ELEKTRODYNAMIK UND RELATIVITÄTSTHEORIE

Größe: px
Ab Seite anzeigen:

Download "ELEKTRODYNAMIK UND RELATIVITÄTSTHEORIE"

Transkript

1 ELEKTRODYNAMIK UND RELATIVITÄTSTHEORIE Anhang B: Einheitensysteme Vorlesung für Studenten der Technischen Physik Helmut Nowotny Technische Universität Wien Institut für Theoretische Physik 7., von A. Rebhan korrigierte Auflage Wien, Februar 2006

2 B.. Gaußsches Maßsystem 277 Anhang B: EINHEITENSYSTEME B.. Gaußsches Maßsystem B... Gaußsche Einheiten Größe Symbol Gaußsche Einheit Bezeichnung Länge l cm Zentimeter (Basiseinheit) Masse m g Gramm (Basiseinheit) Zeit t s Sekunde (Basiseinheit) Frequenz f, ν s Hertz (Hz) Kraft F g cm s 2 dyn Kraftdichte f g cm 2 s 2 dyn/cm 3 Arbeit, Energie W, U g cm 2 s 2 erg Energiedichte w g cm s 2 erg/cm 3 Leistung P g cm 2 s 3 erg/s Drehmoment N g cm 2 s 2 dyn cm elektrische Ladung q, Q g /2 cm 3/2 s statcoulomb elektrische Ladungsdichte ϱ g /2 cm 3/2 s statcoulomb/cm 3 elektrisches Potential φ, V g /2 cm /2 s statvolt = statcoulomb/cm elektrische Feldstärke E g /2 cm /2 s statvolt/cm = dyn/statcoulomb elektrische Verschiebung D g /2 cm /2 s statvolt/cm elektrische Polarisation P g /2 cm /2 s statcoulomb/cm 2 elektrisches Dipolmoment p g /2 cm 5/2 s statcoulomb cm elektrischer Fluß Φ e g /2 cm 3/2 s statcoulomb elektrischer Strom I g /2 cm 3/2 s 2 statampere elektrische Stromdichte j g /2 cm /2 s 2 statampere/cm 2 magnetische Induktion B g /2 cm /2 s Gauß (G) = dyn/statcoulomb magnetische Feldstärke H g /2 cm /2 s Oersted (Oe) Magnetisierung M g /2 cm /2 s Oersted = (erg/g)/cm 3 magnetisches Moment m g /2 cm 5/2 s erg/g magnetischer Fluß Φ m g /2 cm 3/2 s Maxwell (Mx) = G cm 2 Dielektrizitätskonstante ε elektrische Suszeptibilität χ e Permeabilitätskonstante µ magnetische Suszeptibilität χ m elektrische Leitfähigkeit σ s elektrischer Widerstand R cm s elektrische Kapazität C cm Induktivität L cm s 2 4πP 4πM statvolt/cm Gauß

3 278 Anhang B: EINHEITENSYSTEME B..2. Formeln der Elektrodynamik (Gaußsches System) Maxwell-Gleichungen: div D = 4πϱ div B = 0 rot H = 4π c j + c rot E = c B t Kontinuitätsgleichung: div j + t ϱ = 0 Materialgleichungen: D = E + 4π P B = H + 4π M Maxwell-Gleichungen div E = 4π(ϱ + ϱ P ) der Elektronentheorie: div B = 0 Polarisationsladungsdichte: Polarisationsstromdichte: D t rot B = 4π c ( j + j P + j M ) + c rot E = c ϱ P = div P j P = t P B t Magnetisierungsstromdichte: j M = c rotm Elektr. Leitfähigkeit: j = σ ( E + E ) (ein) Dielektrizitätskonstante: D = ε E, ε = + 4πχe Elektr. Suszeptibilität: P = χe E Permeabilität: B = µ H, µ = + 4πχm Magn. Suszeptibilität: M = χm H Energiesatz: w + div S = j E t ( ) Energiedichte des Feldes: dw = E 4π dd + H db ( ) für normales Material: w = E 8π D + H B Poynting-Vektor: S = c E H 4π ( Kraft auf Ladung q: F = q E + v B ) c Kraftdichte: f = ϱ E + c j B E t

4 B.2. SI System 279 B.2. SI System B.2.. SI Einheiten Größe Symbol SI Einheit Bezeichnung Länge l m Meter (Grundeinheit) Masse m kg Kilogramm (Grundeinheit) Zeit t s Sekunde (Grundeinheit) Frequenz f, ν s Hertz (Hz) Kraft F kg m s 2 Newton (N) Kraftdichte f kg m 2 s 2 N/m 3 Arbeit, Energie W, U kg m 2 s 2 Joule (J) = N m = W s Energiedichte w kg m s 2 Joule/m 3 Leistung P kg m 2 s 3 Watt (W) = J/s = V A Drehmoment N kg m 2 s 2 N m elektrische Ladung Q, q s A Coulomb (C) = A s elektrische Ladungsdichte ρ m 3 s A Coulomb/m 3 elektrisches Potential φ, V kg m 2 s 3 A Volt (V) = W/A elektrische Feldstärke E kg m s 3 A V/m = N/C elektrische Verschiebung D m 2 s A Coulomb/m 2 elektrische Polarisation P m 2 s A Coulomb/m 2 elektrisches Dipolmoment p m s A Coulomb m elektrischer Fluß Φ e s A Coulomb elektrischer Strom I A Ampere (Grundeinheit) elektrische Stromdichte j m 2 A Ampere/m 2 magnetische Induktion B kg s 2 A Tesla (T) = N/(A m) magnetische Feldstärke H m A Ampere/m Magnetisierung M m A Ampere/m magnetisches Moment m m 2 A Joule/Tesla magnetischer Fluß Φ m kg m 2 s 2 A Weber (Wb) = T m 2 = V s Dielektrizitätskonstante ε kg m 3 s 4 A 2 As/Vm = F/m elektrische Suszeptibilität χ e Permeabilitätskonstante µ kg m s 2 A 2 Vs/Am = H/m magnetische Suszeptibilität χ m elektrische Leitfähigkeit σ kg m 3 s 3 A 2 /(Ωm) elektrischer Widerstand R kg m 2 s 3 A 2 Ohm(Ω) = V/A elektrische Kapazität C kg m 2 s 4 A 2 Farad (F) = As/V Induktivität L kg m 2 s 2 A 2 Henry (H) = Vs/A D /ε o V/m P /ε o V/m µ oh Tesla µ om Tesla

