Quantenzahlen. A B z. Einführung in die Struktur der Materie 67

Größe: px
Ab Seite anzeigen:

Download "Quantenzahlen. A B z. Einführung in die Struktur der Materie 67"

Transkript

1 Quantenzahlen Wir haben uns bis jetzt nur mit dem Grundzustand des H + 2 Moleküls beschäftigt Wie sieht es aus mit angeregten Zuständen wie z.b. 2p Zuständen im H Atom? Bezeichnung der Molekülorbitale Quantenzahlen Kernanziehung bewirkt, daß das Drehmoment l nicht konstant ist l A B z λh Einführung in die Struktur der Materie 67

2 Quantenzahlen m l = 0, ±1, ±2, ±3 λ = Bezeichnung σ π δ ϕ für homonukleare Moleküle σ g,u π g,u δ g,u ϕ g,u Moleküle haben keine sphärische Symmetrie mehr Komponente des Bahndrehimpulses in Richtung der Molekülachse ist eine Konstante der Bewegung λ = m l Orbitale des H + 2 Moleküls Ψ g (1s σ g ) Ψ u (1s σ u ) Einführung in die Struktur der Materie 68

3 Wasserstoff ist von enormer Bedeutung Energieträger z.b. für Brennstoffzellen Häufigstes Molekül im All Zwei Protonen und zwei Elektronen Zusätzliche Berücksichtigung der Elektron-Elektron Wechselwirkung erforderlich Pauli-Prinzip : Antisymmetrie der Wellenfunktion gegenüber der Vertauschung der Teilchen Kerne werden wieder als punktförmige Ladungen betrachtet und festgehalten Keine Rotation, Vibration oder Translation Born-Oppenheimer Näherung Spin der Kerne wird vernachlässigt Einführung in die Struktur der Materie 69

4 Erwartung für den Grundzustand 2. Elektron in Ψ g oder (1sσ g ) Wellenfunktion des Grundzustandes von H 2 (1sσ g ) 2 Spins der Elektronen antiparallel Pauli-Prinzip erfüllt Abschätzung der Bindungsenergie, ausgehend von den Ergebnissen für H + 2 Zwei Elektronen im σ g Molekülorbital E H 2 Bind 2EH+ 2 Bind = 2 2.8eV = 5.6eV Einführung in die Struktur der Materie 70

5 Gleichgewichtsabstand Bessere Abschirmung der Kernladungen durch die zwei Elektronen R H RH+ 2 0 = Å = 0.53Å Vergleich mit dem Experiment = 4.55 ev < 5.6eV 0 = 0.74Å> 0.53Å E H 2 Bind R H 2 Abschätzung zeigt in die richtige Richtung, aber Zahlenwerte weichen signifikant ab. Ein Grund: Abschätzung vernachlässigt die Wechselwirkung der Elektronen Einführung in die Struktur der Materie 71

6 Berechnung des H 2 Moleküls Näherungsweise Bestimmung von E(R) Vorgehen analog zum Vorgehen beim H + 2 Molekülion Linearkombination von atomaren Orbitalen Einführung in die Struktur der Materie 72

7 e 2 e 1 r 12 r 1A r 1 r 1B r 2A r 2 r 2B A B R H1s + H1s R 0 H 2 Einführung in die Struktur der Materie 73

8 Hamiltonoperator für die Elektronen H = h2 2m ( ) e2 4πǫ 0 ( r 1A r 1B r 2A r 2B r 12 R Achtung: 2 Elektronen = 2 Fermionen Wellenfunktion muß Pauli-Prinzip genügen siehe He Ansatz für die Wellenfunktionen φ A (r 1 ) = 1 πa0 3 Antisymmetrische Wellenfunktion e r 1A/a 0 φ B (r 2 ) = 1 πa0 3 e r 1B/a 0 ) (28) Ψ + (r 1, r 2 ) = N + [φ A (r 1 ) φ B (r 2 )+φ A (r 2 ) φ B (r 1 )] ( ) (29) Ortsfunktion symmetrisch, Spinfunktion antisymmetrisch Singulett Zustand mit S = 0 Einführung in die Struktur der Materie 74

9 Ortsfunktion antisymmetrisch, Spinfunktion symmetrisch Ψ (r 1, r 2 ) = N (φ A (r 1 ) φ B (r 2 ) φ A (r 2 ) φ B (r 1 )) + (30) Drei mögliche Zustände Triplett Zustand mit S = 1 Vergleichen Sie das mit dem Heliumatom (Physik III) Einführung in die Struktur der Materie 75

10 Damit können wir jetzt den Erwartungswert der Energie berechnen, also die Schrödingergleichung lösen Ψ ± HΨ ± dτ = E ± (R) (31) Ergebnis V E ± = 2E 1s + C ± A 1±S Lösung hat die gleiche Form wie für den Fall des H + 2 Molekülions (32) Einführung in die Struktur der Materie 76

11 Coulombintegral C = e2 4πǫ 0 V1 dτ 1 V2 ( 1 dτ 2 (φ A (r 1 ) φ B (r 2 )) ) r 2A r 1B r 12 R (33) Die Terme mit Überlappintegral S = V1 1 und 1 sind schon in E 1s enthalten r 1A r 2B dτ 1 φ A (r 1 ) φ B (r 1 ) V2 dτ 2 φ A (r 2 ) φ B (r 2 ) (34) Verschwindet für R Einführung in die Struktur der Materie 77

12 Austauschintegral A = e2 dτ 1 dτ 2 (35) 4πǫ 0 ( 1 φ A (r 1 ) φ B (r 2 ) ) φ A (r 2 ) φ B (r 1 ) r 2A r 1B r 12 R Austausch der Elektronen zwischen den Kernen Einführung in die Struktur der Materie 78

