zwischen V ( r) und dem Zentrifugalpotential l (l+1)/r

Mehr