5 280 Anhang B: EINHEITENSYSTEME B.2.2. Formeln der Elektrodynamik (SI System) Maxwell-Gleichungen: div D = ϱ div B = 0 rot H = j + t D rot E = t B Kontinuitätsgleichung: div j + t ϱ = 0 Materialgleichungen: Maxwell-Gleichungen D = ε o E + P der Elektronentheorie: div B = 0 Polarisationsladungsdichte: Polarisationsstromdichte: Magnetisierungsstromdichte: Elektr. Leitfähigkeit: B = µ o ( H + M ) ε o div E = ϱ + ϱ P µ o rotb = ( j + j P rot E = t B ϱ P j P j M = div P = t P = rot M j = σ ( E + E (ein) ) Dielektrizitätskonstante: D = ε r ε oe, ε r = + χ e Elektr. Suszeptibilität: P = χ e ε oe + j M ) + ε o E t Permeabilität: B = µ r µ oh, µ r = + χ m Magn. Suszeptibilität: M = χ m H Energiesatz: w + div S = j E t Energiedichte des Feldes: dw = E dd + H db für normales Material: ( w = E D + H B ) 2 Poynting-Vektor: S = E H Kraft auf Ladung q: Kraftdichte: F = q ( E + v B ) f = ϱ E + j B

6 B.3. Umrechnungen 28 B.3. Umrechnungen B.3.. Umrechnungstabelle für Formeln Um eine Gleichung in Gaußschen Variablen in die entsprechende Gleichung des SI Systems umzuwandeln, ist das relevante Gaußsche Symbol durch das entsprechende SI Symbol zu ersetzen (bzw. umgekehrt). Größe Gaußsches Symbol SI Symbol Lichtgeschwindigkeit c εo µ o Ladung q q 4πεo Ladungsdichte ϱ ϱ 4πεo elektrisches Potential φ 4πεo φ elektrische Feldstärke E 4πεo E elektrische Verschiebung D 4π ε o D elektrische Polarisation P P 4πεo elektrischer Fluß Φ 4π e ε o Φ e elektrischer Strom I I 4πεo elektrische Stromdichte j j 4πεo magnetische Induktion B 4π µ o B magnetische Feldstärke H 4πµo H Magnetisierung M µo 4π M magnetischer Fluß Φ 4π m µ o Φ m elektrische Leitfähigkeit σ 4πε σ o elektrische Suszeptibilität χ e 4π e Dielektrizitätskonstante ε ε r magnetische Suszeptibilität χ m χ 4π m Permeabilität µ µ r elektrischer Widerstand R 4πε o R elektrische Kapazität C 4πε C o Induktivität L 4πε o L

7 282 Anhang B: EINHEITENSYSTEME B.3.2. Umrechnungstabelle für Einheiten Größe Symbol SI Einheit entspricht... Gauß-Einheiten Länge l Meter (m) 0 2 Zentimeter (cm) Masse m Kilogramm (kg) 0 3 Gramm (g) Zeit t Sekunde (s) Sekunde (s) Frequenz f, ν Hertz (Hz) (=/s) Hertz (Hz) Kraft F Newton (N) 0 5 dyn Kraftdichte f Newton/m 3 0. dyn/cm 3 Arbeit, Energie W, U Joule (J) 0 7 erg Energiedichte w Joule/m 3 0 erg/cm 3 Leistung P Watt (W) 0 7 erg/s Drehmoment N N m 0 7 dyn cm elektrische Ladung q Coulomb (C) (=As) statcoulomb elektrische Ladungsdichte ϱ Coulomb/m statcoulomb/cm 3 elektrisches Potential Φ, V Volt (V) (=W/A) 300 statvolt elektrische Feldstärke E Volt/m statvolt/cm elektrische Verschiebung D Coulomb/m 2 2π 0 5 statvolt/cm elektrische Polarisation P Coulomb/m statcoulomb/cm 2 elektrisches Dipolmoment p Coulomb m 3 0 statcoulomb cm elektrischer Fluß Φ e A s 2π 0 9 statcoulomb elektrischer Strom I Ampere (A) statampere elektrische Stromdichte j Ampere/m statampere/cm 2 magnetische Induktion B Tesla (T) (=Wb/m 2 ) 0 4 Gauß(G) magnetische Feldstärke H Ampere/m 4π 0 3 Oersted (Oe) Magnetisierung M Ampere/m 0 3 Oersted (Oe) magnetisches Moment m Ampere m erg/g magnetischer Fluß Φ m Weber (Wb) (=Vs) 0 8 Maxwell (Mx) elektrische Leitfähigkeit σ Siemens/m (Ω /m) /s elektrischer Widerstand R Ohm (Ω) (=V/A) 9 0 s/cm elektrische Kapazität C Farad (F) (=As/V) 9 0 cm Induktivität L Henry (H) (=Vs/A) 9 0 s 2 /cm [statcoulomb] = [g /2 cm 3/2 s ], [statampere] = [g /2 cm 3/2 s 2 ], [statvolt] = [g /2 cm /2 s ] Alle Faktoren 3 (außer in den Exponenten) können für genaue Rechnungen durch den exakten Wert der Lichtgeschwindigkeit ersetzt werden.

8 B.4. Konstante 283 B.4. Konstante Zahlenwert SI Einheit Gaußsche Einheit (dezimales Vielfaches) Influenzkonstante ε o As/Vm Induktionskonstante µ o 4π 0 7 Vs/Am Vs/Am (dezimales Vielfaches) Lichtgeschwindigkeit c m/s 0 0 cm/s Ruhemasse des Elektrons m e kg 0 28 g Ruhemasse des Protons m p kg 0 24 g Ruhemasse des Neutrons m n kg 0 24 g atomare Masseneinheit m u kg 0 24 g Plancksches Wirkungsquantum h J s 0 27 erg s h J s 0 27 erg s absolute Ladung des Elektrons e statcoulomb e C Boltzmann-Konstante k B J K 0 6 erg K Avogadro-Konstante N A mol 0 23 mol Molares Normvolumen V m m 3 mol 0 4 cm 3 mol Comptonwellenlänge (Elektron) λ e m 0 0 cm Bohr Radius a o m 0 9 cm Elektronenradius r e m 0 3 cm Feinstruktur Konstante α /α Rydberg Konstante R m 0 5 cm Bohr Magneton µ B erg/g µ B J T Kernmagneton µ N erg/g µ N J T Faraday Konstante F statc. mol F C mol Molare Gaskonstante R J mol K 0 7 erg mol K

9 284 Anhang B: EINHEITENSYSTEME Zusammenhang der abgeleiteten Konstanten mit den Naturkonstanten m u = m( 2 C)/2 h = h 2π λ e = h c m e a o = r e = α = e2 h c h2 a m e e 2 o = 4πε o h 2 m e e 2 e2 r m e c 2 e = e2 4πε o m e c 2 R = m e e 4 4π h 3 c = µ B = e h 2 m e c µ N = e h 2 m p c F = N A e R = N A k B α 4π a o α = e2 4πε o h c R = m e e 4 8ε 2 o h 3 c µ B µ N = e h 2 m e = e h 2 m p F = N A e Energie Umrechnungsbeziehungen J = 0 7 erg = cal = ev cal = 4.84 J = ev ev = J = erg atomare Energieeinheit (e 2 /a o ) = ev = J = erg ev entspricht einer Frequenz von Hz (E = h ν) einer Wellenlänge von Å (E = h c/λ) einer Temperatur von K (E = k B T)

