Quadratische Funktionen
|
|
|
- Etta Blau
- vor 9 Jahren
- Abrufe
Transkript
1 Qudrtische Funktionen Definition: Eine Funktion mit der Gleichung y = c (,, c R; 0) heißt qudrtische Funktion oder Funktion. Grdes. qudrtisches Glied;...lineres Glied; c...solutes Glied Der Grph einer qudrtischen Funktion heißt Prel. Preln hen eine Symmetriechse. Der Schnittpunkt der Symmetriechse mit der Prel heißt Scheitelpunkt. Gleichungen qudrtischer Funktionen: llgemein: y = c (,, c R; 0) = 1 y = c Hier ht es sich eingeürgert, nicht mehr und c ls typische Vrilen zu nehmen, sondern p und q. y = p q (p, q R) p = 0 und q = 0 y = einfchster Fll einer qudrtischen Funktion p = 0 und q 0 y = q Qudrtische Funktionen mit Gleichungen y = und y = q y = Wertetelle: y Zeichnung Der Grph der qudrtischen Funktion y = heißt Normlprel. Eigenschften der Funktion y = mimler Definitionsereich 1 : R lle reellen Zhlen Scheitelpunkt: S(0; 0) Ursprung des Koordintensystems Nullstelle : 0 = 0 genu eine Nullstelle Monotonie 3 : für 0 monoton fllend für 0 monoton steigend Symmetriechse: Ordintenchse (y-achse) Werteereich 1 : y R, y 0 Menge der nichtnegtiven reellen Zhlen Zeichnen des Grphen 1. Scheitelpunkt. vom Scheitelpunkt us: 1 nch rechts 1 nch oen; 1 nch links 1 nch oen 3. vom Scheitelpunkt us: nch rechts nch oen; nch links nch oen. vom Scheitelpunkt us: 3 nch rechts 3 nch oen; 3 nch links 3 nch oen Eine Funktion ordnet jedem Element der Definitionsmenge D f genu ein Element y der Wertemenge W f zu. Jede Zhl us dem Definitionsereich einer Funktion y = f(), die Lösung der Gleichung f() = 0 ist, heißt Nullstelle der Funktion. (-Wert der Schnittpunkte mit der -Achse) 3 Intervlle, in denen die Funktion monoton (gleichleiend) steigt und fällt
2 Die Funktion y = q 3 Zeichnen Sie die Funktionen y =, y = und y = 3 in ein und dssele Koordintensystem. (Definitionsereich: R; -3 3) Stellen Sie eine Üersicht üer die Eigenschften der Funktion y = q zusmmen. Eigenschften der Funktion y = q mimler Definitionsereich : R lle reellen Zhlen Scheitelpunkt: S(0; q) Ursprung des Koordintensystems Monotonie 5 : für 0 monoton fllend für 0 monoton steigend Symmetriechse: Ordintenchse (y-achse) Werteereich 1 : y R, y q Menge der nichtnegtiven reellen Zhlen Lge des Scheitelpunktes S(0; q) ezüglich der -Achse: q > 0 S liegt oerhl der Aszissenchse q = 0 S liegt uf der Aszissenchse q < 0 S liegt unterhl der Aszissenchse Nullstellen: q < 0 q = 0 q > 0 genu Nullstellen genu eine Nullstelle keine Nullstelle Der Grph der Funktion y = q ist eine prllel zur Ordintenchse verschoene Normlprel mit dem Scheitelpunkt S(0; q). Zeichen des Grphen y = q: wie ei der Normlprel vorgehen Berechnung der Nullstellen y = y muss 0 sein 0 = - = 1 = ; = zwei Nullstellen y = y muss 0 sein 0 = = - n.l. keine Nullstellen llg.: y = q y muss 0 sein 0 = q = -q n.l. q > 0 keine Nullstellen 0 = 0 q = 0 ein Nullstelle 1 = q ; = - q zwei Nullstellen Bestimmen von q y = q P( ; 1) 1 = q q = -3 y = 3 Eine Funktion ordnet jedem Element der Definitionsmenge D f genu ein Element y der Wertemenge W f zu. 5 Intervlle, in denen die Funktion monoton (gleichleiend) steigt und fällt
3 5 Die Funktion y = p q Stellen Sie folgende Funktionen mit Hilfe einer Wertetelle grphisch dr. y = 6 9 im Intervll 5-1 y = 6 11 im Intervll 5-1 y =,6 1,9 im Intervll Vergleichen Sie die Grphen mit dem Grphen der Funktion y =. Es liegt in llen Fällen eine Verschieung des Grphen der Funktion y = vor. Es hndelt sich dei er für p 0 nicht um eine Verschieung nur in Richtung der Ordintenchse. Genuere Untersuchungen: Umformen der Funktion mit Hilfe der qudrtischen Ergänzung geg.: y = p q ges. : y = ( d) e umgekehrter Weg: geg.: y = ( ) y = 8 16 y = 8 18 inomische Formel : ( ) = hier: ( d) = d d geg.: y = 8 18 y = 8 (8/) (8/) 18 y = ( ) (8/) 18 y = ( ) Üung : ) y = 10 5 y = ( 5) ) y = y = ( - ) c) y = 3 y = ( ) - 1 d) y = 10 7 y = ( 5) e) y = y = ( 5/) - 7,5 f) y = - 3 7/ y = ( 1,5) Funktionen,, c und d, e, f in jeweils ein Koordintensystem zeichnen und Scheitelpunkt lesen! S( - d; e) Scheitelpunktform einer qudrtischen Funktion: y = ( d) e Verschieung: Der Grph der Funktion y = ( d) e ist gegenüer y = um d in Richtung der Aszissenchse verschoen. Der Grph der Funktion y = ( d) e ist gegenüer y = um e in Richtung der Ordintenchse verschoen. Für Funktionen y = ( d) e (d, e R) gilt: Der Grph jeder dieser Funktionen ist eine Normlprel. Der Scheitelpunkt der Prel ist S(-d; e). Die Achse der Prel verläuft prllel zur Ordintenchse. S(-d; e) ist Scheitelpunkt, d y = ( d) für = -d den kleinsten Wert nnimmt.