13 Angeregte Zustände Bis jetzt haben wir den Fall betrachtet, daß zwei H 1s Orbitale das H 2 Molekül bilden LCAO: H(1s) + H(1s) Was passiert, wenn wir zwei andere Orbitale also z.b. 1s und 2p kombinieren? LCAO: H(1s) + H(2p) oder allgemein LCAO: H(n 1 l 1 ) + H(n 2 l 2 ) bzw. bei N Elektronen N k=1 (n kl k ) Einführung in die Struktur der Materie 79

14 H( 1s) + H( 3l ) H( 1s) + H( 2l ) Energie in ev H( 1s) + H( 1s ) Internuklearer Abstand in a 0 Einführung in die Struktur der Materie 80

15 Molekülpotentiale bei bei vielen Atomen Potentialkurven können auch für Moleküle mit mehr als 2 Elektronen angegeben werden 3 Atome 3 Parameter für die Geometrie 3 Abstände r k oder 2 Abstände r k und 1 Winkel θ Potentialkurve: E(r 1, r 2, r 3 ) oder E(r 1, r 2,θ) E(...) beschreibt somit eine 3-dimensionale Fläche 4 Atome: 6 Parameter (Abstände oder Winkel) E(r 1, r 2,..., r 6 ) beschreibt eine 6-dimensionale Fläche Allgemein bezeichnet man E(...) als Hyperpotentialfläche Keine einfache grafische Darstellung mehr Einführung in die Struktur der Materie 81

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2 H + 2 Die molekulare Bindung : Quantenmechanische Lösung Aufstellen der Schrödingergleichung für das H + 2 Molekülion und Lösung Wichtige Einschränkung: Die Kerne sind festgehalten H Ψ(r) = E Ψ(r) (11)

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Topic: Helium-Atom Vorlesung: Mo 10h-12h, Do9h-10h Übungen: Do 8h-9h Web site: http://www.theochem.uni-frankfurt.de/tc1

Mehr

Übungen zur Vorlesung Theoretische Chemie II Übungsblatt 1 SoSe 2015 Lösungen Ĥ Ψ = E Ψ (1) c b

Übungen zur Vorlesung Theoretische Chemie II Übungsblatt 1 SoSe 2015 Lösungen Ĥ Ψ = E Ψ (1) c b Übungen zur Vorlesung Theoretische Chemie II Übungsblatt SoSe 205 Lösungen. H 2 + Molekülion a) Konstruieren Sie die Schrödingergleichung in Matrixdarstellung. Zunächst geht man von der stationären Schrödinger-Gleichung

Mehr

9. Moleküle. 9.1 Wasserstoff-Molekül Ion H Wasserstoff-Molekül H Schwerere Moleküle 9.4 Angeregte Moleküle. Physik IV SS

9. Moleküle. 9.1 Wasserstoff-Molekül Ion H Wasserstoff-Molekül H Schwerere Moleküle 9.4 Angeregte Moleküle. Physik IV SS 9.1 Wasserstoff-Molekül Ion H + 9. Wasserstoff-Molekül H 9.3 Schwerere Moleküle 9.4 Angeregte Moleküle 9.1 9.1 Wasserstoff-Molekül Ion H + Einfachstes Molekül: H + = p + e p + Coulomb-Potenzial: Schrödinger-Gleichung:

Mehr

Chemische Bindung zweiatomiger Moleküle

Chemische Bindung zweiatomiger Moleküle Die Born Oppenheimer Näherung vernachlässigt Elektronenimpulse gegenüber Kernimpulsen und erlaubt die Gesamtwellenfunktion als ein Produkt aus einer Kernwellenfunktion F q ( R) und der einer Elektronenwellenfunktion

Mehr

Experimentalphysik Modul PH-EP4 / PH-DP-EP4

Experimentalphysik Modul PH-EP4 / PH-DP-EP4 6 Moleküle Universität Leipzig, Fakultät für Physik und Geowissenschaften Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Script für Vorlesung 08. Juni 009 Nach der Beschreibung Ein- und Mehrelektronen-Atomen

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Sarah Römer (roemer@em.uni-frankfurt.de) Simona Scheit (simona.scheit@googlemail.com) Juanma

Mehr

Das H + 2 -Molekül. Das Wasserstoffmolekülion H + 2 ist das einfachste

Das H + 2 -Molekül. Das Wasserstoffmolekülion H + 2 ist das einfachste Moleküle Wir haben in den vergangenen Wochen gelernt, wie sich Atome, zusammengesetzt aus elektrisch geladenen Kernen und Elektronen, verhalten. Wie aber verbinden sich elektrisch neutrale Atome zu Molekülen

Mehr

Grundlagen der Theoretischen Chemie (TC 1)

Grundlagen der Theoretischen Chemie (TC 1) Grundlagen der Theoretischen Chemie (TC 1) Vorlesung: Mo 10h-12h, Do 9h-10h Übungen: Do 8h-9h (2 Gruppen: H1, B3; Betreuung: J. Plötner, IB) Vorlesungsmaterial + Übungen: http://www.chimie.ens.fr/umr8642/quantique/tc1-l6.pdf

Mehr

Das H + 2 -Molekülion

Das H + 2 -Molekülion Das Näherungen für das elektronische Problem und Kernbewegungen 7. Dezember 2011 Schrödinger-Gleichung des s Abbildung: Arthur Beiser; Atome, Moleküle, Festkörper; Vieweg, Braunschweig 1983 ( K/E 2 2 +

Mehr

Molekülphysik. April Grundzustand und angeregte Zustände eines Moleküls

Molekülphysik. April Grundzustand und angeregte Zustände eines Moleküls Molekülphysik April 2010 1 Grundzustand und angeregte Zustände eines Moleküls 1.1 Hamiltonoperator für das Gesamtproblem Die Quantenmechanik ist die fundamentale Theorie der Materie. Sowohl die Koordinaten

Mehr

Moleküle und Wärmestatistik

Moleküle und Wärmestatistik Moleküle und Wärmestatistik Musterlösung.08.008 Molekülbindung Ein Molekül bestehe aus zwei Atomkernen A und B und zwei Elektronen. a) Wie lautet der Ansatz für die symmetrische Wellenfunktion in der Molekülorbitalnäherung?