10 B.5. Konsistente Zahlenwerte der Naturkonstanten im SI System 285 B.5. Konsistente Zahlenwerte der Naturkonstanten im SI System Quantity Symbol Value Unit speed of light in vacuum c, c o m s magnetic constant µ o 4π x 0 7 N A 2 = x 0 7 N A 2 electric constant /µ o c 2 ε o x 0 2 F m elementary charge e (63) a) x 0 9 C e/h (95) x 0 4 A J magnetic flux quantum h/2e Φ o (8) x 0 5 Wb conductance quantum 2e 2 /h G o (28) x 0 5 S inverse of conductance quantum G o (47) Ω Josephson constant 2e/h K J (9) x 0 9 Hz V von Klitzing constant h/e 2 R K (95) Ω Bohr magneton e h/2m e µ B (37) x 0 26 J T in ev/t (43) x 0 5 ev T µ B /h (56) x 0 9 Hz T µ B /hc (9) m T µ B /k (2) K T nuclear magneton e h/2m p µ N (20) x 0 27 J T in ev/t (24) x 0 8 ev T µ N /h (3) MHz T µ N /hc (0) x 0 2 m T µ N /k (64) x 0 4 K T Planck constant h (52) x 0 34 J s h/2π h (82) x 0 34 J s Planck constant in ev s h (6) x 0 5 ev s h/2π h (26) x 0 6 ev s a) Die eingeklammerten Ziffern geben die Standardabweichung an. So entspricht z.b (63) der Angabe ±

11 286 Anhang B: EINHEITENSYSTEME Quantity Symbol Value Unit atomic mass constant m( 2 C)/2 m u (3) x 0 27 kg electron mass m e (72) x 0 3 kg proton mass m p (3) x 0 27 kg proton-electron mass ratio m p /m e (39) Avogadro constant N A, L (47) x 0 23 mol Faraday constant N A e F (39) C mol molar gas constant R (5) J mol K Boltzmann constant R/N A k (24) x 0 23 J K in ev/k (5) x 0 5 ev K k/h (36) x 0 0 Hz K k/hc (2) m K fine-structure constant e 2 /4πε o hc α (27) x 0 3 inverse fine-structure constant α (50) Rydberg constant α 2 m e c/2h R (83) m R c (25) x 0 5 Hz R hc (7) x 0 8 J R hc in ev /53) ev Bohr radius α/4πr a o (9) x 0 0 m Hartree energy 2R hc E h (34) x 0 8 J in ev () ev electron volt ev (63) x 0 9 J Newtonian constant of gravitation G 6.673(0) x 0 m 3 kg s 2 Planck mass ( hc/g) /2 m P 2.767(6) x 0 8 kg Planck length h/m P c l P.660(2) x 0 35 m Planck time l P /c t P (40) x 0 44 s

Fundamentale Physikalische Konstanten - Gesamtliste Relativer Größe Symbol Wert Einheit Fehler

Fundamentale Physikalische Konstanten - Gesamtliste Relativer Größe Symbol Wert Einheit Fehler UNIVERSELLE KONSTANTEN Vakuumlichtgeschwindigkeit c, c 0 299 792 458 m s 1 (exact) Magnetische Feldkonstante des Vakuums µ 0 4π 10 7 N A 2 (exact) =12.566 370 614... 10 7 N A 2 (exact) Elektrische Feldkonstante

Mehr

Maßeinheiten der Elektrizität und des Magnetismus

Maßeinheiten der Elektrizität und des Magnetismus Maßeinheiten der Elektrizität und des Magnetismus elektrische Stromstärke I Ampere A 1 A ist die Stärke des zeitlich unveränderlichen elektrischen Stromes durch zwei geradlinige, parallele, unendlich lange

Mehr

Einheiten und physikalische Konstanten

Einheiten und physikalische Konstanten A1 Anhang A Einheiten und physikalische Konstanten si-einheiten Jolitorax: LesRomains mesurent les distances en pas, nous en pieds. Obélix: En pieds? Jolitorax: Il faut six pieds pour faire un pas. Obélix:

Mehr

ist Beobachten, Messen und Auswerten von Naturerscheinungen und Naturgesetzen Physikalische Größen und Einheiten

ist Beobachten, Messen und Auswerten von Naturerscheinungen und Naturgesetzen Physikalische Größen und Einheiten ist Beobachten, Messen und Auswerten von Naturerscheinungen und Naturgesetzen Um physikalische Aussagen über das Verhältnis von Messgrößen zu erhalten, ist es notwendig die Größen exakt und nachvollziehbar

Mehr

Energie eines bewegten Körpers (kinetische Energie) Energie eines rotierenden Körpers. Energie im elektrischen Feld eines Kondensators

Energie eines bewegten Körpers (kinetische Energie) Energie eines rotierenden Körpers. Energie im elektrischen Feld eines Kondensators Formeln und Naturkonstanten 1. Allgemeines Energieströme P = v F P = ω M P = U I P = T I S Energiestromstärke bei mechanischem Energietransport (Translation) Energiestromstärke bei mechanischem Energietransport

Mehr

2 Grundgrößen und -gesetze der Elektrodynamik

2 Grundgrößen und -gesetze der Elektrodynamik Grundgrößen und -gesetze der Elektrodynamik. Grundgrößen der Elektrodynamik.. Ladung und die dreidimensionale δ-distribution Ladung Q, q Ladungen treten in zwei Variationen auf: positiv und negativ Einheit:

Mehr

Physik ist eine messende Wissenschaft

Physik ist eine messende Wissenschaft Physik ist eine messende Wissenschaft 1. Konzept der Physik Experiment Beobachtung Vorhersagen Modell / Theorie Um die Natur zu beschreiben, benötigen wir die Mathematik. Damit einhergehend brauchen wir

Mehr

Vorlesung Theoretische Chemie I

Vorlesung Theoretische Chemie I Institut für Physikalische and Theoretische Chemie, Goethe-Universität, Frankfurt am Main 20. Dezember 2013 Teil I Energieeinheiten Joule E kin = 1 2 mv 2 E pot = mgh [E] = kg m2 s 2 = J Verwendung: Energie/Arbeit

Mehr

Einheiten und Konstanten

Einheiten und Konstanten Einheiten und Konstanten SI-Einheiten Für Grundgrössen und abgeleitete Grössen wurde an der 11. Generalkonferenz für Mass und Gewicht 1960 ein kohärentes Einheitssystem, das Système International d Unités

Mehr

Formelsammlung - Grundlagen der Elektrotechnik II. Elektrische Ladung. F (l) d l = Q U U = Q U. J d A. mit ρ 0 = spez. Widerstand bei T = T 0

Formelsammlung - Grundlagen der Elektrotechnik II. Elektrische Ladung. F (l) d l = Q U U = Q U. J d A. mit ρ 0 = spez. Widerstand bei T = T 0 Fomelsammlung - Glagen de Elektotechnik II Elektische Ladung Coulumbsches Geset F12 = 1 q1 q 2 4π 12 2 ê 12 = 1 q 1 q 2 4π 2 1 2 2 1 2 1 Elektisches Feld d E ( ) = 1 4π dq 2 ê Elektostatische Kaft F =

Mehr

SI-EINHEITEN UND IHRE DEZIMALEN VIELFACHEN UND TEILE

SI-EINHEITEN UND IHRE DEZIMALEN VIELFACHEN UND TEILE SI-EINHEITEN UND IHRE DEZIMALEN VIELFACHEN UND TEILE (Quelle: EU-Richtlinie 80/181/EWG) 1. SI-Basiseinheiten Größe Name der Einheit Einheitenzeichen Länge Meter m Masse Kilogramm kg Zeit Sekunde s Elektrische

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III Theorie C Elektrodynamik WS 2-3 Prof. Dr. Alexander Mirlin Blatt Dr.

