mathphys-online Bestimmung der Gravitationskonstanten
|
|
|
- Timo Dittmar
- vor 6 Jahren
- Abrufe
Transkript
1 Bestimmung er n Historisches Zu Lebzeiten Newtons ( ) konnte ie G aus em Gravitationsgesetz F Grav G Mm r 2 nicht experimentell bestimmt weren. Erst Cavenish gelang es 1798, also hunert Jahre später, iese Naturkonstante zu bestimmen. Das Grunprinzip er Gravitationsrehwaage beruht auf er Messung kleinster Kräfte urch Verrillung (Torsion) eines Faens. An einem ünnen Draht ist ein horizontal rehbarer tab befestigt, er an seinen Enen zwei Bleikugeln er Masse m trägt. Zwei große Bleikugeln er Masse M weren aus er gestrichelt gezeichneten tellung in eine Position mit em Abstan r zu en kleinen Kugeln geschwenkt. Aufgrun er Gravitationskraft weren ie kleinen Kugeln auf ie großen Kugeln hin beschleunigt. Über en Lichtzeiger es Laserstrahls kann ie Bewegung vergrößert beobachtet weren. Aus seinem Weg kann auf en Weg s er Kugeln geschossen weren (geometrische Optik). Die Kraft es Torsionsrahtes ist anfangs Null un kann bei kleinen Winkeln gegenüber er Gravitationskraft vernachlässigt weren. Für kleine Winkel gilt auch s << r,.h. r const währen er Messung. eite 1 von 5
2 Theoretische Herleitung Nach em 2. Newtonschen Gesetz un nach em Gravitationsgesetz gilt: F a F Grav ma G Mm r 2 Gleichung (*) G ar2 M a Mit konstanter Beschleunigung a gilt: Gleichung (**) s 2 t2 s proportional zu t 2 s un t weren experimentell bestimmt. Mit em Drehwinkel Φ gilt: (1) tan( Φ) s Nach en Gesetzen er Optik bei er Reflexion (vgl. Reflexionsgesetz unten) wir er Lichtzeiger um en Winkel 2 Φ gereht, wenn sich er piegel um en Winkel Φ reht. (2) tan( 2 Φ) L Für kleine Winkel Φ gilt folgene Näherung: (3) tan( 2 Φ) 2 tan( Φ) Mit (3) in (2) gilt: (2*) tan( Φ) Aus (1): s tan( Φ) (2*) einsetzen: s Mit en konkreten Zahlenwerten: Masse einer großen Kugel: M 1.5 kg Abstan vom piegel er Waage zur Wan: L 8.19 m Abstan er kleinen Kugeln zur Drehachse: m Mittenabstan er Kugeln nach em chwenken: r m eite 2 von 5
3 Messwerte t ( ) T s ( ) T 10 2 m "Fallstrecke": s 1 Wähle für as teigungsreieck: x1 3 x2 12 teigung: k m s 2 Fallstrecke Auswertung Messwerte Ausgleichsgerae teigungsreieck Quarat er Zeit t eite 3 von 5
4 Beschleunigung mit em teigungsreieck: (**) a 2 k a m s 2 Experimentell ermittelte : (*) ar 2 G G M m 3 kg s 2 Theorie Das Reflexionsgesetz beschreibt en Zusammenhang zwischen er Richtung es einfallenen trahls, es reflektierten trahls un er Lage es piegels. Als Hilfsmittel ient abei as sogenannte Einfallslot ( enkrechte, ie auf er piegeloberfläche im Auftreffpunkt es einfallenen trahles errichtet wir). Das Reflexionsgesetz lautet: - Der einfallene trahl un er reflektierte trahl liegen in einer Ebene. - Der Einfallswinkel ist genauso groß wie er Reflexionswinkel. Wir nun er piegel um einen Winkel β gereht, so wir er reflektierte trahl um en oppelten Winkel, also 2β gereht. Mit em chieberegler wir er piegel um en Winkel β gereht: Berechnungen Drehwinkel es piegels gegenüber er Horizontalen: β 15 Gra Drehwinkel es reflektierten trahls: δ 30 Gra eite 4 von 5
5 Erklärung Der Winkel zwischen em einfallenen trahl un em Lot sei zu Beginn α. Nach em Reflexionsgesetz beträgt er Winkel zwischen em einfallenen un reflektierten trahl 2 α. Wir er piegel um en Winkel β im Uhrzeigersinn gereht, so wir auch as Lot um en Winkel β gereht. Der Winkel zwischen einfallenem trahl un em Lot beträgt jetzt α β, also ist er Winkel zwischen einfallenem un reflektiertem trahl jetzt 2 α 2 β. Währen er piegel um en Winkel β gereht wure, wure er reflektierte trahl um en Winkel 2 β, also oppelt so stark gereht. Anwenung Nachweis sehr kleiner Drehwinkel, z. B. bei er Bestimmung er n G mit Hilfe einer Torsionsrehwage. eite 5 von 5
