Mathematische Probleme, SS 2016 Dienstag $Id: dreieck.tex,v /04/19 15:02:00 hk Exp $ 1.4 Dreiecksberechnung mit Seiten und Winkeln.

Größe: px
Ab Seite anzeigen:

Download "Mathematische Probleme, SS 2016 Dienstag $Id: dreieck.tex,v /04/19 15:02:00 hk Exp $ 1.4 Dreiecksberechnung mit Seiten und Winkeln."

Transkript

1 Mtemtise Proleme, SS 2016 Dienstg 19.4 $Id: dreiek.tex,v /04/19 15:02:00 k Ex $ 1 Dreieke 1.4 Dreiekserenung mit Seiten und Winkeln Wie m Ende der letzten Sitzung ngekündigt wollen wir den Cosinusstz eweisen, dieser wird si ls eines der entseidenden Hilfsmittel der Dreiekserenung erusstellen. In Worten esgt dieser, dss in einem jeden Dreiek ds Qudrt einer Seite glei der Summe der Qudrte der eiden nderen Seiten minus ds doelte des Produkts us den eiden nderen Seiten und dem Cosinus des von diesen eingeslossenen Winkels ist. Stz 1.4 Der Cosinusstz) Sei ein Dreik mit Seiten,, und Winkeln, β, γ in der Stndrdezeinung. Dnn sind 2 = os, 2 = os β, 2 = os γ. Beweis: Es reit us etw die erste dieser Gleiungen zu eweisen, die nderen eiden geen us dieser dur Umezeinungen ervor. Liegt dei in ein reter Winkel vor, lso = π/2, so ist os = 0 und unsere Beutung wird zum Stz des Pytgors Stz 1. Wir können lso nnemen ds in kein reter Winkel ist, d.. π/2. Nun können drei versiedene Fälle uftreten. Fll 1 Fll 2 Fll 3 Im ersten Fll ist in ein sitzer Winkel, lso 0 < < π/2 und die links oen eingezeinete Höe liegt innerl des Dreieks. In retwinkligen Dreiek links von liefert der Stz des Pytgors Stz 1 zunäst 2 = 2 + 2, woei der dur die Höe geildete Asnitt der Dreieksseite AB ist, und dmit 2 = 2 2. Außerdem entnemen wir diesem retwinkligen Dreiek no die Bezieung os =, lso = os. 3-1

2 Mtemtise Proleme, SS 2016 Dienstg 19.4 Eine weitere Anwendung des Stzes von Pytgors Stz 1 diesml im Dreiek rets von liefert 2 = 2 + ) 2 = ) 2 = = os. Dmit ist der Cosinusstz in diesem Fll ewiesen und die nderen eiden Fälle sind eine Üungsufge. Ausgerüstet mit dem Cosinusstz können wir jetzt die erste Vrinte einer Dreiekserenung durfüren, nämli die Dreiekserenung ei drei gegeenen Seiten. Hierei tritt kein Eindeutigkeitsrolem uf, d wir die Kongruenz von Dreieken j gerde dur die Gleieit der Seiten definiert en, er ein Existenzrolem. Zu elieig vorgegeenen,, > 0 muss es keinesflls ein Dreiek mit diesen Seitenlänge geen, denn wie wir glei seen werden ist in einem Dreiek die Länge einer jeden Seite et kleiner ls die Summe der Längen der eiden nderen Seiten. Dies ist gerde die Dreieksungleiung in irer ursrünglien, nmensgeenden Gestlt. Stz 1.5 Dreiekserenung ei gegeenen Seiten) Seien,, > 0 gegeen. Genu dnn existiert ein Dreiek mit den Seitenlängen,, wenn die Dreieksungleiungen < +, < + und < + erfüllt sind. In diesem Fll ist is uf Kongruenz eindeutig estimmt und die Winkel in sind in den Stndrdezeinungen gegeen dur ) = ros, 2 ) β = ros, 2 ) γ = ros. 2 Beweis: Für sitze Winkel 0 < < π/2 ist direkt n Definition 0 < os < 1, lso gilt für elieiges 0 < < π stets 1 < os < 1. Git es nun ein Dreiek mit Seitenlängen,, und Winkeln, β, γ, so ergit der Cosinusstz Stz 4 2 = os < = + ) 2, lso < +. Anlog ergeen si < + und < +, unsere Bedingungen sind lso notwendig für die Existenz eines Dreieks mit den Seitenlängen,,. Sei nun umgekert die Dreieksungleiung erfüllt. N eventueller Umenennung können wir, nnemen. Wäle dnn eine Streke AB der Länge und ilde den Kreis K mit Mittelunkt A 3-2

3 Mtemtise Proleme, SS 2016 Dienstg 19.4 und Rdius sowie den Kreis L mit Mittelunkt B und Rdius. Wegen, und < + sneiden si K und L ußerl von AB und ezeinet C einen der eiden Snittunkte, so ist ABC ein Dreiek mit den Seitenlängen,,. K L A B Dmit en wir die Existenzussge ewiesen. Die Eindeutigkeitsussge ist, wie son oen festgelten, klr und die Formeln für die drei Winkel folgen us dem Cosinusstz Stz 4. Die effektive Konstruktion eines Dreieks ei gegeenen,, ist jetzt u leit mögli. Wollen wir dies mit dem Geodreik tun, so erenen wir zunäst den Winkel gemäß der oigen Formel und trgen dnn Streken AB und AC der Längen und im Winkel zueinnder. Dies git uns ds gesute Dreiek. Die Konstruktion mit Zirkel und Linel wurde im Beweis vorgefürt, mn zeinet die eiden esrieenen Kreise K und L mit dem Zirkel ein und wält dnn einen der eiden entsteenden Snittunkte. Wir suen uns no zwei exlizite Beisiele zum een ewiesenen Stz n. 1. Seien = 6, = 3 und = 2. Um zu suen o es ein Dreik mit diesen Seitenlängen git müssen wir die Dreieksungleiung üerrüfen. Diese ist ier er wegen = 6 > = + offensitli verletzt, es git lso kein Dreiek mit diesen Seitenlängen. 2. Nun seien = 4, = 2, = 3. Diesml sind die Dreieksungleiungen erfüllt, es reit j offenr diese für die längste Seite zu verifizieren und ier en wir = 4 < 2+3 = +. Es git lso ein Dreiek mit diesen Seitenlängen. Die Winkel 3-3