Mehr

Grundlagen der Elektrotechnik

Grundlagen der Elektrotechnik 2017/2018 Prof. Dr. A. Strey DHBW Stuttgart, Informatik Email: strey@lehre.dhbw-stuttgart.de Inhalt 1 Physikalische Größen Elektrischer Strom und Stromdichte Elektrische Spannung Widerstand und Leitfähigkeit

Mehr

E = ρ (1) B = ȷ+ B = 0 (3) E =

E = ρ (1) B = ȷ+ B = 0 (3) E = Die elektromagnetische Kraft Das vorausgegangene Tutorial Standardmodell der Teilchenphysik ist eine zusammenfassende Darstellung der Elementarteilchen und der zwischen ihnen wirkenden fundamentalen Kräfte.

Mehr

Experimentalphysik 3

Experimentalphysik 3 Optik Experimentalphysik 3 Dr. Georg von Freymann 26. Oktober 2009 Matthias Blaicher Dieser Text entsteht wärend der Vorlesung Klassische Experimentalphysik 3 im Wintersemester 2009/200 an der Universität

Mehr

Probeklausur zur Vorlesung Einführung in die Physikalische Chemie

Probeklausur zur Vorlesung Einführung in die Physikalische Chemie Name: Probeklausur zur Vorlesung Einführung in die Physikalische Chemie Fr. 19. Dezember 2008, 10 15-12 15 Vorbemerkungen - Von den 6 Aufgaben sind 5 zu lösen. - Schreiben Sie die Lösungen auf die Aufgabenblätter.

Mehr

Theoretische Physik II Elektrodynamik

Theoretische Physik II Elektrodynamik Theoretische Physik II Elektrodynamik Text: Arne Babenhauserheide (http://draketo.de) Layout und TEX-mojo: René Kraneis Erstellt auf Basis der Vorlesung von Professor Georg Wolschin (http://wolschin.uni-hd.de)

Mehr

Formelsammlung Physik1 für Wirtschaftsingenieure und PA Stand Additionstheoreme für sinus und cosinus: Darf in der Klausur verwendet werden!

Formelsammlung Physik1 für Wirtschaftsingenieure und PA Stand Additionstheoreme für sinus und cosinus: Darf in der Klausur verwendet werden! Stand Bereich: Mathematik Darf in der Klausur verwendet werden! sin = a c ; cos = b c ; tan = a b sin 2 cos 2 =1 Additionstheoreme für sinus und cosinus: sin ± =sin cos ± cos sin cos ± =cos cos sin sin

Mehr

Magnetismus. Prinzip: Kein Monopol nur Dipole. Kräfte:

Magnetismus. Prinzip: Kein Monopol nur Dipole. Kräfte: Elektromagnetismus Magnetismus Prinzip: Kein Monopol nur Dipole Kräfte: S N Richtung des Magnetischen Feldes I B Kraft auf Ladungen im B-Feld + Proportionalitätskonstante B FM = q v B Durch Messung: LORENTZ

Mehr

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t.

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t. Formelsammlung Physik Mechanik. Kinematik und Kräfte Kinematik Erstes Newtonsches Axiom (Axio/Reaxio) F axio = F reaxio Zweites Newtonsches Axiom Translationsbewegungen Konstante Beschleunigung F = m a

Mehr

Physikalische Größen und Einheiten

Physikalische Größen und Einheiten Physikalische Größen und Einheiten 4 März 2010 I Physikalische Größen Alle Gleichungen in den Versuchsanleitungen sind mathematische Verknüpfungen physikalischer Größen (siehe auch DIN 1313) Jede physikalische

Mehr

B oder H Die magnetische Ladung

B oder H Die magnetische Ladung B oder H Die magnetische Ladung Holger Hauptmann Europa-Gymnasium, Wörth am Rhein holger.hauptmann@gmx.de Felder zum Anfassen: B oder H 1 Physikalische Größen der Elektrodynamik elektrische Ladung Q elektrische

Mehr

1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer

1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer TUM EM-Tutorübung SS 1 1.5.21 Formelsammlung EM SS 21 Diese Formelsammlung dient nur zur Orientierung und stellt keinen nspruch auf ollständigkeit. Zudem darf sie während der Prüfung nicht benutzt werden,

Mehr

Aufgabe K5: Kurzfragen (9 1 = 9 Punkte)

Aufgabe K5: Kurzfragen (9 1 = 9 Punkte) Aufgabe K5: Kurzfragen (9 = 9 Punkte) Beantworten Sie nur, was gefragt ist. (a) Wie transformiert das Vektorpotential bzw. das magnetische Feld unter Eichtransformationen? Wie ist die Coulomb-Eichung definiert?

Mehr

Elektrotechnik II Formelsammlung

Elektrotechnik II Formelsammlung Elektrotechnik II Formelsammlung Achim Enthaler 20.03.2007 Gleichungen Allgemeine Gleichungen aus Elektrotechnik I siehe Formelsammlung Elektrotechnik I, SS2006 Maxwell Gleichungen in Integralform Durchutungsgesetz

Mehr

Magnetismus. Prinzip: Kein Monopol nur Dipole. Kräfte:

Magnetismus. Prinzip: Kein Monopol nur Dipole. Kräfte: Elektromagnetismus Magnetismus Prinzip: Kein Monopol nur Dipole Kräfte: S N Richtung des Magnetischen Feldes I B Kraft auf Ladungen im B-Feld + Proportionalitätskonstante B FM = q v B Durch Messung: LORENTZ

Mehr

Aufgabe 1 - Strömungsfeld

Aufgabe 1 - Strömungsfeld KLAUSUR Elektrische und magnetische Felder (2. Semester) 05.08.2011 Prof. Ronald Tetzlaff Dauer: 150 min. Aufgabe 1 2 3 4 5 Punkte 10 12 8 8 12 50 Hinweis: Tragen Sie die Ergebnisse, wenn nicht anders

Mehr

Elektrotechnik Formelsammlung v1.2

Elektrotechnik Formelsammlung v1.2 Inhaltsverzeichnis 3. Das Coulombsches Gesetz...2 3.. Elementarladung...2 32. Elektrische Arbeit...2 33. Elektrische Feldstärke...2 34. Elektrische Spannung...3 34.. Ladung Q...3 34... Kondensatoren-Gesetz...3

Mehr

Das elektrische Potential

Das elektrische Potential Das elektrische Potential Wir gehen nun genauso wie in der Mechanik vor: nachdem wir die elektrische Kraft diskutiert und durch eine Feldgröße beschrieben haben (das elektrische Feld E), betrachten wir

Mehr

Physik für Naturwissenschaften (HS 2016) Lösungen

Physik für Naturwissenschaften (HS 2016) Lösungen Physik für Naturwissenschaften (HS 2016) Lösungen students4students info@students4students.ch 1 Inhaltsverzeichnis 1 Serie 1 1 1.1 Elektrostatisches Pendel....................... 1 1.1.1 Aufgabe............................