Mechanik - Die schiefe Ebene -
Mechanik - Die schiefe Ebene - Aufgabe: Auf der schiefen Ebene befindet sich ein Körper mit der Masse von m = 0,800 kg. Die schiefe Ebene hat die konstante Länge l = 1,00 m. Die Höhe kann von 10 cm bis
Gravitationskonstante
M05 Gravitationskonstante Unter Verwendung der Gravitationsdrehwaage als hochempfindliches Kraftmessgerät wird die Gravitationskonstante γ experimentell ermittelt. Eine auftretende systematische Abweichung
M1 - Gravitationsdrehwaage
Aufgabenstellung: Bestimmen Sie die Gravitationskonstante mit der Gravitationsdrehwaage nach Cavendish. Stichworte zur Vorbereitung: Gravitation, Gravitationsgesetz, Gravitationsgesetze, NEWTONsche Axiome,
= 1 und der Ladung Q aufgefasst. Die elektrische Feldstärke beträgt 1, N/C, so dass die Entladung durch einen Blitz unmittelbar bevorsteht.
Aufgaben Konensator 57. Zwei kreisförmige Metallplatten mit em Raius 0 cm, ie parallel im Abstan von 0 cm angeornet sin, bilen einen Plattenkonensator. In er Mitte zwischen en Platten hängt an einem ünnen
1.) Der Torsionsfaden hat einen extrem kleinen Radius. Wie wirkt sich dies auf die Winkelrichtgröße D und die Schwingungsdauer T aus?
M50 Name: Bestimmung der Gravitationskonstanten mit der Gravitations-Drehwaage Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss
Physikalisches Praktikum I
Fachbereich Physik Physikalisches Praktikum I Name: Bestimmung der Gravitationskonstanten mit der Gravitations-Drehwaage Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer:
MS Michelson-Interferometer
MS Michelson-Interferometer Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis 1 Grunlagen 2 1.1 Aufbau.................................... 2 1.2 Interferenzmuster...............................
Die Gravitationswaage
Physikalisches Grundpraktikum Versuch 2 Die Gravitationswaage Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: [email protected] [email protected] Tutor: Gruppe:
IU2. Modul Universalkonstanten. Gravitationskonstante
IU2 Modul Universalkonstanten Gravitationskonstante Neben der Formulierung seiner Bewegungsgesetze war ISAAK NEWTON s zweiter und vielleicht grösster Beitrag zur Physik die Entdeckung des allgemeinen Gravitationsgesetzes.
Übungen zum Ferienkurs Theoretische Mechanik
Übungen zum Ferienkurs Theoretische Mechanik Lagrange un Hamilton Mechanik Übungen, ie mit einem Stern markiert sin, weren als besoners wichtig erachtet. 2.1 3D Faenpenel Betrachten Sie ein Faenpenel er
2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2)
2.4. GAUSSSCHER SATZ 23 2.4 Gaußscher Satz Das Fel einer Punktlaung genügt er Gleichung: E = 1 4 π ε 0 Q r 2 Desweiteren berechnet sich ie Oberfläche einer Kugel, eren Punkte vom Mittelpunkt en Abstan
Die Gravitationswaage
Physikalisches Praktikum für das Hauptfach Physik Versuch 02 Die Gravitationswaage Sommersemester 2005 Name: Daniel Scholz Mitarbeiter: Hauke Rohmeyer EMail: [email protected] Gruppe: 13 Assistent:
Physik 11 Das Ampersche Durchflutungsgesetz. 1. Das Magnetfeld eines stromdurchflossenen Drahtes
1. Das Magnetfel eines stromurchflossenen Drahtes I 1. Das Magnetfel eines stromurchflossenen Drahtes I 1. Das Magnetfel eines stromurchflossenen Drahtes I Die Fellinien es Feles eines stromurchflossenen,
Aufgabe 1: Interferenz von Teilchen und Wellen
Lösungsvorschlag Übung 6 Aufgabe 1: Interferenz von Teilchen un Wellen a) Konstruktive bzw. estruktive Interferenz beschreibt ie Tatsache, ass sich überlagerne Wellen gegenseitig verstärken bzw. auslöschen
mathphys-online Trigonometrische Funktionen - Aufgaben 2 Aufgabe 1: Abschlussprüfung 1999 / AI 2 Gegeben ist die Funktion f( x) π sin = und x IR.