Mehr

Vorlesung 21. Identische Teilchen und das Pauli-Prinzip

Vorlesung 21. Identische Teilchen und das Pauli-Prinzip Vorlesung 1 Identische Teilchen und das Pauli-Prinzip Identische Teilchen: Jede Art von Teilchen in der Natur definieren wir durch ihre Eigenschaften, z.b. Massen, Spins, Ladungen usw. Das bedeutet, dass

Mehr

ORGANISCHE CHEMIE 1. Stoff der 15. Vorlesung: Atommodell, Bindungsmodell...

ORGANISCHE CHEMIE 1. Stoff der 15. Vorlesung: Atommodell, Bindungsmodell... Stoff der 15. Vorlesung: Atommodell, Bindungsmodell... ORGANISCHE CHEMIE 1 15. Vorlesung, Dienstag, 07. Juni 2013 - Einelektronensysteme: H-Atom s,p,d Orbital - Mehrelektronensysteme: He-Atom Pauli-Prinzip,

Mehr

Die Hartree-Fock-Methode

Die Hartree-Fock-Methode February 11, 2016 1 Herleitung der Hartree-Fock-Gleichung 2 Das Heliumatom Gauß sche s-basis Roothaan-Hall-Gleichung Moleküle Herleitung der Hartree-Fock-Gleichung Betrachten wir zunächst das H 2 -Molekül:

Mehr

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 09/09/15

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 09/09/15 Physikdepartment Ferienkurs zur Experimentalphysik 4 Daniel Jost 09/09/15 Inhaltsverzeichnis Technische Universität München 1 Nachtrag: Helium-Atom 1 2 Röntgen-Spektren 2 3 Approximationen 6 3.1 Linear

Mehr

Theoretische Chemie (TC II) Computational Chemistry

Theoretische Chemie (TC II) Computational Chemistry Theoretische Chemie (TC II) Computational Chemistry Lecture 2 28/10/2011 Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Vorlesung: Mi 11h30-13h, Fr 8h-9h30 Praktikum (gemäß Ankündigung, statt Vorlesung):

Mehr

z n z m e 2 WW-Kern-Kern H = H k + H e + H ek

z n z m e 2 WW-Kern-Kern H = H k + H e + H ek 2 Molekülphysik Moleküle sind Systeme aus mehreren Atomen, die durch Coulomb-Wechselwirkungen Elektronen und Atomkerne ( chemische Bindung ) zusammengehalten werden. 2.1 Born-Oppenheimer Näherung Der nichtrelativistische

Mehr

ORGANISCHE CHEMIE 1. Stoff der 16. Vorlesung: Hybridisierung, Hückel-MO...

ORGANISCHE CHEMIE 1. Stoff der 16. Vorlesung: Hybridisierung, Hückel-MO... Stoff der 16. Vorlesung: Hybridisierung, Hückel-MO... ORGANISCHE CHEMIE 1 16. Vorlesung, Freitag, 14. Juni 2013 I. Hybridorbitale im Kohlenstoff - Regeln für Wechselwirkung von Orbitalen - σ und π MO s

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Konstantin Falahati (k.falahati@yahoo.com) Jan von Cosel (jvcosel@theochem.uni-frankfurt.de)

Mehr

Dr. Jan Friedrich Nr

Dr. Jan Friedrich Nr Übungen zu Experimentalphysik 4 - Lösungsvorschläge Prof. S. Paul Sommersemester 5 Dr. Jan Friedrich Nr. 4.7.5 Email Jan.Friedrich@ph.tum.de Telefon 89/89-586 Physik Department E8, Raum 564 http://www.e8.physik.tu-muenchen.de/teaching/phys4/

Mehr

2. Linear Combination of Atomic Orbitals

2. Linear Combination of Atomic Orbitals . Linear Combination of Atomi Orbitals Molekülorbitale werden mit ilfe des Variationsansatzes erhalten. Beispiel: -atomiges Molekül Atom, ϕ Atom, ϕ amilton-operator: Orthonormierung: ˆ ϕ El. Atom ϕ = =

Mehr

Der nichtrelativistische Hamiltonoperator für ein System aus N k Atomkernen (mit Ladung +Z n ) und N e = N k. n=1 Z n Elektronen lautet: z n z m e 2

Der nichtrelativistische Hamiltonoperator für ein System aus N k Atomkernen (mit Ladung +Z n ) und N e = N k. n=1 Z n Elektronen lautet: z n z m e 2 2 Molekülphysik Moleküle sind Systeme aus mehreren Atomen, die durch Coulomb-Wechselwirkungen Elektronen und Atomkerne ( chemische Bindung ) zusammengehalten werden. 2.1 Born-Oppenheimer Näherung Der nichtrelativistische

Mehr

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil 1. Grundlagen der Quantenmechanik (a) Wellenfunktion: Die Wellenfunktion Ψ(x, t) beschreibt den quantenmechanischen Zustand eines Teilchens am Ort x zur

Mehr

FERIENKURS EXPERIMENTALPHYSIK 4. Mehrelektronensysteme

FERIENKURS EXPERIMENTALPHYSIK 4. Mehrelektronensysteme FERIENKURS EXPERIMENTALPHYSIK 4 Vorlesung 3 am 04.09.2013 Mehrelektronensysteme Hannah Schamoni, Susanne Goerke Inhaltsverzeichnis 1 Das Helium-Atom 2 1.1 Grundlagen und Ortswellenfunktion........................