Mehr

Kinematik & Dynamik. Über Bewegungen und deren Ursache Die Newton schen Gesetze. Physik, Modul Mechanik, 2./3. OG

Kinematik & Dynamik. Über Bewegungen und deren Ursache Die Newton schen Gesetze. Physik, Modul Mechanik, 2./3. OG Kinematik & Dynamik Über Bewegungen und deren Ursache Die Newton schen Gesetze Physik, Modul Mechanik, 2./3. OG Stiftsschule Engelberg, Schuljahr 2016/2017 1 Einleitung Die Mechanik ist der älteste Teil

Mehr

Lehrstuhl für Technische Elektrophysik Technische Universität München

Lehrstuhl für Technische Elektrophysik Technische Universität München Lehrstuhl für Technische Elektrophysik Technische Universität München Tutorübungen zu "Elektromagnetische Feldtheorie II" (Prof. Wachutka) SS9 Blatt 1 Aufgabe: Ebene Wellen Im Vakuum, daß heißt die Leitfähigkeit

Mehr

Vorlesung Allgemeine Chemie (CH01)

Vorlesung Allgemeine Chemie (CH01) Vorlesung Allgemeine Chemie (CH01) Für Studierende im B.Sc.-Studiengang Chemie Prof. Dr. Martin Köckerling Arbeitsgruppe Anorganische Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät, Institut

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 30. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 30. 06.

Mehr

Musterlösung Übungsklausur zur Vorlesung PC I Chemische Thermodynamik B.Sc.

Musterlösung Übungsklausur zur Vorlesung PC I Chemische Thermodynamik B.Sc. Musterlösung Übungsklausur zur Vorlesung PC I Chemische Thermodynamik B.Sc. Angaben zur Person: (bitte leserlich und in Druckbuchstaben) Name, Vorname: Geburtsdatum und ort: Matrikelnummer: Studienfach,

Mehr

Elektrotechnik: Zusatzaufgaben

Elektrotechnik: Zusatzaufgaben Elektrotechnik: Zusatzaufgaben 1.1. Aufgabe: Rechnen Sie die abgeleiteten Einheiten der elektrischen Spannung, des elektrischen Widerstandes und der elektrischen Leistung in die Basiseinheiten des SI um.

Mehr

Wichtig!!!! Nur klare, übersichtliche Lösungen werden gewertet!!!!

Wichtig!!!! Nur klare, übersichtliche Lösungen werden gewertet!!!! Experimentalphysik II SoSem 2009 Klausur 20.07.2009 Name:... Matrikelnummer:... Raum / Platznummer... nur für die Korrektoren: Studienrichtung, -ziel (bitte ankreuzen): Aufgabe Punkte Physik 1-10... Nanostrukturtechnik

Mehr

Klausur Elektrodynamik E2/E2p, SoSe 2012 Braun

Klausur Elektrodynamik E2/E2p, SoSe 2012 Braun Name: Klausur Elektrodynamik E2/E2p, SoSe 2012 Braun Matrikelnummer: Benotung für: O E2 O E2p (bitte ankreuzen) Mit Stern (*) gekennzeichnete Aufgaben sind für E2-Kandidaten E2p-Kandidaten können zusätzlich

Mehr

Elektrotechnik: Zusatzaufgaben

Elektrotechnik: Zusatzaufgaben Elektrotechnik: Zusatzaufgaben 1.1. Aufgabe: Rechnen Sie die abgeleiteten Einheiten der elektrischen Spannung, des elektrischen Widerstandes und der elektrischen Leistung in die Basiseinheiten des SI um.

Mehr

20 Elektrodynamik in Materie

20 Elektrodynamik in Materie 20 Elektrodynamik in Materie Die Maxwell schen Gleichungen sind universell gültig. Insbesondere gelten sie auch in Materie. In Materie hat man es allerdings mit einer Vielzahl von Ladungen zu tun, die

Mehr

in Molekülen: möglicherweise unterschiedliche Polarisierbarkeiten in verschiedenen Richtungen p = ᾱ E

in Molekülen: möglicherweise unterschiedliche Polarisierbarkeiten in verschiedenen Richtungen p = ᾱ E orlesung Dienstag. Maxwellgleichungen der Elektrostatik E = ρ ɛ 0 () B = 0 (2) E = 0 (3) B = µ 0 j (4).2 Polarisation Einteilung der Materie - Leiter (freie Ladungsträger) - Isolatoren (nur gebundene Ladungsträger)

Mehr

8. Reines Ethanol besitzt eine Dichte von ρ = 0,79 g/cm³. Welches Volumen V Ethanol ist erforderlich, um eine Masse von m = 158g Ethanol zu erhalten?

8. Reines Ethanol besitzt eine Dichte von ρ = 0,79 g/cm³. Welches Volumen V Ethanol ist erforderlich, um eine Masse von m = 158g Ethanol zu erhalten? Staatliche Schule für technische Assistenten in der Medizin Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main Testklausur Physik 1. 10 2 10 3 =... 2. 4 10 3 2 10 3=... 3. 10 4 m= cm 4.

Mehr

ELEKTRODYNAMIK UND RELATIVITÄTSTHEORIE

ELEKTRODYNAMIK UND RELATIVITÄTSTHEORIE ELEKTRODYNAMIK UND RELATIVITÄTSTHEORIE Kapitel 12: Elektro und Magnetostatik Vorlesung für Studenten der Technischen Physik Helmut Nowotny Technische Universität Wien Institut für Theoretische Physik 7.,

Mehr

Physikalische Größen und Einheiten

Physikalische Größen und Einheiten Physikalische n Physikalisches Praktikum für Anfänger (Hauptfach) Grundlagen Physikalische n und en Alle Gleichungen in den Versuchsanleitungen sind mathematische Verknüpfungen physikalischer n (siehe

Mehr

Ph4I Zusammenfassung

Ph4I Zusammenfassung Physik 4 für Informatiker Ph4I Zusammenfassung Stand: 2013-08-12 https://github.com/hsr-stud/ph4i/ Inhaltsverzeichnis 1 Elektrostatik 3 1.1 Elektrische Ladung..................................... 3 1.2

Mehr

Elektrische und magnetische Materialeigenschaften

Elektrische und magnetische Materialeigenschaften Die elektrischen Eigenschaften von Dielektrika und Paraelektrika sind keine speziellen Eigenschaften fester oder kristalliner Substanzen. So sind diese Eigenschaften z.b. auch in Molekülen und Flüssigkeiten

Mehr

Teil VI. Das elektromagnetische Feld in Materie. 13. Makroskopische Felder. f( x, t) = d 3 ξ dτ f( x + ξ, t + τ) (13.1) E + B t = 0 (13.