4 Mtemtise Proleme, SS 2016 Dienstg 19.4 in diesem Dreiek ergeen si jeweils uf zwei Nkommstellen gerundet ls = ros = ros 1 ) 104, 48, 12 4 β = ros = ros , 96, γ = ros = ros , 57. Mn nennt den een ewiesenen Stz 5 u den Kongruenzstz SSS, ws für Seite Seite Seite stet. Wir kommen nun zum nästen Ty von Konstruktionufgen ei dem zwei Seiten und ein Winkel vorgegeen sind. Hier git es zwei möglie Fälle, entweder ist der Winkel der von den eiden Seiten eingeslossene Winkel oder einer der eiden nderen Winkel. Im ersten Fll srit mn vom Kongruenzstz SWS, für Seite Winkel Seite, und im zweiten Fll vom Kongruenzstz SSW für Seite Seite Winkel. Diese eiden Fälle unterseiden si ret deutli voneinnder und wir eginnen mit dem komlizierteren der eiden, dies ist der SSW-Stz. Angenommen wir wollen in den Stndrdezeinungen die eiden Seiten, und den Winkel β vorgeen. Dnn trgen wir zunäst eine Streke AB der Länge. Der Winkel β git uns einen Hlstrl H vor uf dem der dritte Ekunkt C des gesuten Dreieks liegen muss und die Länge git einen Kreis K mit Rdius und Mittelunkt A uf dem C liegen muss. Der gesute dritte Punkt C ist lso ein Snittunkt der Hlgerden H mit dem Kreis K. Eine Hlgerde sneidet einen Kreis in entweder keinem, in genu einem oder in zwei Punkten, und diese drei Möglikeiten füren uf versiedene Fälle. C A β B A β B Fll < Fll > Es können drei versiedene Fälle uftreten. Ist < so sind wir in der links gezeigten Sitution, K ist entweder so klein ds er von H verfelt wird oder so groß ds er von H glei zweiml getroffen wird. Im ersten Fll git es dnn üerut kein Dreiek mit den vorgegeenen Werten und im zweiten Fll git es genu zwei nit kongruente und ssende Dreieke. Eine eindeutige Lösung git es nur in dem Rndfll ds H tngentil n K ist. Dnn ist im Snittunkt C ein reter Winkel γ = π/2 und somit muss 3-4

5 Mtemtise Proleme, SS 2016 Dienstg 19.4 / = sin β sein. Im rets gezeigten Fll > ist dgegen lles unrolemtis, der Hlstrl H trifft den Kreis K in genu einem Punkt C und wir en die eindeutige Lösung ABC. Im nit gezeigten Ausrtungsfll = git es dgegen für β < π/2 eine eindeutige Lösung wärend die Aufge für β π/2 nit lösr ist. Dmit ist uns die Sitution zumindest qulittiv klr. Wir wollen uns uf den Hutfll > esränken und diesen im folgenden Stz endeln. Stz 1.6 Dreiekserenung ei zwei Seiten und einem äußeren Winkel) Seien > > 0 und ein Winkel 0 < β < π gegeen. Dnn existiert ein is uf Kongruenz eindeutiges Dreiek = ABC mit AC = und AB = dessen Winkel ei B glei β ist. In den Stndrdezeiungen en wir dnn = os β sin 2 β, sin 2 β os β ) = ros 2 2 sin 2 β, sin 2 β os β ) γ = π β ros 2 2 sin 2 β. Beweis: Wir eginnen mit der Existenzussge. Wäle einen Punkt A und ilde den Kreis K mit Mittelunkt A und Rdius. Weiter trge eine Streke AB der Länge AB =. Wegen < liegt B innerl des Kreises K. Trge weiter eine von B usgeende Hlgerde H im Winkel β zu AB. D der Ausgngsunkt B von H innerl des Kreises K liegt, sneiden H und K si in einem Punkt C. Dnn ist ABC ein Dreiek mit AB = und AC = d der Rdius von K ist. Außerdem ist der Winkel dieses Dreieks ei B gerde der Winkel zwisen AB und H lso β. Sei jetzt umgekert ABC ein Dreiek mit AB =, AC = und Winkel β ei B. In den Stndrdezeinungen liefert der Cosinusstz Stz 4 2 = os β, lso 2 2 os β = 0 Dies ist eine qudrtise Gleiung für und wir erlten = os β ± 2 os 2 β = os β ± 2 2 sin 2 β. Dss sin 2 β + os 2 β = 1 gilt tten wir dei in der letzten Sitzung eingeseen d der Punkt os β, sin β) uf dem Kreis mit Rdius 1 und Mittelunkt in 0, 0) liegt. Wegen > ist u 2 2 sin 2 β > 2 2 sin 2 β = 2 os 2 β, lso 2 2 sin 2 β > os β und dmit ist = os β sin 2 β. Dies eweist zum einen die Berenungsformel für und zum nderen ist dur,, β festgelegt, lso ist ds Dreiek ABC is uf 3-5

6 Mtemtise Proleme, SS 2016 Dienstg 19.4 Kongruenz eindeutig festgelegt. Weiter en wir und n Stz 5 gelten = 22 2 os β 2 = ros = os2 β os β 2 2 sin 2 β sin 2 β os β ) 2 2 sin 2 β = sin2 β os β 2 2 sin 2 β, und γ = π β = π β ros sin 2 β os β ) 2 2 sin 2 β. Wir kommen zum nästen der Konstruktionssätze ei dem zwei Seiten und der von inen eingeslossene Winkel vorgegeen sind. In den Stndrdezeinungen seien etw die eiden Seiten, > 0 und der von inen eingeslossene Winkel 0 < < π gegeen. Dss es dnn ein zu diesen Vorgen ssendes Dreiek git ist klr, wir müssen j nur eine Streke AB der Länge und eine Streke AC der Länge im Winkel trgen, und en dnn ein Dreiek ABC der gewünsten Art. Dfür müssen wir wieder eine Eindeutigkeitsussge nweisen, lso zeigen ds ds Dreiek dur,, is uf Kongruenz eindeutig festgelegt ist, mn srit dnn u vom Kongruenzstz SWS für Seite Winkel Seite. All dies läßt si wieder equem üer den Cosinusstz durfüren. Stz 1.7 Dreiekserenung ei zwei Seiten und dem eingeslossenen Winkel) Seien, > 0 und 0 < < π gegeen. Dnn existiert ein is uf Kongruenz eindeutiges Dreiek ABC mit AC = und AB = so, dss der Winkel ei A ist. In den Stndrdezeinungen gelten weiter = os, ) os β = ros, os ) os γ = ros os Beweis: Die Existenz eines Dreieks ABC mit den verlngten Eigensften en wir ereits eingeseen. N dem Cosinusstz Stz 4 gilt in jedem solen Dreiek in den 3-6

7 Mtemtise Proleme, SS 2016 Dienstg 19.4 ülien Bezeinungen = os und insesondere ist ds Dreiek n Stz 5 is uf Kongruenz eindeutig estimmt. Weiter en wir = 22 2 os 2 = os os und n Stz 5 ist dmit ) os β = ros os Die Gleiung für γ ergit si nlog. Es verleien nur no die Konstruktionsufgen mit einer vorgegeenen Seite und zwei vorgegeenen Winkeln. D die Winkelsumme 180 ist, sielt es dei keine Rolle wele Winkel vorgegeen werden, sind zwei Winkel eknnt so steen ereits lle drei Winkel fest. Der entsteende Stz ist dnn der sogennnte Kongruenzstz Seite Winkel Winkel, lso SWW, und zur Berenung der felenden Seitenlängen verwenden wir den sogennnten Sinusstz, den wir zunäst einml eweisen wollen. Stz 1.8 Der Sinusstz) Sei ein Dreiek mit Seiten,, und Winkeln, β, γ in der Stndrdezeinung. Dnn gilt sin = sin β = sin γ und ezeinet,, die Höen uf den jeweiligen Seiten,, so en wir = sin β = sin γ, = sin = sin γ, = sin = sin β, Beweis: Wir eginnen mit der Aussge üer die Höen und dei reit es = sin zu zeigen, die nderen Gleiungen geen us dieser dur Umezeinungen ervor. Wir sreien =. Im Fll = π/2 fllen und zusmmen und wegen sinπ/2) = 1 ist in diesem Fll sofort = sin. Wir können lso π/2 nnemen und wie eim Cosinusstz treten drei möglie Fälle uf. Fll 1 Fll 2 Fll 3 Im ersten Fll ist 0 < < π/2 und liegt im Dreiek. Dnn lesen wir den Sinus von im links uftuenden retwinkligen Dreiek und en sin = /, lso 3-7