Mehr

Spin- und Ortsraum-Wellenfunktion

Spin- und Ortsraum-Wellenfunktion Spin- und Ortsraum-Wellenfunktion Der Spin,,lebt in einem unabhängigen abstrakten Raum. 02.07.2013 Michael Buballa 1 Spin- und Ortsraum-Wellenfunktion Der Spin,,lebt in einem unabhängigen abstrakten Raum.

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2014 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 4. Vorlesung, 27. 3. 2014 Molekülbindung, H2+ - Molekülion, Hybridisierung, Kohlenstoffverbindungen

Mehr

WAS FEHLT? STATISCHE KORRELATION UND VOLLE KONFIGURATIONSWECHSELWIRKUNG

WAS FEHLT? STATISCHE KORRELATION UND VOLLE KONFIGURATIONSWECHSELWIRKUNG 31 besetzen als die β Elektronen. Wenn man dies in der Variation der Wellenfunktion zulässt, also den Satz der Orbitale verdoppelt und α und β Orbitale gleichzeitig optimiert, so ist i. A. die Energie

Mehr

Da Atome viele ununterscheidbare Elektronen besitzen, sind ihre Zustände durch interelektronische Coulomb- und Austausch-Wechselwirkungen bestimmt.

Da Atome viele ununterscheidbare Elektronen besitzen, sind ihre Zustände durch interelektronische Coulomb- und Austausch-Wechselwirkungen bestimmt. 12 Moleküle Slide 267 Vorbemerkungen Da Atome viele ununterscheidbare Elektronen besitzen, sind ihre Zustände durch interelektronische Coulomb- und Austausch-Wechselwirkungen bestimmt. Je 2 Elektronen

Mehr

2.4. Atome mit mehreren Elektronen

2.4. Atome mit mehreren Elektronen 2.4. Atome mit mehreren Elektronen 2.4.1. Das Heliumatom Wellenfunktion für das Heliumatom Nach dem Wasserstoffatom ist das Heliumatom das nächst einfachere Atom. Das Heliumatom besitzt einen Kern der

Mehr

4.2.2.Das Wasserstoff-Molekül H 2 Vergleich der Wellenfunktionen für antiparallele Spinkonfiguration

4.2.2.Das Wasserstoff-Molekül H 2 Vergleich der Wellenfunktionen für antiparallele Spinkonfiguration g 4.2.2.Das Wasserstoff-Molekül H 2 Vergleich der Wellenfunktionen für antiparallele Spinkonfiguration a () ϕ ( 2) ϕ ( 2) ϕ ( 1) ψ = ϕ + 1 b a b Heitler-London ( ) ϕ ( 2) + ϕ ( 2) ϕ ( 1) + [ ϕ ( 1) ϕ (

Mehr

Moleküle und Wärmestatistik

Moleküle und Wärmestatistik Moleküle und Wärmestatistik Vorlesung 22.08.2008 Inhaltsverzeichnis Moleküle 2. Born-Oppenheimer Näherung (adiabatische Näherung).... 3.2 LCAO Näherung......................... 4.3 Molekülorbitalnäherung.....................

Mehr

Einführung in die Struktur der Materie. Studierende des Lehramtes und des Nebenfachs. Michael Martins und Erika Garutti

Einführung in die Struktur der Materie. Studierende des Lehramtes und des Nebenfachs. Michael Martins und Erika Garutti Einführung in die Struktur der Materie für Studierende des Lehramtes und des Nebenfachs Michael Martins und Erika Garutti Inhalt der Vorlesung Einleitung Teil A (M. Martins): I. Molekülphysik II. Festkörperphysik

Mehr

Dr. Jan Friedrich Nr

Dr. Jan Friedrich Nr Übungen zu Experimentalphysik 4 - Lösungsvorschläge Prof. S. Paul Sommersemester 2005 Dr. Jan Friedrich Nr. 7 06.06.2005 Email Jan.Friedrich@ph.tum.de Telefon 089/289-2586 Physik Department E8, Raum 3564

Mehr

6.2 Kovalente Bindung + + r B. r AB. πε0. Ĥ Nicht separierbar. Einfachstes Molekül: Hamiltonoperator: Kinetische Energie. Potentielle Energie

6.2 Kovalente Bindung + + r B. r AB. πε0. Ĥ Nicht separierbar. Einfachstes Molekül: Hamiltonoperator: Kinetische Energie. Potentielle Energie 6. Kovalente indung Einfachstes Molekül: - r H + r + + r e Hamiltonoperator: Ĥ ħ ħ ħ = + m m Kern Kern e me Elektron Kinetische Energie + e 1 1 1 4 πε r r r Kern Kern e nziehung bstoßung Kern Kern e nziehung

Mehr

Vorlesung Statistische Mechanik: N-Teilchensystem

Vorlesung Statistische Mechanik: N-Teilchensystem Virialentwicklung Die Berechnung der Zustandssumme bei realen Gasen ist nicht mehr exakt durchführbar. Eine Möglichkeit, die Wechselwirkung in realen Gasen systematisch mitzunehmen ist, eine Entwicklung

Mehr

Zusammenfassung Wasserstoffatom

Zusammenfassung Wasserstoffatom Ach ja... ter Teil der Vorlesung Prof. Dr. Tobias Hertel Lehrstuhl II für Physikalische Chemie Institut für Physikalische und Theoretische Chemie Raum 13 Tel.: 0931 318 6300 e-mail: tobias.hertel@uni-wuerzburg.de

Mehr

Mehratomige Molek ule

Mehratomige Molek ule Wir wollen jetzt eine sehr einfache Theorie entwickeln, um die Bindung in Molekülen mit mehr als zwei Atomen zu verstehen Dazu müssen wir den Aufbau von komplexeren n wie π oder δ-n verstehen Wir wissen

Mehr

3. Feinstruktur von Alkalispektren: Die gelbe D-Linie des Na ist ein Dublett, sollte aber nur eine Linie sein.

3. Feinstruktur von Alkalispektren: Die gelbe D-Linie des Na ist ein Dublett, sollte aber nur eine Linie sein. 13. Der Spin Experimentelle Fakten: 2. Normaler Zeeman-Effekt ist die Ausnahme: Meist sieht man den anormalen Zeeman-Effekt (Aufspaltung beobachtet, für die es keine normale Erklärung gab wegen Spin).