Teil VI. Das elektromagnetische Feld in Materie. 13. Makroskopische Felder. f( x, t) = d 3 ξ dτ f( x + ξ, t + τ) (13.1) E + B t = 0 (13. 13. Makroskopische Felder Teil VI Das elektromagnetische Feld in Materie Im Prinzip erlauben die Maxwell-Gleichungen von Teil III das elektromagnetische Feld beliebiger Materieanordnungen zu berechnen,

Mehr

Rechenübungen zum Physik Grundkurs 2 im SS 2010

Rechenübungen zum Physik Grundkurs 2 im SS 2010 Rechenübungen zum Physik Grundkurs 2 im SS 2010 2. Klausur (Abgabe: Do 16.9.2010 12.00 Uhr Neue Aula) Name, Vorname: Geburtstag: Ihre Identifizierungs-Nr. ID2= 122 Hinweise: Studentenausweis: Hilfsmittel:

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 27. 04. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 27. 04. 2009

Mehr

Integrierter Kurs P1a im WiSe 2009/10. Skript Experimentalphysik. Prof. Dr. Oliver Benson

Integrierter Kurs P1a im WiSe 2009/10. Skript Experimentalphysik. Prof. Dr. Oliver Benson Integrierter Kurs P1a im WiSe 2009/10 Skript Experimentalphysik Prof. Dr. Oliver Benson I. Einleitung 1. Das physikalische Weltbild Die Physik beschäftigt sich mit den Grundbausteinen der wahrnehmbaren

Mehr

PS II - GLET

PS II - GLET Grundlagen der Elektrotechnik PS II - GLET 02.03.2012 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 7 Punkte 4 2 7 14 4 4 4 erreicht Aufgabe 8 9 10 11 Summe Punkte 22 4 4 6 75 erreicht Hinweise: Schreiben

Mehr

Induktion, Polarisierung und Magnetisierung

Induktion, Polarisierung und Magnetisierung Übung 2 Abgabe: 11.03. bzw. 15.03.2016 Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion, Polarisierung und Magnetisierung In dieser

Mehr

Vorbereitung zur Klausur Elektromagnetische Felder und Wellen

Vorbereitung zur Klausur Elektromagnetische Felder und Wellen Vorbereitung zur Klausur Elektromagnetische Felder und Wellen 1/50 J. Mähnß Stand: 9. August 2016 c J. Mähnß 2/50 Maxwellgleichungen Maxwellgleichungen allgemein 3/50 ( B = µ 0 j V + ε ) E 0 t E = B t

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 19. 05. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 19. 05.

Mehr

Elektromagnetische Eigenschaften von Metallen, Potentiale

Elektromagnetische Eigenschaften von Metallen, Potentiale Übung 8 Abgabe: 02.05. bzw. 05.05.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Elektromagnetische Eigenschaften von Metallen, Potentiale

Mehr

1 Elektrostatik Elektrische Feldstärke E Potential, potentielle Energie Kondensator... 4

1 Elektrostatik Elektrische Feldstärke E Potential, potentielle Energie Kondensator... 4 Inhaltsverzeichnis 1 Elektrostatik 3 1.1 Elektrische Feldstärke E............................... 3 1.2 Potential, potentielle Energie............................ 4 1.3 Kondensator.....................................

Mehr

Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 4

Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 4 Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 4 KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Mehr

Elektrizitätslehre. Zusammenfassung. Aufbau des Stoffes. Elektrische Wechselwirkung. Elektrische Ladung geladener Zustand

Elektrizitätslehre. Zusammenfassung. Aufbau des Stoffes. Elektrische Wechselwirkung. Elektrische Ladung geladener Zustand Aufbau des toffes Elektrizitätslehre 7 Elektrische Ladung Elektrisches Feld Elektrische Ww Zusammenfassung tromkreise trom nduzierter trom Magnetfeld magnetische Ww Dauermagnet Elektromagnetische chwingungen

Mehr

Das ABC der Schulphysik

Das ABC der Schulphysik Das ABC der Schulphysik Buchstabe Bedeutung Art Herkunft A Ampere SI-Einheit André-Marie Ampère (F, 1775 1836). Die Einheit Ampere wird ohne Akzent geschrieben. A Flächeninhalt Größe lat. area = Grundfläche

Mehr

Hier der Rest der Bearbeitungen zu den Übungsbeispielen. Viel Erfolg beim Test!

Hier der Rest der Bearbeitungen zu den Übungsbeispielen. Viel Erfolg beim Test! Liebe Übungsgruppe! Hier der Rest der Bearbeitungen zu den Übungsbeispielen. Viel Erfolg beim Test! 45) Die Nullpunktsenergie von 3ε kommt daher, dass die drei Oszillatoren im Grundzustand jeweils eine

Mehr

ELEKTRODYNAMIK UND RELATIVITÄTSTHEORIE

ELEKTRODYNAMIK UND RELATIVITÄTSTHEORIE ELEKTRODYNAMIK UND RELATIVITÄTSTHEORIE Kapitel 1: Einleitung Vorlesung für Studenten der Technischen Physik Helmut Nowotny Technische Universität Wien Institut für Theoretische Physik 7., von A. Rebhan

Mehr

Prof. Dr. T. Müller Dr. F. Hartmann Blatt 8 Bearbeitung:

Prof. Dr. T. Müller Dr. F. Hartmann Blatt 8 Bearbeitung: Institut für Experimentelle Kernphysik, KIT Übungen zur Klassischen Physik II (Elektrodynamik) SS 2016 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 8 Bearbeitung: 15.6.2016 1. Stromdichte, elektrisches Feld

Mehr

Elektromagnetische Feldtheorie 1

Elektromagnetische Feldtheorie 1 Diplom-Vorprüfung Elektrotechnik und Informationstechnik Termin Sommersemester 09 Elektromagnetische Feldtheorie 1 Donnerstag, 17. 09. 2009, 9:00 10:00 Uhr Zur Beachtung: Zugelassene Hilfsmittel: Originalskript

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 05. 05. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 05. 05.

Mehr

Vs = 1, Am B = A = H L Θ L. l L. Zeichen Bedeutung Einheit

Vs = 1, Am B = A = H L Θ L. l L. Zeichen Bedeutung Einheit 13 Magnetismus Elektrische Durchflutung Magnetische Feldstärke I N I N N I I N H l H l H l Magnetische Flussdichte a) Luft: B L µ 0 H Vs µ 0 1,56 10 6 Am Magnetischer Fluss Φ B A Φ B A Φ A B b) Eisen:

Mehr

Experimentalphysik 2, SS 2010 (Fumagalli)

Experimentalphysik 2, SS 2010 (Fumagalli) Vorlesung (nur Monobachelor Physik): 120 Mo und Mi von 10-12 Uhr Sprechstunde: Mo 12:30-13:30 oder nach Vereinbarung Webseite: www.physik.fu-berlin.de/einrichtungen/ag/ag-fumagalli/ lehre/experimentalphysik_ii_fuer_monobachelor/index.html

Mehr

Inhalt. Kapitel 4: Magnetisches Feld

Inhalt. Kapitel 4: Magnetisches Feld Inhalt Kapitel 4: Magnetische Feldstärke Magnetischer Fluss und magnetische Flussdichte Induktion Selbstinduktion und Induktivität Energie im magnetischen Feld A. Strey, DHBW Stuttgart, 015 1 Magnetische

Mehr

Musterlösung zur Abschlussklausur PC I Übungen (27. Juni 2018)

Musterlösung zur Abschlussklausur PC I Übungen (27. Juni 2018) 1. Abkühlung (100 Punkte) Ein ideales Gas (genau 3 mol) durchläuft hintereinander zwei (reversible) Zustandsänderungen: Zuerst expandiert es isobar, wobei die Temperatur von 50 K auf 500 K steigt und sich

Mehr

Elektrizitätslehre. Teil einer dynamischen Systemtheorie. Nicht aus jedem Bernstein wird eine Perle gedreht. Estland. ZHW 04/05 Prof.