8 Mtemtise Proleme, SS 2016 Dienstg 19.4 = sin. Im zweiten Fll ist 0 < < π/2 weiterin ein sitzer Winkel er liegt ußerl des Dreieks. Dnn verlängern wir die Seite wie gezeigt zu einem retwinkligen Dreiek und in diesem lesen wir den Sinus von wieder ls sin = /, en lso wieder = sin. Im letzten Fll ist π/2 < < π ein stumfer Winkel. Betrten wir dnn ds links uftuende retwinklige Dreiek ACH woei H der Fußunkt von = uf AB ist, so liegt in diesem ei A der Winkel π n, lso ist sin = sinπ ) = lso erneut = sin. Der eigentlie Sinusstz ist jetzt eine unmittelre Folgerung, wegen sin β = sin γ ist sin β = sin γ und wegen sin = sin γ en wir u sin = sin γ. Dmit kommen wir jetzt zum finlen Kongruenzstz SWW: Stz 1.9 Dreiekserenung ei einer Seite und zwei Winkeln) Seien > 0 und 0 <, β < π gegeen. Dnn existiert genu dnn ein Dreiek = ABC mit AB = und Winkeln ei A und β ei B wenn + β < π ist. In diesem Fll ist is uf Kongruenz eindeutig estimmt und es gelten = sin sin + β), = sin β sin + β), γ = π β. Beweis: D die Winkelsumme im Dreiek glei π ist, ist die Bedingung + β < π notwendig für die Existenz eines ssenden Dreieks. Nun neme umgekert +β < π n. 3-8

9 Mtemtise Proleme, SS 2016 Dienstg 19.4 A C β B Dnn trgen wir eine Streke AB der Länge und ilden im Winkel einen von A usgeenden Hlstrl und im Winkel β einen von B usgeenden Hlstrl. Diese eiden sneiden si in einem Punkt C und dnn ist ABC ein Dreiek mit AB = und Winkel ei A und β ei B. Dmit ist die Existenzussge ewiesen, und wir kommen nun zur Eindeutigkeit. Sei lso ein elieiges Dreiek des gesuten Tys gegeen. Dnn ist γ = π β und mit dem Sinusstz Stz 8 folgen und eenso = sin sin γ = sin sinπ + β)) = = sin β sin γ = sin β sin + β). Insesondere ist is uf Kongruenz eindeutig estimmt. sin sin + β) Die oige Konstruktion des Punktes C verdient no einen kleinen Kommentr. Wir tten ereits gnz zu Beginn ngemerkt ds mn die eene Geometrie u xiomtis ufuen knn, und ds Ureisiel eines solen Aufus sind die Elemente des Euklid. Diese sind im Zeitrum um 300 vor Cristus entstnden und eines der dort verwendeten Axiome ist ds sogennnte Prllelenxiom Sneiden zwei Streken eine Gerde in zwei gegenüerliegenden Winkeln die zusmmen kleiner ls zwei Rete sind, so treffen si diese Streken ei Verlängerung ins Unendlie in einem Punkt der uf der Seite der Gerden liegt in der die eiden gegenüerliegenden Winkel sind die zusmmen kleiner ls zwei Rete sind. 3-9

10 Mtemtise Proleme, SS 2016 Dienstg 19.4 Der Nme Prllelenxiom entstet d diese Aussge unter Vorussetzung der ürigen Axiome dzu äquivlent ist, dss es zu jeder Gerden und zu jedem Punkt ußerl der Gerden stets genu eine Gerde dur den Punkt git wele die vorgegeene Gerde nit trifft. Unser Beweis des SWW-Stzes zeigt ds der Kongruenzstz SWW im wesentlien zum Prllelenxiom äquivlent ist. Ttsäli wird ei vielen Axiomensystemen für die eene Geometrie die eine oder ndere Form eines Kongruenzstzes ls Axiom verwendet. Zusmmenfssend en wir dmit die folgenden Kongruenzussgen eingeseen: Zwei Dreieke sind genu dnn kongruent wenn sie in llen drei Seiten, in zwei Seiten und dem von inen eingeslossenen Winkel, in zwei Seiten und dem der längeren Seite gegenüerliegenden Winkel, in einer Seite und zwei Winkeln üereinstimmen. 3-10

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/15 09:12:15 hk Exp hk $ 1.4 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/15 09:12:15 hk Exp hk $ 1.4 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2013 Montg 15.4 $Id: dreiek.tex,v 1.5 2013/04/15 09:12:15 hk Exp hk $ 1 Dreieke 1.4 Dreiekserehnung mit Seiten und Winkeln In der letzten Sitzung htten wir egonnen die vershiedenen

Mehr

Mathematische Probleme, SS 2018 Dienstag 5.6. $Id: dreieck.tex,v /06/05 15:41:51 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2018 Dienstag 5.6. $Id: dreieck.tex,v /06/05 15:41:51 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2018 Dienstg 5.6 $Id: dreiek.tex,v 1.43 2018/06/05 15:41:51 hk Exp $ 2 Dreieke 2.1 Dreiekserehnung mit Seiten und Winkeln Am Ende der letzten Sitzung htten wir den sogennnten Kongruenzstz

Mehr

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/20 08:57:49 hk Exp $ 1.4 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/20 08:57:49 hk Exp $ 1.4 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2015 Montg 20.4 $Id: dreiek.tex,v 1.15 2015/04/20 08:57:49 hk Exp $ 1 Dreieke 1.4 Dreiekserehnung mit Seiten und Winkeln In der letzten Sitzung htten wir egonnen die vershiedenen

Mehr

Der Kosinussatz. So erhalten wir: und. Um beide Formeln miteinander vereinen zu können, stellen wir die zweite Formel nach h 2 um, und erhalten:

Der Kosinussatz. So erhalten wir: und. Um beide Formeln miteinander vereinen zu können, stellen wir die zweite Formel nach h 2 um, und erhalten: Der Kosinusstz Dreieke lssen si mit drei ngen zu irer Figur, vollständig zeinen. D er die zeinerise Lösung eines Dreieks nit so genu und zudem ret ufwendig ist, muss es u einen renerisen Weg geen, die

Mehr

Mathematische Probleme, SS 2017 Donnerstag 1.6. $Id: dreieck.tex,v /06/01 11:41:57 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2017 Donnerstag 1.6. $Id: dreieck.tex,v /06/01 11:41:57 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln Mathematische Proleme SS 2017 Donnerstag 1.6 $Id: dreieck.texv 1.31 2017/06/01 11:41:57 hk Exp $ 2 Dreiecke 2.1 Dreieckserechnung mit Seiten und Winkeln Am Ende der letzten Sitzung hatten wir eine weitere