Mehr

Dynamik von Molekülen. Rotationen und Schwingungen von Molekülen

Dynamik von Molekülen. Rotationen und Schwingungen von Molekülen Rotationen und Schwingungen von Molekülen Schwingungen und Rotationen Bis jetzt haben wir immer den Fall betrachtet, daß die Kerne fest sind Was geschieht nun, wenn sich die Kerne bewegen können? Zwei

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Jan von Cosel (jvcosel@theochem.uni-frankfurt.de)

Mehr

5. Atome mit 1 und 2 Leucht-Elektronen 5.1 Alkali-Atome 5.2 He-Atom

5. Atome mit 1 und 2 Leucht-Elektronen 5.1 Alkali-Atome 5.2 He-Atom 5. Atome mit 1 und 2 Leucht- 5.1 Alkali-Atome 5.2 He-Atom 5.1 5.1 Alkali Atome ein "Leuchtelektron" Alkali Erdalkali 5.2 Tauchbahnen grosser Bahndrehimpuls l: geringes Eintauchen kleiner Bahndrehimpuls

Mehr

molekulare Anregungen Rotation, Vibration, Spektren...

molekulare Anregungen Rotation, Vibration, Spektren... 3 Moleküle Übersicht: Molekülbindung Grundzustands-Eigenschaften usw. molekulare Anregungen Rotation, Vibration, Spektren... Moleküldynamik Wellenpakete 3.1 Molekülbindung Die Schrödingergleichung für

Mehr

Übungen zur Vorlesung Physikalische Chemie II Lösungsvorschlag zu Blatt 5

Übungen zur Vorlesung Physikalische Chemie II Lösungsvorschlag zu Blatt 5 Wintersemester 006 / 007 04.1.006 1. Aufgabe Die Wellenfunktionen unterscheiden sich gar nicht. Während der Lösung der elektronischen Schrödingergleichung werden die Kerne als ruhend betrachtet. Es kommt

Mehr

1.3 Mehrelektronensysteme

1.3 Mehrelektronensysteme .3 Mehrelektronensysteme.3. Helium Dies ist ein Drei-Teilchen-System. Hamilton-Operator: Näherung: unendlich schwerer Kern nicht relativistisch Ĥ = ˆ p m + ˆ p m e e + e 4πɛ 0 r 4πɛ 0 r }{{ 4πɛ } 0 r }{{

Mehr

Festkörperelektronik 4. Übung

Festkörperelektronik 4. Übung Festkörperelektronik 4. Übung Felix Glöckler 23. Juni 2006 1 Übersicht Themen heute: Feedback Spin Drehimpuls Wasserstoffatom, Bohr vs. Schrödinger Wasserstoffmolekülion, kovalente Bindung Elektronen in

Mehr

Kerne und Teilchen. Kernkraft. Moderne Experimentalphysik III Vorlesung 16.

Kerne und Teilchen. Kernkraft. Moderne Experimentalphysik III Vorlesung 16. Kerne und Teilchen Moderne Experimentalphysik III Vorlesung 16 MICHAEL FEINDT & THOMAS KUH INSTITUT FÜ EXPEIMENTELLE KENPHYSIK Kernkraft KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Experimentalphysik Modul PH-EP4 / PH-DP-EP4

Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Universität Leipzig, Fakultät für Physik und Geowissenschaften Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Script für Vorlesung 28. Mai 2009 5 Atome mit mehreren Elektronen Im Gegensatz zu Ein-Elektronen

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable

Mehr

2.4. Atome mit mehreren Elektronen

2.4. Atome mit mehreren Elektronen 2.4. Atome mit mehreren Elektronen 2.4.1. Das Heliumatom Wellenfunktion für das Heliumatom Nach dem Wasserstoffatom ist das Heliumatom das nächst einfachere Atom. Das Heliumatom besitzt einen Kern der

Mehr

Übungen zu Physik 2 für Maschinenwesen

Übungen zu Physik 2 für Maschinenwesen Physikdepartment E13 SS 011 Übungen zu Physik für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung 1.07.011,

Mehr

UNIVERSITÄT GREIFSWALD. Mathematisch-Naturwissenschaftliche Fakultät INSTITUT FÜR BIOCHEMIE. Arbeitskreis Biophysikalische Chemie

UNIVERSITÄT GREIFSWALD. Mathematisch-Naturwissenschaftliche Fakultät INSTITUT FÜR BIOCHEMIE. Arbeitskreis Biophysikalische Chemie UNIVERSITÄT GREIFSWALD Mathematisch-Naturwissenschaftliche Fakultät INSTITUT FÜR BIOCHEMIE Arbeitskreis Biophysikalische Chemie Prof. Dr. Walter Langel Modelle für elektronische Zustände Einfachstes klassisches

Mehr

Moleküle. Zweiatomige Moleküle: H 2+

Moleküle. Zweiatomige Moleküle: H 2+ Moleküle Zweiatomige Moleküle: 2+ : zwei Kerne, ein Elektron Der Abstand zwischen den Atomkernen wird so klein gewählt, dass die 1s-Orbitale überlappen und durch Linearkombination Molekülorbitale gebildet