Elektrizitätslehre. Teil einer dynamischen Systemtheorie. Nicht aus jedem Bernstein wird eine Perle gedreht. Estland. ZHW 04/05 Prof. Elektrizitätslehre Teil einer dynamischen Systemtheorie Nicht aus jedem Bernstein wird eine Perle gedreht. Estland Physik der dynamischen Systeme: Elektrizität 0 Elektrizität: Inhalt Grundlagen Ladung

Mehr

15.Magnetostatik, 16. Induktionsgesetz

15.Magnetostatik, 16. Induktionsgesetz Ablenkung von Teilchenstrahlen im Magnetfeld (Zyklotron u.a.): -> im Magnetfeld B werden geladene Teilchen auf einer Kreisbahn abgelenkt, wenn B senkrecht zu Geschwindigkeit v Kräftegleichgewicht: 2 v

Mehr

Wechselstromwiderstände (Impedanzen) Parallel- und Reihenschaltungen. RGes = R1 + R2 LGes = L1 + L2

Wechselstromwiderstände (Impedanzen) Parallel- und Reihenschaltungen. RGes = R1 + R2 LGes = L1 + L2 Wechselstromwiderstände (Impedanzen) Ohm'scher Widerstand R: Kondensator mit Kapazität C: Spule mit Induktivität L: RwR = R RwC = 1/(ωC) RwL = ωl Parallel- und Reihenschaltungen bei der Reihenschaltung

Mehr

Quantisierung des elektromagnetischen Feldes

Quantisierung des elektromagnetischen Feldes 18. Juni 2008 1 Energiewerte Maxwell-Gleichungen Wellengleichung Lagrange-Funktion Hamilton-Funktion 1 Kanonische Helmholtzsche freie Energie Innere Energie Übersicht Behandelt wird die im Vakuum. Das

Mehr

Elektrische Einheiten und ihre Darstellung

Elektrische Einheiten und ihre Darstellung Die Messung einer physikalischer Größe durch ein Experiment bei dem letztlich elektrische Größen gemessen werden, ist weit verbreitet. Die hochpräzise Messung elektrischer Größen ist daher sehr wichtig.

Mehr

Elektrodynamische Wellen

Elektrodynamische Wellen Elektrodynamische Wellen Hannah Vogel 23.01.2017 Hannah Vogel Elektrodynamische Wellen 23.01.2017 1 / 33 Inhaltsverzeichnis 1 Elektrische und Magnetische Kräfte und Felder 2 Die Maxwell schen Gleichungen

Mehr

X.3.1 Energiedichte und -stromdichte des elektromagnetischen Feldes

X.3.1 Energiedichte und -stromdichte des elektromagnetischen Feldes X.3 Energie und Impuls des elektromagnetischen Feldes 169 X.3 Energie und Impuls des elektromagnetischen Feldes Genau wie mechanische Systeme trägt das elektromagnetische Feld Energie ( X.3.1 und Impuls

Mehr

Theoretischen Physik II SS 2007 Klausur I - Aufgaben und Lösungen

Theoretischen Physik II SS 2007 Klausur I - Aufgaben und Lösungen Theoretischen Physik II SS 7 Klausur I - Aufgaben und Lösungen Aufgabe Elektrostatik Im Mittelpunkt einer leitenden und geerdeten Hohlkugel RadiusR) befindet sich eine kleine Kugel mit homogener Ladungsverteilung

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 4 Thema: Elektromagnetische Schwingungen, elektromagnetische Wellen und Spezielle Relativitätstheorie Technische Universität München 1 Fakultät für

Mehr

Das ABC der Schulphysik

Das ABC der Schulphysik Das ABC der Schulphysik Buchstabe Bedeutung Art Herkunft A Ampere SI-Einheit André-Marie Ampère (F, 1775 1836). Die Einheit Ampere wird ohne Akzent geschrieben. A Flächeninhalt Größe lat. area = Grundfläche

Mehr

Elektrisches Potenzial Kapitel 25

Elektrisches Potenzial Kapitel 25 Elektrisches Potenzial Kapitel 25 Zusammenfassung Coulomb (22) gleiche Ladungen stoßen sich ab ungleiche Ladungen ziehen sich an Das elektrische Feld (23) Ein geladener Körper beeinflusst einen anderen

Mehr

Elektromagnetische Wellen

Elektromagnetische Wellen 27. Januar 2013 Inhaltsverzeichnis Mathematische Grundlagen erste maxwellsche Gleichung zweite maxwellsche Gleichung dritte maxwellsche Gleichung vierte maxwellsche Gleichung Lösung der elektromagnetische

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 1 Thema: Elektrostatik Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Elektrostatik 3 1.1 Elektrische Ladungen und Coulomb-Gesetz...................

Mehr

Elektrische Schwingungen und Wellen

Elektrische Schwingungen und Wellen Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #4 am 0.07.2007 Vladimir Dyakonov Elektrische Schwingungen und Wellen Wechselströme Wechselstromgrößen

Mehr

Kapitel 7: Maxwell-Gleichungen

Kapitel 7: Maxwell-Gleichungen Kapitel 7: Maxwell-Gleichungen 1831-1879 Physik-II - Christian Schwanenberger - Vorlesung 50 7.1 Der Verschiebungsstrom 7 Maxwell - Gleichungen 7.1 Der Verschiebungsstrom Das Faraday sche Gesetz B beschreibt,

Mehr

Basiskenntnistest - Physik

Basiskenntnistest - Physik Basiskenntnistest - Physik 1.) Welche der folgenden Einheiten ist keine Basiseinheit des Internationalen Einheitensystems? a. ) Kilogramm b. ) Sekunde c. ) Kelvin d. ) Volt e. ) Candela 2.) Die Schallgeschwindigkeit

Mehr

2 Elektrostatik. 2.1 Coulomb-Kraft und elektrische Ladung. 2.1 Coulomb-Kraft und elektrische Ladung

2 Elektrostatik. 2.1 Coulomb-Kraft und elektrische Ladung. 2.1 Coulomb-Kraft und elektrische Ladung 2.1 Coulomb-Kraft und elektrische Ladung 2 Elektrostatik 2.1 Coulomb-Kraft und elektrische Ladung Abb. 2.1 Durch Reiben verschiedener Stoffe aneinander verbleiben Elektronen der Atomhüllen überwiegend