- Aufgaben Aufgabe : Abschlussprüfung 999 / AI Gegeben ist ie Funktion f( x) sin ( x ) = un x IR. a) Ermitteln Sie alle Nullstellen un Extrempunkte er Funktion f. b) Zeichnen Sie en Graphen er Funktion
1. Die Abbildung zeigt den Strahlenverlauf eines einfarbigen
Klausur Klasse 2 Licht als Wellen (Teil ) 26..205 (90 min) Name:... Hilfsmittel: alles verboten. Die Abbildung zeigt den Strahlenverlauf eines einfarbigen Lichtstrahls durch eine Glasplatte, bei dem Reflexion
ds = δ n(r)ds = 0 (2.1.1) Brechungsgesetz an der Grenzfläche zweier homogener Medien:
2. Fermatsches Prinzip Fermatsches Prinzip: Der Weg, en as Licht nimmt, um von einem Punkt zu einem aneren zu gelangen, ist stets so, ass ie benötigte Zeit extremal ist. Licht breitet sich in einem homogenen
Praktikum Radioaktivität und Dosimetrie" Absorption von β-strahlung
Praktikum Raioaktivität un Dosimetrie" Absorption von β-strahlung 1. Aufgabenstellung 1.1 Bestimmen Sie ie Schichticke von Glimmerplättchen aus er Absorptionskurve. 1. Ermitteln Sie en Massenabsorptionskoeffizienten
1. Probeklausur. φ = 2x 2 y(z 1).
Übungen zur T: Theoretische Mechanik, SoSe04 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45. Probeklausur Dr. Reinke Sven Isermann [email protected] Übung.: Gegeben sei ie Funktion φ = x y z. a Berechnen
Lösungen für Klausur A
Lösungen für Klausur A Aufgabe Skizze es Zelts im Querschnitt: h. (a) Aus sin folgt cos un aher h tan, also h. (b) Aus 9 4 4 folgt urch Wurzelziehen. Einsetzen von m in ie Beziehung aus (a) liefert h 6
ETH-Aufnahmeprüfung Herbst Physik U 1. Aufgabe 1 [4 pt + 4 pt]: zwei unabhängige Teilaufgaben
ETH-Aufnahmeprüfung Herbst 2015 Physik Aufgabe 1 [4 pt + 4 pt]: zwei unabhängige Teilaufgaben U 1 V a) Betrachten Sie den angegebenen Stromkreis: berechnen Sie die Werte, die von den Messgeräten (Ampere-
DOWNLOAD. Last Minute: Physik 7. Klasse. Optik 4. Reflexion. Last Minute: Physik 7. Klasse. Carolin Schmidt Hardy Seifert
DOWNLOAD Carolin Schmidt Hardy Seifert Last Minute: Physik 7. Klasse Optik 4 Reflexion Carolin Schmidt, Hardy Seifert Bergedorfer Kopiervorlagen Downloadauszug aus dem Originaltitel: Last Minute: Physik
f x n ) 2 1 Gleichung (*) f' x 1 f'' x 1
Das Newtonsche Näherungsverfahren, Teil Theorie - Konvergenzkriterium f x n Allgemeine Lösung: x n = x n f' x f' x n n 0 Nach er Fachliteratur (Bronstein/Semenjajew) arf man hier von einer Cauchy-Folge
1.1.8 Radialsymmetrisches elektrisches Feld, Coulomb-Gesetz; Kapazität des Kugelkondensators
8 Raialsymmetrisches elektrisches Fel, Coulomb-Gesetz; Kapazität es Kugelkonensators Die Felstärke im raialen Fel - as Coulombsche Gesetz Am Ene es letzten Kapitels wure ie Grungleichung es elektrischen
Theoretische Mechanik
Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten
Kristallographisches Praktikum I
Kristallographisches Praktikum I 3 Kristallographisches Praktikum I Versuch G1: Optisches Zweikreisgoniometer 1. Erläuterungen zum Zweikreis-Reflexionsgoniometer Nach em Gesetz er Winkelkonstanz (Nicolaus
Drehwaage von Cavendish
Drehwaage von Cavendish 1. Disposition Wir vermuten, dass sich die zwei Stahlkugeln, welche symmetrisch platziert sind, durch die zwei grösseren Kugeln angezogen werden und sich dadurch verschieben. In
Hochschule Düsseldorf University of Applied Sciences. 22. Oktober 2015 HSD. Physik. Gravitation
22. Oktober 2015 Physik Gravitation Newton s Gravitationsgesetz Schwerpunkt Bewegungen, Beschleunigungen und Kräfte können so berechnet werden, als würden Sie an einem einzigen Punkt des Objektes angreifen.