Mehr

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente:

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente: Stzgruppe des Pytgors Inlt: 1 Der Stz des Pytgors Pytgors im Rum 3 ufstellen von Formeln 4 Prktise nwendungen 5 Der Ktetenstz 6 Der Höenstz 7 Exkurs: Konstruktion retwinkliger Dreieke 8 ekliste 9 Hinweise

Mehr

Mathematische Probleme, SS 2017 Montag $Id: dreieck.tex,v /06/12 15:01:14 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2017 Montag $Id: dreieck.tex,v /06/12 15:01:14 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Probleme, SS 2017 Montg 12.6 $Id: dreiek.tex,v 1.33 2017/06/12 15:01:14 hk Exp $ 2 Dreieke 2.1 Dreieksberehnung mit Seiten und Winkeln Wir beshäftigen uns gerde mit den Konstruktionsufgben für

Mehr

Übungen zur Vorlesung Lineare Algebra I WS 2003/2004 Musterlösung zu Blatt 4

Übungen zur Vorlesung Lineare Algebra I WS 2003/2004 Musterlösung zu Blatt 4 Prof. Dr. Helmut Lening Pderorn, den 0. Novemer 00 Mrkus Diekämper, Andrew Huer, Mr Jesse Age is. Novemer 00, Ur Üungen ur Vorlesung Linere Alger I WS 00/004 Musterlösung u Bltt 4 AUFGABE (4 Punkte): Gegeen

Mehr

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck 10 1 Grundlgen der Shulgeometrie 13 Ds Dreiek In diesem shnitt findet lles in der ffinen Stndrdeene 2 = R 2 sttt Drei Punkte, und, die niht uf einer Gerden liegen, ilden ein Dreiek Die Punkte,, nennt mn

Mehr

FLÄCHE/ UMFANG VOLUMEN/ OBERFLÄCHE

FLÄCHE/ UMFANG VOLUMEN/ OBERFLÄCHE FLÄCHENBERECHNUNG FLÄCHE/ UMFANG VOLUMEN/ OBERFLÄCHE Für die Berenung von Fläen git es für die versiedenen Figuren Formeln, die mn kennen sollte. Mit ein pr kleinen Triks mt mn si ds Leen llerdings viel

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Proleme, SS 016 Freitg 6.5 $Id: trig.tex,v 1.14 016/05/06 1:6:14 hk Exp $ Trigonometrische Formeln.1 Die dditionstheoreme In der letzten Sitzung htten wir geometrische Herleitungen der dditionstheoreme

Mehr

Die Dreiecke ADM A und BCM C sind kongruent aufgrund

Die Dreiecke ADM A und BCM C sind kongruent aufgrund Westfälische Wilhelms-Universität Münster Mthemtisches Institut pl. Prof. Dr. Lutz Hille Dr. Krin Hlupczok Üungen zur Vorlesung Elementre Geometrie Sommersemester 010 Musterlösung zu ltt 4 vom 3. Mi 010

Mehr

3 Trigonometrische Formeln

3 Trigonometrische Formeln Mthemtische Proleme, SS 018 Donnerstg 1.6 $Id: trig.tex,v 1. 018/06/1 14:08:44 hk Exp $ 3 Trigonometrische Formeln 3. Verdoppelungs- und Hlierungsformeln Als Verdoppelungsformeln ezeichnet mn die Formeln

Mehr

. - Verwandle das Rechteck in ein flächeninhaltsgleiches Rechteck mit der neuen Breite x1. und der neuen Länge y. = und neuer zugehöriger Länge

. - Verwandle das Rechteck in ein flächeninhaltsgleiches Rechteck mit der neuen Breite x1. und der neuen Länge y. = und neuer zugehöriger Länge Wirserg-Gymnsium Grundwissen temtik 9. rgngsstufe Lerninlte Fkten-Regeln-Beisiele Reelle Zlen Defintion der Qudrtwurzeln: Für 0 ist diejenige nit negtive Zl, deren Qudrt ergit. eißt Rdiknd. Es git Zlen,

Mehr

Grundzüge DS & Alg (WS14/15) Lösungsvorschlag zu Aufgabenblatt 7. Aufgabe 1

Grundzüge DS & Alg (WS14/15) Lösungsvorschlag zu Aufgabenblatt 7. Aufgabe 1 Aufge 1 () Anmerkung: Der Punkt in den Bäumen t keinerlei Bedeutung und ist nur d, um drstellen zu können, ws linkes und retes Kind eines Elternteils sein soll Einfügen von,,,,,,, 0, 17 : : : Rottion :

Mehr

Einige elementargeometrische Sätze über Dreiecke

Einige elementargeometrische Sätze über Dreiecke Seite I Einige elementrgeometrische Sätze üer Dreiecke Durch drei nicht uf einer Gerden gelegene (d.h. nicht-kollinere) Punkte A, B, C in der euklidischen Eene ein Dreieck ABC mit Seiten,, c und (Innen-)Winkeln,,

Mehr

10: Lineare Abbildungen

10: Lineare Abbildungen Chr.Nelius: Linere Alger SS 2008 1 10: Linere Aildungen 10.1 BEISPIEL: Die Vektorräume V 2 und Ê 2 hen diegleiche Struktur. Es git eine ijektive Aildung f : V 2 Ê 2, die durch die Vorschrift definiert

Mehr

Mathematische Probleme, SS 2018 Donnerstag 7.6. $Id: dreieck.tex,v /06/07 14:52:59 hk Exp $

Mathematische Probleme, SS 2018 Donnerstag 7.6. $Id: dreieck.tex,v /06/07 14:52:59 hk Exp $ $Id: dreieck.tex,v 1.45 2018/06/07 14:52:59 hk Exp $ 2 Dreiecke 2.2 Ähnliche Dreiecke Wir htten zwei Dreiecke kongruent gennnt wenn sie sich durch eine ewegung der Ebene ineinnder überführen lssen und

Mehr

Die Satzgruppe des Pythagoras

Die Satzgruppe des Pythagoras 7 Die Stzgruppe des Pythgors In Klssenstufe 7 hen wir uns ei den Inhlten zur Geometrie insesondere mit Dreieken und ihren Eigenshften eshäftigt. In diesem Kpitel wirst du erkennen, dss es ei rehtwinkligen

Mehr

Die Winkelsumme im Dreieck beträgt 180. Herleitung bzw. experimentelle Begründung in der Schule: Durch Punktspiegelung. Bedeutung+Winkelsumme 1

Die Winkelsumme im Dreieck beträgt 180. Herleitung bzw. experimentelle Begründung in der Schule: Durch Punktspiegelung. Bedeutung+Winkelsumme 1 edeutung+winkelsumme 1 Winkelsumme Kpitel 5: Dreiekslehre 5.1 edeutung der Dreieke Durh Tringultion lssen sih Vieleke in Dreieke zerlegen ( n Ek in n- Dreieke) eweis von Sätzen mittels Sätzen üer Dreieke

Mehr

Grundwissenkatalog / g8 Geometrie / 7. Jahrgangsstufe

Grundwissenkatalog / g8 Geometrie / 7. Jahrgangsstufe Grundwissenktlog / g8 Geometrie /. Jhrgngsstufe Die folgende ufstellung enthält mthemtishe Grundfertigkeiten, die ein Shüler nh der. Jhrgngsstufe eherrshen sollte. Dieses Wissen wird in den folgenden Jhren

Mehr

Wir haben ein Koordinatensystem mit der x-achse und der y-achse. Nun wird ein Kreis gebildet mit dem Radius r=1.