Mehr

selber sehr klein, der Feldgradrient aber beträchtlich ist? Was passiert in einem starken Feld mit einem vernachlässigbaren

selber sehr klein, der Feldgradrient aber beträchtlich ist? Was passiert in einem starken Feld mit einem vernachlässigbaren UNIVERSITÄT KONSTANZ Fachbereich Physik Prof. Dr. Georg Maret Experimentalphysik) Raum P 009, Tel. 0753)88-45 E-mail: Georg.Maret@uni-konstanz.de Prof. Dr. Matthias Fuchs Theoretische Physik) Raum P 907,

Mehr

11. Quantenchemische Methoden

11. Quantenchemische Methoden Computeranwendung in der Chemie Informatik für Chemiker(innen) 11. Quantenchemische Methoden Jens Döbler 2004 "Computer in der Chemie", WS 2003-04, Humboldt-Universität VL11 Folie 1 Grundlagen Moleküle

Mehr

Das Bohrsche Atommodell

Das Bohrsche Atommodell Das Bohrsche Atommodell Auf ein Elektron, welches im elektrischen Feld eines Atomkerns kreist wirkt ein magnetisches Feld. Der Abstand zum Atomkern ist das Ergebnis, der elektrostatischen Coulomb-Anziehung

Mehr

Schwingungen (Vibrationen) zweiatomiger Moleküle

Schwingungen (Vibrationen) zweiatomiger Moleküle Schwingungen (Vibrationen) zweiatomiger Moleküle Das Molekülpotential ist die Potentialkurve für die Schwingung H 2 Molekül 0.0 2.5 4 5 6 H( 1s) + H( 3l ) Energie in ev 5.0 7.5 H( 1s) + H( 2l ) H( 1s)

Mehr

Gesamtdrehimpuls Spin-Bahn-Kopplung

Gesamtdrehimpuls Spin-Bahn-Kopplung Gesamtdrehimpuls Spin-Bahn-Kopplung > 0 Elektron besitzt Bahndrehimpuls L und S koppeln über die resultierenden Magnetfelder (Spin-Bahn-Kopplung) Vektoraddition zum Gesamtdrehimpuls J = L + S Für J gelten

Mehr

(2.65 ev), da sich die beiden Elektronen gegenseitig abstossen.

(2.65 ev), da sich die beiden Elektronen gegenseitig abstossen. phys4.026 Page 1 13.8 Das Wasserstoff-Molekül Wie im Fall des H2 + Moleküls führen im H2 Molekül symmetrische Wellenfunktionen zu bindenden Zuständen, wohingegen anti-symmetrische Wellenfunktionen zu anti-bindenden

Mehr

Induzierte und spontane Übergänge: Einstein-Koeffizienten

Induzierte und spontane Übergänge: Einstein-Koeffizienten Induzierte und spontane Übergänge: Einstein-Koeffizienten Ein Atom im Zustand E k, das sich in einem elektromagnetischen Strahlungsfeld mit der spektralen Energiedichte w v (ν) n i hv befindet, kann ein

Mehr

Klausur zur Vorlesung Physikalische Chemie II: Aufbau der Materie / Kinetik

Klausur zur Vorlesung Physikalische Chemie II: Aufbau der Materie / Kinetik Name:... Vorname:... Matrikelnummer:. geb. am:... in:... Klausur zur Vorlesung Physikalische Chemie II: Aufbau der Materie / Kinetik WS 2007/2008 am 5.02.2008 Zugelassene Hilfsmittel: Taschenrechner. Naturkonstanten

Mehr

Vorlesung 20+21: Folien auf dem Web:

Vorlesung 20+21: Folien auf dem Web: Vorlesung 20+21: Roter Faden: Mehratomige Moleküle Folien auf dem Web: http://www-ekp.physik.uni-karlsruhe.de/~deboer/ Siehe auch: http://www.wmi.badw.de/teaching/lecturenotes/index.html und Alonso-Finn:

Mehr

Ferienkurs Experimentalphysik IV

Ferienkurs Experimentalphysik IV Ferienkurs Experimentalphysik IV Michael Mittermair, Daniel Jost 04.09.14 Inhaltsverzeichnis 1 Moleküle 2 1.1 Das H + 2 Molekül-Ion....................... 2 1.2 Näherungen............................ 3

Mehr

Theoretische Chemie (TC II) Computational Chemistry

Theoretische Chemie (TC II) Computational Chemistry Theoretische Chemie (TC II) Computational Chemistry Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Dr. Matthias Ruckenbauer (matruc@theochem.uni-frankfurt.de) Dr. Haleh Hashemi

Mehr

Ausarbeitung zum Theoretischen Seminar

Ausarbeitung zum Theoretischen Seminar Ausarbeitung zum Theoretischen Seminar Kovalente Molekübindungen 28.01.2015 Robin.Stegmueller@googlemail.com Inhaltsverzeichnis 1 Einführung 1 1.1 Molekulare Bindungen......................... 1 1.2 Beispiel:

Mehr

Zweielektronensysteme und Hartree-Fock Methode

Zweielektronensysteme und Hartree-Fock Methode Kapitel 7 Zweielektronensysteme und Hartree-Fock Methode 7.1 Heliumatom: Grundzustand 7.1.1 Grundlagen Elektronischer Hamilton-Operator in Born Oppenheimer Näherung: Ĥ el ( r; R)= ˆT e ( r)+v Ne ( r; R)+V

Mehr

Einleitung nichtrel. Wasserstoatom (spinlos) rel. Wasserstoatom (für spin 1 2 -Teilchen) Orbitale des (rel.) Wasserstoatoms Ausblick und oene Fragen

Einleitung nichtrel. Wasserstoatom (spinlos) rel. Wasserstoatom (für spin 1 2 -Teilchen) Orbitale des (rel.) Wasserstoatoms Ausblick und oene Fragen Florian Wodlei Seminar aus höherer QM Überblick 1 Einleitung Motivation Was ist ein Orbital? Überblick 1 Einleitung Motivation Was ist ein Orbital? 2 Überblick 1 Einleitung Motivation Was ist ein Orbital?