PP Physikalisches Pendel
PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung
1. Die Abbildung zeigt den Strahlenverlauf eines einfarbigen
Klausur Klasse 2 Licht als Wellen (Teil ) 2.2.204 (90 min) Name:... Hilfsmittel: alles veroten. Die Aildung zeigt den Strahlenverlauf eines einfarigen Lichtstrahls durch eine Glasplatte, ei dem Reflexion
Labor zur Vorlesung Physik
Labor zur Vorlesung Physik 1. Zur Vorbereitung Die folgenden Begriffe sollten Sie kennen und erklären können: Gravitationsgesetz, Gravitationswaage, gedämpfte Torsionsschwingung, Torsionsmoment, Drehmoment,
Lehrfach: Messtechnik - Grundlagen. Versuch: Kapazitive Füllstandsmessung
FM 2 Lehrfach: Messtechnik - Grunlagen Versuch: Kapazitive Füllstansmessung Oc Hochschule Zittau/Görlitz; Fakultät Elektrotechnik un Informatik Prof. Dr.-Ing. Kratzsch, Prof. Dr.-Ing. habil. Hampel i.r.
Implizite Differentiation
Implizite Differentiation -E -E Implizite Darstellung Eine Funktion ist in impliziter Form gegeben, wenn ie Funktionsgleichung nach keiner er beien Variablen x un y aufgelöst ist. Beispielsweise x y =
Vordiplom Mechanik/Physik WS 2000/2001
Aufgabe 1 a) Ein allgemeines Kräftesystem besteht aus folgenen Kräften: F 1 =30 N α 1 =90 Angriffspunkt: (x,y)=(0,0) F =0 N α =110 Angriffspunkt: (x,y)=(1,1) F 3 =0 N α 3 =70 Angriffspunkt: (x,y)=(,0)
Geometrische Optik Reflexion. Prof. Dr. Taoufik Nouri
Geometrische Optik Reflexion Prof. Dr. Taoufik Nouri [email protected] Unter Reflexion (lat. reflectere: zurückbeugen, drehen) wird in der Physik das vollständige oder teilweise Zurückwerfen von Wellen (elektromagnetischen
Aufgabe 1. Aufgabe 2. Die Formel für den mittleren Fehler einer Streckenmessung mit Meßband lautet:
Semesterklausur Fehlerlehre und Statistik WS 96/97 11. Februar 1997 Zeit: 2 Stunden Alle Hilfsmittel sind zugelassen Die Formel für den mittleren Fehler einer Streckenmessung mit Meßband lautet: m s :
0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel
0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1.1 Aufgabenstellung Man bestimme die Fallbeschleunigung mittels eines physikalischen Pendels und berechne hieraus die
Aufgaben zum Wochenende (2)
Aufgaben zum Wochenene () Alle Koorinatensysteme seien kartesisch.. Berechnen Sie zu a =(, 3, ) un b =(,, ), c =(, 3, ) : a 3, 4 a b, b ( a c), a 4 b ( ) c. Rechnen Sie möglichst praktisch.. Lösen Sie
1. Tangente, Ableitung, Dierential
1. Tangente, Ableitung, Dierential Variablen un Funktionen 1.1. Verallgemeinern Sie ie folgenen Gruppen von Gleichungen mithilfe von Variablen. (1) 5 + 3 = 3 + 5, 1 2 = 2 + 1. (2) 3 2 + 5 2 = (3 + 5) 2,
Satellitennavigation-SS 2011
Satellitennavigation-SS 011 LVA.-Nr. 183.060 Gerhard H. Schildt Buch zur Vorlesung: ISBN 978-3-950518-0-7 erschienen 008 LYK Informationstechnik GmbH www.lyk.at [email protected] Satellitennavigation GPS,
Übungen zu Physik I für Naturwissenschaftler Serie 1 Musterlösungen
Übungen zu Physik I für Naturwissenschaftler Serie 1 Musterlösungen Denys Sutter, 25. September 217 Allgemeine Fragen 1. Dimensionsanalyse ist eine nützliche Methoe sich avon zu überzeugen, ass eine physikalische
Experimente Lehrerinformation
Lehrerinformation 1/9 Arbeitsauftrag Durchführung der gem. Anleitung Ziel Erleben der Theorie in der Praxis Material en Material gemäss Beschreibung der. Sozialform Plenum und je nach Experiment in GA
I. GRUNDLAGEN Man kann die Ausbreitung von Licht durch Lichtstrahlen modellhaft beschreiben. Dabei gilt: Licht breitet sich geradlinig aus.