Wir haben ein Koordinatensystem mit der x-achse und der y-achse. Nun wird ein Kreis gebildet mit dem Radius r=1. Trigonometrie In diesem Themenereih wenden wir uns den Winkeln im rehtekigen Dreiek zu. Du hst uf deinem Tshenrehner siher shon die Tsten sin, os und tn gesehen. Doh ws edeuten sie? Ds wollen wir herusfinden.

Mehr

Beispiellösungen zu Blatt 24

Beispiellösungen zu Blatt 24 µthemtischer κorrespondenz- zirkel Mthemtisches Institut Georg-August-Universität Göttingen Aufge Beispiellösungen zu Bltt Mn eweise, dss mn ein Qudrt für jede Zhl n 6 in genu n kleinere Qudrte zerlegen

Mehr

Hamburger Beiträge zur Angewandten Mathematik

Hamburger Beiträge zur Angewandten Mathematik Hmurger Beiträge zur Angewndten Mthemtik Grundlgen der Lehre Hier: Die Strhlensätze R. Ansorge Nr. 016-09 April 016 Grundlgen der Lehre Hier: Die Strhlensätze. R. Ansorge 1 Einleitung Owohl die Strhlensätze

Mehr

Themenbereich: Kongruenzsätze Seite 1 von 6

Themenbereich: Kongruenzsätze Seite 1 von 6 Themenereich: Kongruenzsätze Seite 1 von 6 Lernziele: - Kenntnis der genuen Formulierung der Kongruenzsätze - Kenntnis der edeutung der Kongruenzsätze - Fähigkeit, die Kongruenzssätze gezielt zur egründung

Mehr

a) Spezielle Winkel bei schneidenden Geraden und Parallelen α 3 β 4 Institut für Automatisierungstechnik Prof. Dr. Ch. Bold Vorsemester V.

a) Spezielle Winkel bei schneidenden Geraden und Parallelen α 3 β 4 Institut für Automatisierungstechnik Prof. Dr. Ch. Bold Vorsemester V. 0.05.0 Geometrie und Trigonometrie ) Spezielle Winkel ei shneidenden Gerden und Prllelen 4 4 Sheitelwinkel sind gleih (z.. zw. ) Neenwinkel ergänzen sih zu 80 0 (z.. + 80 0 ) Stufenwinkel sind gleih (z..

Mehr

Analytischen Geometrie in vektorieller Darstellung

Analytischen Geometrie in vektorieller Darstellung Anltische Geometrie Anltischen Geometrie in vektorieller Drstellung Anltische Geometrie Gerden Punkt-Richtungs-Form () Mit Hilfe von Vektoren lssen sich geometrische Ojekte wie Gerden und Eenen eschreien

Mehr

Tutorium zur Vorlesung Grundlagen der Mathematik II Bearbeitungsvorschlag

Tutorium zur Vorlesung Grundlagen der Mathematik II Bearbeitungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 017 Bltt 8 0.06.017 Tutorium zur Vorlesung Grundlgen der Mthemtik II Berbeitungsvorschlg 9. Zu betrchten ist ein gleichseitiges Dreieck

Mehr

Teil 1. Prisma - Zylinder Pyramide - Kegel Pyramidenstumpf - Kegelstumpf Kugel - Kugelteile. Datei Nr Friedrich Buckel. Stand: 30.

Teil 1. Prisma - Zylinder Pyramide - Kegel Pyramidenstumpf - Kegelstumpf Kugel - Kugelteile. Datei Nr Friedrich Buckel. Stand: 30. Teil 1 Prism - Zylinder Pyrmide - Kegel Pyrmidenstumpf - Kegelstumpf Kugel - Kugelteile Dtei Nr. 11610 Stnd: 0. April 016 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Geometrie Körperberenungen Demo-Text für

Mehr

Kapitel IV Euklidische Vektorräume. γ b

Kapitel IV Euklidische Vektorräume. γ b Kpitel IV Euklidische Vektorräume 1 Elementrgeometrie in der Eene Sei E die Zeicheneene In der Schule lernt mn: (11) Stz des Pythgors: Sei E ein Dreieck mit den Seiten, und c, und sei γ der c gegenüerliegende

Mehr

Mathematik Trigonometrie Einführung

Mathematik Trigonometrie Einführung Mthemtik Trigonometrie Einführung Ws edeutet ds Wort Trigonometrie und mit ws eshäftigt sih die Trigonometrie? Eine kleine Wortkunde: tri edeutet 'drei' Beispiel: Trithlon,... gon edeutet 'Winkel'/'Ek'

Mehr

Minimalität des Myhill-Nerode Automaten

Minimalität des Myhill-Nerode Automaten inimlität des yhill-nerode Automten Wir wollen zeigen, dss der im Beweis zum yhill-nerode Stz konstruierte DEA für die reguläre Sprche L immer der DEA mit den wenigsten Zuständen für L ist. Sei 0 der konstruierte

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln $Id: trig.tex,v 1.8 015/05/04 10:16:36 hk Exp $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir begonnen die Additionstheoreme der trigonometrischen Funktionen zu besprechen.

Mehr

Die Axiome der Geometrie

Die Axiome der Geometrie - - Die xiome der Geometrie. xiom: Inzidenzxiom. Es git Punkte und Gerden; jede Gerde ist eine Teilmenge der Punktmenge. Dur je zwei versiedene Punkte P und Q git es genu eine Gerde; diese Gerde ezeinen

Mehr

5. Homotopie von Wegen

5. Homotopie von Wegen 28 Andres Gthmnn 5. Homotopie von Wegen In der Prxis wird der Cuchysche Integrlstz meistens in einer äquivlenten Umformulierung verwendet, die wir nun genuer ehndeln wollen. Anschulich esgt sie, dss Wegintegrle

Mehr

Minimalautomat. Wir stellen uns die Frage nach dem. kleinsten DFA für eine reguläre Sprache L, d.h. nach einem DFA mit möglichst wenigen Zuständen.

Minimalautomat. Wir stellen uns die Frage nach dem. kleinsten DFA für eine reguläre Sprache L, d.h. nach einem DFA mit möglichst wenigen Zuständen. Rechtslinere Sprchen Minimlutomt Es git lso sehr verschiedene endliche Beschreiungen einer regulären Sprche (DFA, NFA, rechtslinere Grmmtiken, reguläre Ausdrücke). Diese können ineinnder üersetzt werden.