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Vorlesung 3 Mehrelektronensysteme Markus Perner, Rolf Ripszam, Christoph Kastl 17.02.2010 1 Das Heliumatom Das Heliumatom als einfachstes Mehrelektronensystem besteht aus

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 4. Vorlesung Mehrelektronensysteme Felix Bischoff, Christoph Kastl, Max v. Vopelius 27.08.2009 1 Atome mit mehreren Elektronen 1.1 Das Heliumatom Das Heliumatom besteht

Mehr

Gliederung. Potentialenergieflächen für chemische Reaktionen. und konische Durchschneidungen. 1 Born-Oppenheimer-Näherung

Gliederung. Potentialenergieflächen für chemische Reaktionen. und konische Durchschneidungen. 1 Born-Oppenheimer-Näherung Gliederung Potentialenergieflächen für chemische Reaktionen 1 2 adiabatische und diabatische Potentialflächen 3 Kreuzungsverbot für Potentialflächen, nicht-adiabatische Übergänge und konische Durchschneidungen

Mehr

Atome mit mehreren Elektronen

Atome mit mehreren Elektronen Atome mit mehreren Elektronen In diesem Kapitel wollen wir uns in die reale Welt stürzen und Atome mit mehr als einem Elektron untersuchen. Schließlich besteht sie Welt nicht nur aus Wasserstoff. Die wesentlichen

Mehr

. Bei einem Kernabstand R ab

. Bei einem Kernabstand R ab 90 KAPITEL H Molekülphysik: Einleitung Die Molekülphysik beschäftigt sich mit den physikalischen Grundlagen der Chemie. Während die Chemie die fazinierende Vielfalt der Stoffe, die sich aus den etwa 100

Mehr

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 10. Vorlesung. Pawel Romanczuk WS 2016/17

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 10. Vorlesung. Pawel Romanczuk WS 2016/17 Theoretical Biophysics - Quantum Theory and Molecular Dynamics 10. Vorlesung Pawel Romanczuk WS 2016/17 http://lab.romanczuk.de/teaching Zusammenfassung letzte VL Der Spin Grundlegende Eigenschaften Spin

Mehr

Mehrelektronenprobleme

Mehrelektronenprobleme Teil IV Mehrelektronenprobleme Inhaltsangabe 10 Mehrelektronenprobleme ohne e-e-wechselwirkung 122 10.1 Allgemeine Lösungen..................... 122 10.2 Variationsprinzip....................... 126 10.3

Mehr

Das Heliumatom. Seminar zur Atom- und Molekülphysik. Emmanuel Stamou. 16. Mai 2007

Das Heliumatom. Seminar zur Atom- und Molekülphysik. Emmanuel Stamou. 16. Mai 2007 Seminar zur Atom- und Molekülphysik 16. Mai 2007 Inhalt Helium in alten Quantenmechanik (Bohr) Helium in neuen Quantenmechanik (Wellenbild) Resonanzen und Autoionisation Chaoseffekte Alte Quantenmechanik

Mehr

2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten

2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten Inhalt: 1. Regeln und Normen Modul: Allgemeine Chemie 2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten 3.Bausteine der Materie Atomkern: Elementarteilchen, Kernkräfte,

Mehr

VL 22 VL Periodensystem VL Röntgenstrahlung VL Homonukleare Moleküle VL Heteronukleare Moleküle

VL 22 VL Periodensystem VL Röntgenstrahlung VL Homonukleare Moleküle VL Heteronukleare Moleküle VL 22 VL 20 20.1. Periodensystem VL 21 21.1. Röntgenstrahlung VL 22 22.1. Homonukleare Moleküle VL 23 23.1. Heteronukleare Moleküle Wim de Boer, Karlsruhe Atome und Moleküle, 10.07.2012 1 Vorlesung 22:

Mehr

Welche Prinzipien bestimmen die quantenmechanischen Zustände, beschrieben durch ihre Quantenzahlen, die die Elektronen eines Atoms einnehmen?

Welche Prinzipien bestimmen die quantenmechanischen Zustände, beschrieben durch ihre Quantenzahlen, die die Elektronen eines Atoms einnehmen? phys4.021 Page 1 12. Mehrelektronenatome Fragestellung: Betrachte Atome mit mehreren Elektronen. Welche Prinzipien bestimmen die quantenmechanischen Zustände, beschrieben durch ihre Quantenzahlen, die

Mehr

Das Hartree-Fock-Verfahren

Das Hartree-Fock-Verfahren Das Hartree-Fock-Verfahren Seminar zur Theorie der Atome, Kerne und kondensierten Materie Jan Kaspari Westfälische Wilhelms-Universität Münster Fachbereich Physik Einführung Unter der Hartree-Fock-Methode

Mehr

1 Atome mit mehreren Elektronen

1 Atome mit mehreren Elektronen 1 Atome mit mehreren Elektronen 1.1 Zentralfeldnäherungen Wir wollen uns in diesem Abschnitt die Elektronenkonfiguration (besser Zustandskonfiguration) von Atomen mit mehreren Elektronen klarmachen. Die

Mehr

Elektronenstrukturrechungen

Elektronenstrukturrechungen Seminar zur Theorie der Atome, Kerne und kondensierten Materie WS 13/14 Elektronenstrukturrechungen Basissätze und Elektronenkorrelation Bastian Schäfer 9.1.014 Inhaltsverzeichnis 1 Einleitung 1 Lösung

Mehr

Chern-Simons Theorie. Thomas Unden, Sabrina Kröner 01. Feb Theorie der kondensierten Materie. Fraktionaler Quanten-Hall-Effekt