KLASSE: DATUM: NAMEN: I. GRUNDLAGEN Man kann die Ausbreitung von Licht durch Lichtstrahlen modellhaft beschreiben. Dabei gilt: Licht breitet sich geradlinig aus. Wenn ein Lichtstrahl auf eine glatte oder
Gekoppelte Pendel und Kopplungsgrad
Fakultät für Physik un Geowissenschaften Physikalisches Grunpraktikum M Gekoppelte Penel un Kopplungsgra Aufgaben. Messen Sie für rei Stellungen er Kopplungsfeer jeweils ie Schwingungsauer T er gleichsinnigen
Differentialrechung Ableitungen der Sinus-, Kosinus- und Tangensfunktion
Differentialrechung Ableitungen er Sinus-, Kosinus- un Tangensfunktion Aufgabe a Gegeben ist ie Funktion f( mit IR. Gesucht ist ie Ableitungsfunktion. Bestimmen Sie ie Ableitungsfunktion graphisch mithilfe
GW 7 Physikalische Grundlagen
eite 1 von 6 GW 7 Physikalische Grundlagen RMG Ein physikalisches Experiment ist eine Frage an die atur. Es wird unter festgelegten Voraussetzungen durchgeführt und muss reproduzierbar sein. Die Ergebnisse
HAW Hamburg, Dept.: M+P VKA Prof. Dr.-Ing. Victor Gheorghiu
Brennverlauf mit einer einzigen Vibe-Funktion ( ) m V+ Die Vibe-Funktion hat folgenen Ausruck ξ e a V χ ( ) Hierin beeuten: ξ exp a V ( χ ) m V+ Q B ξ ( 2) ie relative Brennfunktion, ie als Verhältnis
IMA II - Lösungen (Version 1.04) 1
IMA II - Lösungen Version.04 Übungsserie Aufgabe Ableitung über Differenzenquotient Der Differenzenquotient, auch bekannt als mittlere Änerungsrate, wir gebilet urch Betrachtung von Sekantensteigungen
Felder und Wellen WS 2018/2019 C = U = φ(2) φ(1)
Feler un Wellen WS 08/09 Musterlösung zum 6. Tutorium. Aufgabe (**) Kapazität kann für jee beliebige Leiteranornung efiniert weren C = εe = f E s s }{{} φ() φ() Sin mehrere Leiter vorhanen, befinen sich
Experimentalphysik I: Mechanik
Ferienkurs Experimentalphysik I: Mechanik Wintersemester 15/16 Übung 1 - Lösung Technische Universität München 1 Fakultät für Physik 1 Stein fällt in Brunnen Ein Stein fällt in einen Brunnen. Seine Anfangsgeschwindigkeit
Übungsblatt 03 (Hausaufgaben)
Übungsblatt 03 Hausaufgaben Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik 0.05.008 Aufgaben. Gegeben sind Ladungen + am Orte a; 0; 0 und a; 0; 0: a Berechnen
NG Brechzahl von Glas
NG Brechzahl von Glas Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik und Wellenoptik.......... 2 2.2 Linear polarisiertes
Leibnizschule Hannover
Leibnizschule Hannover - Seminararbeit - Schleppkurven J D Schuljahr: 2011 Fach: Mathematik Inhaltsverzeichnis 1 Einleitung: Die Schleppkurve un ihre Anwenung 2 2 Erarbeitung eines Verfahrens zur Berechnung
Brechung des Lichts Arbeitsblatt
Brechung des Lichts Arbeitsblatt Bei den dargestellten Strahlenverläufen sind einige so nicht möglich. Zur Erklärung kannst du deine Kenntnisse über Brechung sowie über optisch dichtere bzw. optisch dünnere
4. Zusammenhang von elektrischer Feldstärke und Spannung eines Kondensators; Kapazität eines Kondensators
4. Zusammenhang von elektrischer Felstärke un Spannung eines Konensators; Kapazität eines Konensators Zusammenhang von elektrischer Felstärke un Spannung eines Plattenkonensators Überlegung: Eine positive