Mehr

1. Plattenkondensator 2. 2 parallele Leiter 3. Magnetischer Kreis 4. Transformatorprinzip Summe Punkte

1. Plattenkondensator 2. 2 parallele Leiter 3. Magnetischer Kreis 4. Transformatorprinzip Summe Punkte Fachhochschule Dortmund Prof. Dr.-Ing. K.-J. Diederich Erreichbar 60 Punkte FB3 Elektrische Energietechnik Klausur vom 27.09.2011 BPO 05 ET2 Felder 34090 Seite 1 von 5 Zeit 08:00-11:00 Uhr Druck: 20.07.2012

Mehr

Maxwell mit Minkowski. Max Camenzind Uni Würzburg Senioren 2015

Maxwell mit Minkowski. Max Camenzind Uni Würzburg Senioren 2015 Maxwell mit Minkowski Max Camenzind Uni Würzburg Senioren 2015 Vektorfelder in 3 Dimensionen F(t,x) = (F x,f y,f z ) Satz von Gauß Quelle Fluss Die Massenerhaltung Ein Nettomassenfluss M durch die festen

Mehr

Theoretische Physik II

Theoretische Physik II Peter Reineker, Michael Schulz und Beatrix M. Schulz Theoretische Physik II Elektrodynamik mit Aufgaben in Maple WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Inhaltsverzeichnis Vorwort XV 1 Einleitung 1

Mehr

Elektrizität. Eledrisch is pradisch: wann'st 'as oreibst brennt's!

Elektrizität. Eledrisch is pradisch: wann'st 'as oreibst brennt's! Elektrizität Eledrisch is pradisch: wann'st 'as oreibst brennt's! Reibungselektrizität schon vor mehr als 2000 Jahren bei den Griechen bekannt: Reibt man Bernstein mit einem Tuch, zieht er danach Federn

Mehr

Elektrizitätslehre 2.

Elektrizitätslehre 2. Elektrizitätslehre. Energieumwandlung (Arbeit) im elektrischen Feld Bewegung einer Ladung gegen die Feldstärke: E s Endposition s Anfangsposition g W F Hub s r F Hub r Fq FHub Eq W qes W ist unabhängig

Mehr

Das ABC der Physik. a Beschleunigung Größe lat. accelerare = beschleunigen lat. celer = schnell

Das ABC der Physik. a Beschleunigung Größe lat. accelerare = beschleunigen lat. celer = schnell Das ABC der Physik Buchstabe Bedeutung Art Herkunft A Ampere SI-Einheit André-Marie Ampère (F, 1775 1836). Die Einheit Ampere wird ohne Akzent geschrieben. A Flächeninhalt Größe lat. area = Grundfläche

Mehr

Anhang A.6 A.7 A.8 A.9 A.10 A.11 A.12 A.13 A.14 A.15 A.16 A.17 A.18 A.19 A.20 A.21

Anhang A.6 A.7 A.8 A.9 A.10 A.11 A.12 A.13 A.14 A.15 A.16 A.17 A.18 A.19 A.20 A.21 Anhang A.6 Physikalische Fundamentalkonstanten 373 A.7 Eigenschaften fester e 374 A.8 Eigenschaften von Flüssigkeiten 375 A.9 Dichte und dynamische Viskosität von Wasser 376 A.0 Siedetemperatur des Wassers

Mehr

Physikalische Grundlagen makroskopisch bildgebender Verfahren in der Hirnforschung

Physikalische Grundlagen makroskopisch bildgebender Verfahren in der Hirnforschung Physikalische Grundlagen makroskopisch bildgebender Verfahren in der Hirnforschung Studiengang Neurobiologie/Neurowissenschaften Otto-von-Guericke Universität Magdeburg Sommersemester 2008 Reinhard König

Mehr

Elektrodynamik Geschichte

Elektrodynamik Geschichte Elektrodynamik Geschichte Daniel Grumiller Institut für Theoretische Physik (FH, 10. Stock) TU Wien http://www.itp.tuwien.ac.at/index.php/elektrodynamik I Sommersemester 2014 grumil@hep.itp.tuwien.ac.at

Mehr

Formelsammlung: Physik II für Naturwissenschaftler

Formelsammlung: Physik II für Naturwissenschaftler Formelsammlung: Physi II für Naturwissenschaftler 4 Eletrizität und Magnetismus 4.1 Ladung und Ladungserhaltung Ladung q = n(±e) mit Elementarladung 4.2 Coulomb-Gesetz e = 1, 6 10 19 C = 1, 6 10 19 As

Mehr

1 Mechanik geradlinige gleichförmige Kinematik. Bewegung

1 Mechanik geradlinige gleichförmige Kinematik. Bewegung 1 Mechanik geradlinige gleichförmige Kinematik Bewegung 2 Mechanik Durchschnittsgeschwindigkeit/Intervallgeschwindigkeit Kinematik 3 Mechanik geradlinig gleichmäßig Kinematik beschleunigte Bewegung 4 Mechanik

Mehr

Aufgabe 1 - Strömungsfeld

Aufgabe 1 - Strömungsfeld KLAUSUR Elektrische und magnetische Felder (2. Semester) 05.08.2011 Prof. Ronald Tetzlaff Dauer: 150 min. Aufgabe 1 2 3 4 5 Punkte 10 12 8 8 12 50 Hinweis: Tragen Sie die Ergebnisse, wenn nicht anders

Mehr

Prüfung. Prüfung: mündl min, Termin nach Absprache ( )

Prüfung. Prüfung: mündl min, Termin nach Absprache ( ) Prüfung Prüfung: mündl. 20-30 min, Termin nach Absprache (Email) (Ergänzte/Geordnete) Unterlagen zur Vorlesung werden ab dem 22.7. am LTI verkauft (3 ) XIV: Nichtlineare Optik - Maxwell-Gleichungen und

Mehr

Experimentalphysik 2

Experimentalphysik 2 Repetitorium zu Experimentalphysik 2 Ferienkurs am Physik-Department der Technischen Universität München Gerd Meisl 5. August 2008 Inhaltsverzeichnis 1 Übungsaufgaben 2 1.1 Übungsaufgaben....................................

Mehr

Physik II (Elektrodynamik) SS Klausur Fr , 14:45-16:45 Uhr, Gerthsen Hörsaal / Gaede Hörsaal. Name: Matrikelnummer:..

Physik II (Elektrodynamik) SS Klausur Fr , 14:45-16:45 Uhr, Gerthsen Hörsaal / Gaede Hörsaal. Name: Matrikelnummer:.. Physik II (Elektrodynamik) SS 2007 1. Klausur Fr. 01.06.2007, 14:45-16:45 Uhr, Gerthsen Hörsaal / Gaede Hörsaal Name: Matrikelnummer:.. Studienziel: Übungsgruppe:.... Benoteter Schein erwünscht: Aufgabe

Mehr