Mehr

Der Begriff der Stammfunktion

Der Begriff der Stammfunktion Lernunterlgen Integrlrehnung Der Begriff der Stmmfunktion Wir gehen von folgender Frgestellung us: welhe Funktion F x liefert ls Aleitung eine gegeene Funktion f x. Wir suhen lso eine Umkehrung der Aleitung

Mehr

3.3 Extrema I: Winkel Ebene/Gerade

3.3 Extrema I: Winkel Ebene/Gerade 3 3 ANALYSIS 3.3 Extrem I: Winkel Eene/Gerde In diesem Aschnitt gehen wir von einer Gerde g und einer g nicht enthltenden Eene ε us und wollen unter llen möglichen spitzen Schnittwinkeln zwischen g und

Mehr

G1 Trigonometrie. G1 Trigonometrie. G1.1 Die trigonometrischen Grundfunktionen und ihre wichtigsten Eigenschaften

G1 Trigonometrie. G1 Trigonometrie. G1.1 Die trigonometrischen Grundfunktionen und ihre wichtigsten Eigenschaften G1.1 Die trigonometrischen Grundfunktionen und ihre wichtigsten Eigenschften Seitenverhältnisse und Winkel in rechtwinkligen Dreiecken Beispiel: Wenn in einem Dreieck ABC zum Beispiel die Seite genu so

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

Lösungen zu den Wiederholungsaufgaben zum Grundwissenkatalog Mathematik der 7. Jahrgangsstufe. c) 5x ( 2 3 = 17 3

Lösungen zu den Wiederholungsaufgaben zum Grundwissenkatalog Mathematik der 7. Jahrgangsstufe. c) 5x ( 2 3 = 17 3 Gymnsium Stein Lösungen zu den Wiederholungsufgen zum Grundwissenktlog Mthemtik der. Jhrgngsstufe ) ) ❶: keine; ❷: ; ❸: ; ❹: ; ❺: keine; ❻: ; ❼: ; ❽: ; ❾: ) ❶; ❷; ❹; ❾ ) ) ( 0,x ) 0,x ( 0,x ) = = 0,0x

Mehr

Aufgabe 1. Die Zahl 6 wird aus 3 gleichen Ziffern mit Hilfe der folgenden mathematischen

Aufgabe 1. Die Zahl 6 wird aus 3 gleichen Ziffern mit Hilfe der folgenden mathematischen Deprtment Mthemtik Tg der Mthemtik 5. Juli 008 Klssenstufen 9, 10 Aufge 1. Die Zhl 6 wird us 3 gleihen Ziffern mit Hilfe der folgenden mthemtishen Symole drgestellt: + Addition Sutrktion Multipliktion

Mehr

6-1 Elementare Zahlentheorie. mit 1 b n und 0 a b (zusammen mit der Ordnung ) nennt man die n-te Farey-Folge, zum Beispiel ist

6-1 Elementare Zahlentheorie. mit 1 b n und 0 a b (zusammen mit der Ordnung ) nennt man die n-te Farey-Folge, zum Beispiel ist 6- Elementre Zhlentheorie 6 Frey-Folgen Die Menge F n der rtionlen Zhlen mit n und (zusmmen mit der Ordnung ) nennt mn die n-te Frey-Folge, zum Beispiel ist F = { < < < < < < < < < < } Offensichtlich gilt:

Mehr

DEMO für Trigonometrie. Teil 1. Geometrie Sinus, Kosinus und Tangens im rechtwinkligen Dreieck INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

DEMO für  Trigonometrie. Teil 1. Geometrie Sinus, Kosinus und Tangens im rechtwinkligen Dreieck INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Gemetrie Sinus, Ksinus und Tngens im retwinkligen Dreiek Text Nr. 16001 Stnd 8. pril 010 Friedri ukel Trignmetrie DEM für www.mte-d.de INTERNETILITHEK FÜR SHULMTHEMTIK Teil 1 www.mte-d.de 16001 Trignmetrie

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 ORTHOGONALITÄT

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 ORTHOGONALITÄT Mthemtik: Mg. Schmid Wolfgng Areitsltt 5. Semester ARBEITSBLATT 5 ORTHOGONALITÄT Ws versteht mn zunächst einml unter orthogonl? Dies ist nur ein nderes Wort für norml oder im rechten Winkel. Ws uns hier

Mehr

Klasse 7 bis 9. gleichschenkliges gleichseitiges C C Dreieck

Klasse 7 bis 9. gleichschenkliges gleichseitiges C C Dreieck Heiner Prüser Geometriereitslätter Klsse 7 is 9 Dtum GP V senspiegelung Dreiekskon s t ruk t io n Inlt von Teil 3 ufgenltt Dreiekskonstruktion Dreiekskonstruktion SSS Dreiekskonstruktion WSW Dreiekskonstruktion

Mehr

Ähnlichkeitssätze für Dreiecke

Ähnlichkeitssätze für Dreiecke Klsse 9 Mth./Ähnlihkeitssätze S.1 Let Ähnlihkeitssätze für Dreieke Def.: Die Verkettung (Hintereinnderusführung) einer zentrishen Strekung mit einer Kongruenzbbildung heißt Ähnlihkeitsbbildung. Zwei Figuren,

Mehr

a q 0 q 1 a M q 1 q 3 q 2

a q 0 q 1 a M q 1 q 3 q 2 Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 4 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Dr. Michael Gieding ph-heidelberg.de/wp/gieding. Skript zur gleichnamigen Vorlesung im Wintersemester 2006/2007

Dr. Michael Gieding ph-heidelberg.de/wp/gieding. Skript zur gleichnamigen Vorlesung im Wintersemester 2006/2007 Dr. Mihel Gieding h-heidelerg.de/w/gieding Einführung in die Geometrie Skrit zur gleihnmigen Vorlesung im Wintersemester 2006/2007 Kitel 3: Prllelität Vo r l e s u n g 1 1 : D e r I n n e n w i n k e l

Mehr

Münchner Volkshochschule. Planung. Tag 07

Münchner Volkshochschule. Planung. Tag 07 Plnung Tg 07 Folie: 158 Themen Logik und Mengenlehre Zhlensysteme und Arithmetik Gleichungen und Ungleichungen Lin. Gleichungssysteme und spez. Anwendungen Geometrie und Trigonometrie Vektoren in der Eene

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunction eines DFA (Folie 92) Wie sieht die Üerführungfunktion us? δ : Z Σ Z Ds heißt: Ein Pr us Zustnd und Alphetsymol

Mehr

3 Hyperbolische Geometrie

3 Hyperbolische Geometrie Ausgewählte Kpitel der Geometrie 3 Hperbolische Geometrie [... ] Im Folgenden betrchten wir nun spezielle gebrochen-linere Abbildungen, nämlich solche, für die (mit den Bezeichnungen ϕ,b,c,d wie oben die

Mehr

2 Die Bildsprache Der relevante Winkel im grünen Dreieck ist stumpf; die gleichschenkligen Dreiecke haben den Basiswinkel 180 :

2 Die Bildsprache Der relevante Winkel im grünen Dreieck ist stumpf; die gleichschenkligen Dreiecke haben den Basiswinkel 180 : Hns Wlser, [20080409] Eine Visulisierung des Kosinusstzes 1 Worum es geht Es wird eine zum Pythgors-Piktogrmm nloge Figur für niht rehtwinklige Dreieke esprohen. Dei werden ähnlihe gleihshenklige Dreieke