1.8 Gravitationswaage
1.8 Gravitationswaage 99 1.8 Gravitationswaage Ziel Bestimmung der Gravitationskonstanten G nach dem Endausschlagverfahren mit Hilfe einer Gravitationsdrehwaage. Stichworte Gravitationsgesetz, Gravitationskonstante,
Versuch O3/O4 - Reflexion polarisierten Lichts / Drehung der Polarisationsebene. Abgabedatum: 24. April 2007
Versuch O3/O4 - Reflexion polarisierten Lichts / Drehung der Polarisationsebene Sven E Tobias F Abgabedatum: 24. April 2007 Inhaltsverzeichnis 1 Thema des Versuchs 3 2 Physikalischer Kontext 3 2.1 Reflexionsgesetz............................
SMART. Sammlung mathematischer Aufgaben als Hypertext mit TEX. Optik (Physik)
SMART Sammlung mathematischer Aufgaben als Hypertext mit TEX Optik (Physik) herausgegeben vom Zentrum zur Förderung des mathematisch-naturwissenschaftlichen Unterrichts der Universität Bayreuth 1. Mai
I. GRUNDLAGEN Man kann die Ausbreitung von Licht durch Lichtstrahlen modellhaft beschreiben. Dabei gilt: Licht breitet sich geradlinig aus.
DATUM: I. GRUNDLAGEN Man kann die Ausbreitung von Licht durch Lichtstrahlen modellhaft beschreiben. Dabei gilt: Licht breitet sich geradlinig aus. Wenn ein Lichtstrahl auf die Oberfläche eines lichtundurchlässigen
Praktikum Physikalische Chemie I 30. Januar Aktivierungsenergie. Guido Petri Anastasiya Knoch PC111/112, Gruppe 11
Praktikum Physikalische Chemie I 30. Januar 2016 Aktivierungsenergie Guido Petri Anastasiya Knoch PC111/112, Gruppe 11 1 Aufgabenstellung Für die Reaktion von Saccharose mit Wasser zu Glucose und Fructose
Physikalisches Praktikum 3. Semester
Torsten Leddig 30.November 2004 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Newtonsche Ringe - 1 1 Newtonsche Ringe: Aufgaben: Bestimmen Sie den Krümmungsradius R sowie den
Parameterdarstellung einer Funktion
Parameterdarstellung einer Funktion 1-E Eine ebene Kurve Abb. 1-1: Die Kurve C beschreibt die ebene Bewegung eines Teilchens 1-1 Eine ebene Kurve Ein Teilchen bewegt sich in einer Ebene. Eine ebene Kurve
Lösungblatt III Veröentlichung
Aufgabe 1 a) Ein Block der Masse m = 0.5Kg hängt am unteren Ende einer vertikal aufgehängten Feder. Aufgrund des Blocks streckt sich die Feder um eine Distanz d = 5cm aus ihrer Gleichgewichtslage (vgl.
Abbildung 1: Kettenfontäne (Bild: The New York Times, March 3, 2014 [1])
Kettenfontäne Der Mould-Effekt Steve Mould zeigte im Jahr 2013 ein YouTube-Video, das grosse Beachtung fand und von mehr als zwei Millionen Menschen angeschaut wurde. Wird das eine Ende einer in einem
Klausur zur Höheren Mathematik 1/2
Stroppel/Sänig 4. 0. 0 Klausur zur Höheren Mathematik / für Ingenieurstuiengänge Bitte beachten Sie ie folgenen Hinweise: Bearbeitungszeit: 40 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhänig
Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:
Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das
I. GRUNDLAGEN Man kann die Ausbreitung von Licht durch Lichtstrahlen modellhaft beschreiben. Dabei gilt: Licht breitet sich geradlinig aus.