Chern-Simons Theorie. Thomas Unden, Sabrina Kröner 01. Feb Theorie der kondensierten Materie. Fraktionaler Quanten-Hall-Effekt Chern-Simons Theorie Thomas Unden, Sabrina Kröner 01. Feb. 2012 Theorie der kondensierten Materie Fraktionaler Quanten-Hall-Effekt Seite 2 Chern-Simons Theorie Thomas Unden, Sabrina Kröner 01. Feb. 2012

Mehr

VL 21 VL Periodensystem VL Röntgenstrahlung VL Homonukleare Moleküle VL Heteronukleare Moleküle

VL 21 VL Periodensystem VL Röntgenstrahlung VL Homonukleare Moleküle VL Heteronukleare Moleküle VL 21 VL 19 20.1. Periodensystem VL 20 21.1. Röntgenstrahlung VL 21 22.1. Homonukleare Moleküle VL 22 23.1. Heteronukleare Moleküle Wim de Boer, Karlsruhe Atome und Moleküle, 02.07.2013 1 Vorlesung 22:

Mehr

Kapitel 7: Elektronische Spektroskopie

Kapitel 7: Elektronische Spektroskopie Kapitel 7: Elektronische Spektroskopie Übersicht: 7.1 Drehimpuls-Kopplungshierarchien in Molekülen: Hundsche Fälle 7.2 Auswahlregeln für rovibronische Übergänge 7.3 Das Franck-Condon-Prinzip 7.4 Zerfall

Mehr

Erratum: Potentialbarriere

Erratum: Potentialbarriere Erratum: Potentialbarriere E

Mehr

Um das zu verdeutlichen, seien noch einmal Wasserstoff-Wellenfunktionen gezeigt:

Um das zu verdeutlichen, seien noch einmal Wasserstoff-Wellenfunktionen gezeigt: II. 3 Schalenmodell der Elektronen Bei den wasserstoff-ähnlichen Alkali-Atomen und gerade beim He hatten wir schon kurz über den Einfluß des effektiven Potentials auf die energetische Lage der verschiedenen

Mehr

Übungsblatt 06. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, oder 3. 6.

Übungsblatt 06. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, oder 3. 6. Übungsblatt 06 PHYS400 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@uni-ulm.de) 2. 6. 2005 oder 3. 6. 2005 Aufgaben. Schätzen Sie die relativistische Korrektur E

Mehr

Lösung zur Klausur

Lösung zur Klausur ösung zur Klausur 1..01 Aufgabe 1.) a) Hundsche Regeln: maximaler Spin, dann maximales Bahnmoment. Die beiden Elektronen im 4s kann man vernachlässigen, da sie weder Spin- noch Bahmoment beitragen. Damit

Mehr

Cluster-Struktur in Kernen. Cluster: Aus mehr als einem Nukleon zusammengesetzten und identifizierbarem Subsystem

Cluster-Struktur in Kernen. Cluster: Aus mehr als einem Nukleon zusammengesetzten und identifizierbarem Subsystem Cluster-Struktur in Kernen Cluster: Aus mehr als einem Nukleon zusammengesetzten und identifizierbarem Subsystem Die Struktur von 11 Li Beim Aufbruch von 11 Li wird nicht nur ein Neutron herausgeschlagen

Mehr

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 13. Vorlesung. Pawel Romanczuk WS 2016/17

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 13. Vorlesung. Pawel Romanczuk WS 2016/17 Theoretical Biophysics - Quantum Theory and Molecular Dynamics 13. Vorlesung Pawel Romanczuk WS 2016/17 http://lab.romanczuk.de/teaching Zusammenfassung letzte VL Variationsrechnung LCAO-Verfahren am Beispiel

Mehr

Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010

Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010 Übungen Physik VI (Kerne und Teilchen) Sommersemester 21 Übungsblatt Nr. 3 Bearbeitung bis 6.5.21 Aufgabe 1: Neutronensterne Im Allgemeinen kann man annehmen, dass die Dichte in Zentrum von Neutronensternen

Mehr

Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten oder in Festkörpern vor.

Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten oder in Festkörpern vor. phys4.025 Page 1 13. Moleküle Nur eine kleine Anzahl von Elementen kommt natürlich in Form von einzelnen Atomen vor. Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten

Mehr

Physik IV - Schriftliche Sessionsprüfung Sommer 2009

Physik IV - Schriftliche Sessionsprüfung Sommer 2009 Physik IV - Schriftliche Sessionsprüfung Sommer 2009 9:00 11:00, Samstag, 8. August 2009, HG F1 & HG F3 Bitte zur Kenntnis nehmen: Es befinden sich insgesamt SECHS Aufgaben auf VIER SEITEN. Es können insgesamt

Mehr

H LS = W ( r) L s, (2)

H LS = W ( r) L s, (2) Vorlesung 5 Feinstruktur der Atomspektren Wir betrachten ein Wasserstoffatom. Die Energieeigenwerte des diskreten Spektrums lauten E n = mα c n, (1 wobei α 1/137 die Feinstrukturkonstante, m die Elektronmasse

Mehr

4 Die Atombindung im Wasserstoff-Molekül

4 Die Atombindung im Wasserstoff-Molekül 4.1 Übersicht und Lernziele Thema Bis jetzt haben wir nur von Atomen gesprochen. In der Chemie beschäftigen wir uns aber normalerweise mit Molekülen oder Ionen. Wir wollen deshalb in diesem Kapitel auf

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 5. Vorlesung, 25. 4. 2013 Born Oppenheimernäherung, Molekülrotation, Molekülschwingungen

Mehr

4.2) Mehrelektronenatome

4.2) Mehrelektronenatome 4.) Mehrelektronenatome Elektronen besetzen Zustände mit verschiedenen Kombinationen von n,l,m,s Reihenfolge der Füllung bestimmt durch Wechselwirkung zwischen V ( r) und dem Zentrifugalpotential l (l+1)/r

Mehr