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Probleme, SS 015 Donnerstg 7.5 $Id: trig.tex,v 1.11 015/05/19 17:1:13 hk Exp $ $Id: convex.tex,v 1.17 015/05/18 11:15:36 hk Exp $ Trigonometrische Formeln.3 Spezielle Werte der trigonometrischen

Mehr

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente:

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente: Stzgruppe des Pytgors Inlt: 1 er Stz des Pytgors Pytgors im Rum 3 ufstellen von Formeln 4 Prktise nwendungen 5 er Ktetenstz 6 er Höenstz 7 Exkurs: Konstruktion retwinkliger reieke 8 ekliste 9 Hinweise

Mehr

Musterlösungen zum 6. Übungsblatt

Musterlösungen zum 6. Übungsblatt Musterlösungen zum 6 Üungsltt Anlysis ei Dr Rolf Busm WS 6/7 Aufge 6 (Tois Hessenuer) ) 3 ep()d, setze u = ep(), v = 3 dnn gilt: 3 ep()d = ep() 3 = e (3 ep() ) 3 ep() d = e 3e + 6 ep() = 6e 3e + 6e 6e

Mehr

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet.

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet. Prof Dr Dr hc W Thoms Formle Systeme, Automten, Prozesse SS 2011 Musterlösung - Präsenzüung Dniel Neider, Crsten Otto Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen): Informtik Bchelor Informtik

Mehr

FLÄCHE/ UMFANG VOLUMEN/ OBERFLÄCHE

FLÄCHE/ UMFANG VOLUMEN/ OBERFLÄCHE FLÄCHENBERECHNUNG FLÄCHE/ UMFANG VOLUMEN/ OBERFLÄCHE Für die Berenung von Fläen git es für die versiedenen Figuren Formeln, die mn kennen sollte. Mit ein pr kleinen Triks mt mn si ds Leen llerdings viel

Mehr

ARBEITSBLATT 5L-11 BERECHNEN VON RAUMINHALTEN

ARBEITSBLATT 5L-11 BERECHNEN VON RAUMINHALTEN Mthemtik: Mg. Schmid Wolfgng+LehrerInnentem ) Rottion um die -Achse ARBEITSBLATT 5L- BERECHNEN VON RAUMINHALTEN Es geht hier um folgende Aufgenstellung. Eine gegeene Funktion f() soll in einem estimmten

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

Ober- und Untersummen, Riemann Integrale

Ober- und Untersummen, Riemann Integrale Oer- und Untersummen, Riemnn Integrle 1. Ds Prolem des Fläheninhlts Ausgngspunkt für die Entwiklung des Integrlegriffs wren vershiedene Frgestellungen, u.. ds Prolem der Messung des Fläheninhltes eines

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-CHSE Wie wir die Fläche zwischen einer Funktion und der -chse erechnen, hen wir rechentechnische ereits geklärt.

Mehr

13-1 Funktionen

13-1 Funktionen 3- Funktionen 3 Integrle: Flächeninhlte Seien < reelle Zhlen, sei I = [, ] = { R } ds Intervll der Zhlen zwischen und Wir etrchten eine stetige Funktion f : I R und ds zugehörige Integrl f() d (dies ist

Mehr

Mathematische Probleme, SS 2015 Donnerstag $Id: dreieck.tex,v /04/16 15:12:32 hk Exp $

Mathematische Probleme, SS 2015 Donnerstag $Id: dreieck.tex,v /04/16 15:12:32 hk Exp $ $Id: dreieck.tex,v 1.14 2015/04/16 15:12:32 hk Exp $ 1 Dreiecke 1.2 Der Strahlensatz Nachdem wir in der letzten Sitzung rechtwinklige Dreiecke etrachtet haen, kommen wir nun zur Einführung der trigonometrischen

Mehr

Symmetrien und Winkel

Symmetrien und Winkel 5-04 1 10 mthuh 1 LU reitsheft + weitere ufgen «Grundnforderungen» Symmetrien 301 Zeihne Grossuhsten des lphets, sortiert nh vier Typen: hsensymmetrish punktsymmetrish hsen- und punktsymmetrish weder hsen-

Mehr

Grundwissen 8 Klasse. y = c x ist, das x-y-diagramm eine Ursprungsgerade ist.

Grundwissen 8 Klasse. y = c x ist, das x-y-diagramm eine Ursprungsgerade ist. Grundwissen 8 Klsse Direkt proportionle Größen x und y sind direkt proportionl, wenn zum n-en Wert ür x der n-e Wert ür y eört, die Wertepre quotientenlei y y2 sind:, x x2 y x ist, ds x-y-dirmm eine Ursprunserde

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Probleme, SS 013 Donnerstg.5 $Id: trig.tex,v 1.3 013/05/03 10:50:31 hk Exp hk $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir geometrische Herleitungen der

Mehr

KOMPETENZHEFT ZUR TRIGONOMETRIE, III

KOMPETENZHEFT ZUR TRIGONOMETRIE, III Mthemtik mht Freu(n)de KOMPETENZHEFT ZUR TRIGONOMETRIE, III 1. Aufgenstellungen Aufge 1.1. Zur Shneelsterehnung wird der Neigungswinkel α des in der nhstehenden Aildung drgestellten Dhes enötigt. Dei gilt:

Mehr

Vektorrechnung Produkte

Vektorrechnung Produkte Vektorrechnung Produkte Die Luft fliesst von ussen gegen ds Zentrum des Tiefdruckgeiets üer Islnd Wegen der Erdrottion eginnt die Luft zu rotieren Die ewegte Luft nimmt Wolken uf ihrem Weg mit zeigt uns

Mehr

a b a) b) Fig. 1 Unterschiedliche Orientierung In beiden Fällen setzt sich das Übergangsstück aus zwei Kreisbögen mit einem Übergangspunkt

a b a) b) Fig. 1 Unterschiedliche Orientierung In beiden Fällen setzt sich das Übergangsstück aus zwei Kreisbögen mit einem Übergangspunkt Rolfdieter Frnk / Hns Wlser Korögen wie kriegen wir die Kurve? Kurzfssung: Es geht drum, wie wir zwischen zwei Gerden die Kurve kriegen. Präziser: Zwei orientierte Gerden sollen durch Kreisögen gltt und

Mehr

Copyright, Page 1 of 5 Der Faktorraum

Copyright, Page 1 of 5 Der Faktorraum www.mthemtik-netz.de Copright, Pge of 5 Der Fktorrum Ein sehr wichtiges Konstrukt, welches üerll in der Mthemtik Verwendung findet, ist der Fktorrum, oft uch Quotientenrum gennnt. Dieser ist selst ein

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011 Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 011 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Snder Bruggink Automten und Formle Sprchen 1 Reguläre Sprchen Wir eschäftigen uns

Mehr

13. Quadratische Reste

13. Quadratische Reste ChrNelius: Zhlentheorie (SS 007) 3 Qudrtische Reste Wir ehndeln jetzt ei den Potenzresten den Sezilfll m und führen die folgende Begriffsildung ein: (3) DEF: Seien n und teilerfremd heißt qudrtischer Rest

Mehr

Erweiterung der Euklidischen Flächensätze auf das allgemeine Dreieck nebst Anwendung zur Volumenbestimmung des allgemeinen Tetraeders.