DATUM: I. GRUNDLAGEN Man kann die Ausbreitung von Licht durch Lichtstrahlen modellhaft beschreiben. Dabei gilt: Licht breitet sich geradlinig aus. Wenn ein Lichtstrahl auf die Oberfläche eines lichtundurchlässigen
Einführung in die theoretische Physik 1
Mathey Einführung in ie theor. Physik 1 Einführung in ie theoretische Physik 1 Prof. Dr. L. Mathey Dienstag 15:45 16:45 un Donnerstag 1:45 12: Beginn: 23.1.12 Jungius 9, Hörs 2 1 Mathey Einführung in ie
Reflexion am Planspiegel (Artikelnr.: P )
Lehrer-/Dozentenblatt Gedruckt: 30.03.207 6:2:2 P063700 Reflexion am Planspiegel (Artikelnr.: P063700) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-0 Lehrplanthema: Optik Unterthema:
PP - Physikalisches Pendel Blockpraktikum Frühjahr 2005
PP - Physikaisches Pende Bockpraktikum Frühjahr 2005 Regina Schweizer, Aexander Seizinger, Tobias Müer Assistent Heiko Eite Tübingen, den 14. Apri 2005 1 Theoretische Grundagen 1.1 Mathematisches Pende
Versuch 2 Die Gravitationswaage
Physikalisches A-Praktikum Versuch 2 Die Gravitationswaage Praktikanten: Julius Strake Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 03.07.2012 Unterschrift: Inhaltsverzeichnis 1 Einleitung
Klausur zur Höheren Mathematik 1/2
Stroppel/Sänig 4.. Klausur zur Höheren Mathematik / für Ingenieurstuiengänge Bitte beachten Sie ie folgenen Hinweise: Bearbeitungszeit: 8 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhänig hanbeschrieben.
Mathematik III. Vorlesung 87. Die äußere Ableitung
Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 87 Die äußere Ableitung In ieser Vorlesung weren wir ein neuartiges mathematisches Objekt kennenlernen, ie sogenannte äußere Ableitung.
4 Korrelationsformel für den Standard-Widerstandsbeiwert
66 Korrelationsformel für en Stanar-ierstansbeiwert Korrelationsformel für en Stanar-ierstansbeiwert Korrelationsformeln für en weren z.b. für ie Bestimmung er Sinkgeschwinigkeit oer für ie Simulation
Lichtreflexion. Physikalisches Grundpraktikum IV. Name: Daniel Schick Betreuer: Dr. Hoppe Versuch ausgeführt: Protokoll erstellt:
Physikalisches Grundpraktikum IV Universität Rostock :: Institut für Physik 5 Lichtreflexion Name: Daniel Schick Betreuer: Dr. Hoppe Versuch ausgeführt: 2.4.5 Protokoll erstellt: 22.4.5 1 Ziele: Auseinandersetzen
Übungsblatt 04. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Hans-Dieter Vollmer,
Übungsblatt 04 PHYS400 Grunkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Hans-Dieter Vollmer, ([email protected]) 2. 5. 2005 bzw. 3. 5. 2005 Aufgaben. Der Operator A sei proportional
2.3.4 Drehungen in drei Dimensionen
2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1
0 1 0 b Die inverse Funktion muss die Translation um b sein und hat daher die homogene Matrix b b 1
Homogene Koorinaten Aufgabe. In homogener Darstellung ist ie Translation f R 4 R 4 um einen Vektor b R 3 eine lineare Funktion un kann aher urch eine Matri Vektor Multiplikation realisiert weren. Wie sieht
Reflexion - Teil = 4 4 ) - 2 (-7)/5 (1 2 ) = (19/5 8/5 ) ); e n = -7; r = (
Reflexion - Teil 1. Formel unter Verwendung von Vektoren (1. - 7. in R ). Fallunterscheidung: Beispiele zu 1. 3. Beispiel - Reflexionspunkt bekannt 4. Muss zur Berechnung von r der Reflexionspunkt bekannt
Serie 6 - Funktionen II + Differentialrechnung
Analysis D-BAUG Dr. Meike Akvel HS 05 Serie 6 - Funktionen II + Differentialrechnung. a) Sei Lösung 3, falls < 0, f : R R, f) c +, falls 0, + 8, falls >. Bestimmen Sie c R un R, so ass f überall stetig
d) Teilaufg d) wurde wegen inkonsistenter Angabe storniert und die Punkte umverteilt m 1 g v 2 S gr Dm1 v 1
Lösung Klausur E1 Mechanik vom 11. April 2013 Aufgabe 1: Affentheater (16 Punkte) a) r(t) = x(t) = vx 0 t = v 0 cos α t y(t) v y 0 t 1 2 gt2 v 0 sin α t 1 2 gt2 b) y(x) = y(t(x)) mit t = x y(x) = x tan
Abituraufgaben: Statische elektrische Felder. 1 Aus Abiturprüfung 1990, Grundkurs - Plattenkondensator im Vakuum. Aufgabe
Abituraufgaben: Statische elektrische Feler 1 Aus Abiturprüfung 1990, Grunkurs - Plattenkonensator im Vakuum Aufgabe An einem Plattenkonensator mit er Plattenfläche A = 80cm 2 un em Plattenabstan = 25mm
Blatt 10. Hamilton-Formalismus- Lösungsvorschlag
Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus
1.2 Polarisation des Lichts und Doppelbrechung
Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 1 - Optik 1.2 Polarisation des Lichts und Doppelbrechung Stichwörter: Gesetz von Malus, Polarisation, Polarisationsebene, Faradayeffekt, Doppelbrechung,
Physik-Praktikum 13.1 Daniel Bilic W4 Optisches Gitter / Linienspektren
Physik-Praktikum 3. Daniel Bilic 5.2.06 W4 Optisches Gitter / Linienspektren. Versuchsaufbau: Der Versuch war wie gefolgt aufgebaut. Wir stellten eine Spektrallampe auf eine Schien, ie er Schiene entlang
Aufgabe 1: n (2) n (1)
Aufgabe 1: In er mechanischen Verfahrenstechnik weren häufig analytische Funktionen, wie ie RRSB- Verteilung (Rosin-Rammler-Sperling-Bennett) benutzt, um Partikelgrößenverteilungen zu beschreiben. Sin
Musterloesung. Name:... Vorname:... Matr.-Nr.:...
2. Klausur Grunlagen er Elektrotechnik I-B 16. Juni 2003 berlin Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Trennen Sie en Aufgabensatz nicht auf. Benutzen Sie für ie Lösung er Aufgaben
Strom kann nur in einem geschlossenen Kreis fließen.
1. Elektrischer Stromkreis Strom kann nur in einem geschlossenen Kreis fließen. Kurzschluss: Der Strom kann direkt vom einen Pol der Energiequelle (Batterie) zum anderen Pol fließen. Gefahr: Die Stromstärke
3 Erzwungene Konvektion 1
3 Erzwungene Konvektion 3. Grunlagen er Konvektion a) erzwungene Konvektion (Strömung angetrieben urch Pumpe oer Gebläse) b) freie Konvektion (Dichteunterschiee aufgrun von Temperaturunterschieen) c) Konensation
Explizite und Implizite Darstellung einer Funktion
Eplizite un Implizite Darstellung einer Funktion Für ie implizite Differentiation weren ie Begriffe implizite un eplizite Darstellung von Funktionen benötigt. Bisher haben wir eine Funktion (Zusammenhang
Grundpraktikum II O11 - Polarisation durch Reflexion
Mathematisch-Naturwissenschaftliche Fakultät Institut für Physik Grundpraktikum II O11 - Polarisation durch Reflexion Julien Kluge 18. März 2016 Student: Julien Kluge (564513) [email protected]
Analysis Aufstellen ganzrationaler Funktionen (Steckbriefaufgaben)
Analysis (Steckbriefaufgaben) Alexaner Schwarz August 18 1 Aufgabe 1: Bestimme jeweils en Funktionsterm. a) Der Graph einer ganzrationalen Funktion ritten Graes hat einen Tiefpunkt bei T(/) un einen Wenepunkt
Lösungen zur Geometrischen Optik Martina Stadlmeier f =
Lösungen zur Geometrischen Optik Martina Stadlmeier 24.03.200. Dicke Linse a) nach Vorlesung gilt für die Brechung an einer gekrümmten Grenzfläche f = n2 n 2 n r Somit erhält man für die Brennweiten an
Stiftsschule Engelberg Physik Schuljahr 2017/2018
2 Reflexionen 2.1 Reflexion und Reflexionsgesetz Wir unterscheiden zwei Arten der Spiegelung: regelmässige und unregelmässige Reflexion (= Streuung). Auf rauen Oberflächen eines Körpers wird das Licht