Erweiterung der Euklidischen Flächensätze auf das allgemeine Dreieck nebst Anwendung zur Volumenbestimmung des allgemeinen Tetraeders. Arno Fehringer, Gymnsillehrer für Mthemtik und Physik 1 Erweiterung der Euklidischen Flächensätze uf ds llgemeine Dreieck nest Anwendung zur Volumenestimmung des llgemeinen Tetreders. Arno Fehringer Juni

Mehr

2.6 Reduktion endlicher Automaten

2.6 Reduktion endlicher Automaten Endliche Automten Jörg Roth 153 2.6 Reduktion endlicher Automten Motivtion: Wir sind n Automten interessiert, die mit möglichst wenigen Zuständen uskommen. Automten, die eine Sprche mit einem Minimum n

Mehr

Satz des Pythagoras mit Anwendungen. Ein Lernprogramm in 60 Schritten zum Nachlernen und Wiederholen. mit abschließendem Fitnesstest. Datei Nr.

Satz des Pythagoras mit Anwendungen. Ein Lernprogramm in 60 Schritten zum Nachlernen und Wiederholen. mit abschließendem Fitnesstest. Datei Nr. Progrmmierter Text rge-ntwort-ystem Trining in 60 ritten Geometrie Klssenstufe 8/9 tz des Pytgors mit nwendungen in Lernprogrmm in 60 ritten zum Nlernen und Wiederolen mit sließendem itnesstest tei Nr.

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9 Regiomontnus - Gymnsium Hßfurt - Grundwissen Mthemtik Jhrgngsstufe 9 Wissen und Können Zhlenmengen N Z Q R ntürliche gnze rtionle reelle Aufgen, Beispiele, Erläuterungen N, Z, Q, R Wurzeln (Qudrtwurzel)

Mehr

9.5. Uneigentliche Integrale

9.5. Uneigentliche Integrale 9.5. Uneigentliche Integrle Bestimmte und unestimmte Integrle hängen zwr eng zusmmen, er die Existenz des einen grntiert nicht immer die des nderen: Eine integrierre Funktion muß keine Stmmfunktion esitzen,

Mehr

Mathematische Probleme, SS 2017 Donnerstag 22.6

Mathematische Probleme, SS 2017 Donnerstag 22.6 $Id: dreieck.tex,v 1.38 017/06/19 16:13:49 hk Exp $ $Id: trig.tex,v 1.17 017/06/ 1:46:01 hk Exp $ Dreiecke.4 Einige Sätze üer Kreise m Ende der letzten Sitzung hatten wir den Umkreisradius R eines Dreiecks

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien DFA Reguläre Grmmtik (Folie 89) Stz. Jede von einem endlichen Automten kzeptierte Sprche ist regulär. Beweis. Nch Definition, ist eine

Mehr

Lösung zur Bonusklausur über den Stoff der Vorlesung Grundlagen der Informatik II (45 Minuten)

Lösung zur Bonusklausur über den Stoff der Vorlesung Grundlagen der Informatik II (45 Minuten) Institut für Angewndte Informtik und Formle Beschreiungsverfhren 15.01.2018 Lösung zur Bonusklusur üer den Stoff der Vorlesung Grundlgen der Informtik II (45 Minuten) Nme: Vornme: Mtr.-Nr.: Semester: (WS

Mehr

Konstruktion mit Zirkel und Lineal

Konstruktion mit Zirkel und Lineal Alert Ludigs Universität Freiurg Institut für Mthemtik Ateilung für Reine Mthemtik Prof Dr D Wolke Dipl Mth S Feiler Üungen ur Vorlesung Ergänungen ur Elementren Zhlentheorie Wintersemester 9/ 9 Üungsltt

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip.

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip. Reguläre Sprchen Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 0 Ds Pumping-Lemm Wir hen is jetzt vier Formlismen kennengelernt, mit denen wir eine reguläre Sprche ngeen können:

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 2 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN. Dienstag

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN. Dienstag Lösungen Dienstg -- VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN Dienstg Blok.. - 4 3y 6 3-6y 3-3 y -. - 3y 4 - y 9 - y -93. y 0,,y Sämtlihe Lösungsmethoden liefern hier whre Aussgen. Z. Bsp. «0 0».

Mehr

Name... Matrikel-Nr... Studiengang...

Name... Matrikel-Nr... Studiengang... Proeklusur zum ersten Teil der Vorlesung Berechenrkeitstheorie WS 2015/16 30. Novemer 2015 Dr. Frnzisk Jhnke, Dr. Dniel Plcín Bereitungszeit: 80 Minuten Nme... Mtrikel-Nr.... Studiengng... 1. So oder so

Mehr

Lösungen zum Ergänzungsblatt 4

Lösungen zum Ergänzungsblatt 4 en zum Ergänzungsltt 4 Letzte Änderung: 23. Novemer 2018 Theoretische Informtik I WS 2018 Crlos Cmino Vorereitungsufgen Vorereitungsufge 1 Sei M = ({p, q, r}, {, }, δ, p, {q, r}) ein DEA mit folgender

Mehr

6. Quadratische Gleichungen

6. Quadratische Gleichungen 6. Qudrtische Gleichungen 6.1 Voremerkungen Potenzieren und Wurzelziehen, somit uch Qudrieren und Ziehen der Qudrtwurzel, sind entgegengesetzte Oertionen. Sie heen sich gegenseitig uf. qudrieren Qudrtwurzel

Mehr

5) Laplace-Wahrscheinlichkeit eines Zufallsexperiments

5) Laplace-Wahrscheinlichkeit eines Zufallsexperiments von Jule Menzel, 12Q4 5) Lplce-Whrscheinlichkeit eines ufllsexperiments Ergenis ω 1 ω 2 ω 3 ω 4 ω 1 Ω ω 2 ω 3 ω 4 Ergenismenge ist ein Ereignis ist Teilmenge von Ω kurz: c Ω Ws ist ein Ereignis? Beispiel:

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeihne ds Dreiek ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erehne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und C(8

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufge 69. Quizz Integrle. Es sei Höhere Mthemtik für Informtiker II (Sommersemester

Mehr

9 Vektorprodukt. Dieses Gleichungssystem muss man nun lösen! Das ist allerdings nicht ganz einfach. Die Lösung lautet:

9 Vektorprodukt. Dieses Gleichungssystem muss man nun lösen! Das ist allerdings nicht ganz einfach. Die Lösung lautet: 9 Vektorprodukt 9.1 Ds Vektorprodukt Gegeen seien zwei (komplnre) Vektoren und, die eine Eene ufspnnen. Suht mn einen Vektor n, der uf diese Eene senkreht steht, dnn muss n orthogonl zu und n orthogonl

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeichne ds Dreieck ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erechne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und

Mehr

(Analog nennt man a die und b die des Winkels β.)

(Analog nennt man a die und b die des Winkels β.) Mthemtik Einführung Ws edeutet ds Wort und mit ws eschäftigt sich die? Eine kleine Wortkunde: tri edeutet 'drei' Beispiel: Trithlon,... gon edeutet 'Winkel'/'Eck' Beispiel: Pentgon ds Fünfeck mit 5 Winkeln

Mehr