4 6 Die Funktion y = mit R; 0 Stellen Sie folgende Funktionen im ngegeenen Intervll mit Hilfe einer Wertetelle grphisch dr. Vergleichen Sie die Grphen mit dem Grphen der Funktion y =. y = Intervll: [-3; 3] Streckungsfktor: 1 y = Intervll: [-3; 3] Streckungsfktor: -1 y = Intervll: [-; ] Streckungsfktor: y = Intervll: [-; ] Streckungsfktor: y = 1 y = 1 Intervll: [-; ] Streckungsfktor: Intervll: [-; ] Streckungsfktor: Mn erhält den Funktionswert von y =, indem mn den Funktionswert von y = mit multipliziert. Ergenisse Der Grph der Funktion y = heißt Prel. (Im Gegenstz zur Normlprel.) D(f): R; W(f): y R, y 0 Monotonie: für <0 m ; für >0 m Scheitelpunkt: S(0; 0) Die einzige Nullstelle ist 0 = 0. Symmetriechse: s = 0. Für > 0 ist die Prel nch oen geöffnet Für < 0 ist die Prel unten offen. (Spiegelung der Normlprel n der Aszissenchse.) Für > 1 ist die Prel enger ls die Normlprel. (Streckung der Normlprel in Richtung der Ordintenchse) Für < 1 ist die Prel weiter ls die Normlprel. (Stuchung der Normlprel in Richtung der Ordintenchse) = 1 Normlprel y = = 1 Spiegelung der Normlprel n der Aszissenchse
5 7 Die Funktion y = c mit,c R; 0 Stellen Sie folgende Funktionen im ngegeenen Intervll mit Hilfe einer Wertetelle grphisch dr. Vergleichen Sie die Grphen mit dem Grphen der Funktion y =. y = Intervll: [-; ] y = 1 Intervll: [-; ] y = 1 1 Intervll: [-; ] y = 1 1 Intervll: [-3; 3] Ergenisse Der Grph der Funktion y = c ist eine Prel, die gegenüer der Prel der Funktion y = um c in Richtung der Ordintenchse verschoen wurde. D(f): R; W(f): y R, y c Monotonie: für <0 m ; für >0 m Scheitelpunkt: S(0; c). Symmetriechse: s = 0. Nullstellen 0 = c = c 1, = ± c Ist c = 0, so ht die Funktion y = c eine Nullstelle: 0 = 0 Hen ds qudrtische Glied und ds solute Glied c ds gleiche Vorzeichen, so ht die Funktion y = c keine Nullstellen. Hen ds qudrtische Glied und ds solute Glied c unterschiedliche Vorzeichen, so ht die Funktion y = c zwei Nullstellen. Scheitelpunktsform und Normlform: y = c...streckungsfktor; c...verschieung
6 8 Die Funktion y = c mit,,c R; 0 Stellen Sie folgende Funktion im ngegeenen Intervll mit Hilfe einer Wertetelle grphisch dr. y = 1 16 Intervll: [1; 5] Scheitelpunkt: S(3; -1) Scheitelpunktform y = 1 16 y = [ 6 8] [ ] y = ( 3) 9 8 y = ( 3) y = ( 3) Scheitelpunkt: S(3; -) Streckungsfktor: 6 6 y = 6 8 [ 1] y = c y = c c y = y = c c y = Scheitelpunkt: c S ; Streckungsfktor: y = c Nullstellen 0 = = ( 3) ( 3) 0 = c = ( 3) = 1 3 = ± 1 = = ; = 1, ± c 0 = c = c 1, = ± c > 0 Nullstellen c < 0 keine Nullstellen c = 0 eine Nullstelle: 0 = c = c = ±
7 9 Ergenisse Der Grph der Funktion y = c ist eine Prel, mit dem Scheitelpunkt c S ; und dem Streckungsfktor. D(f): R; W(f): y R, c y Monotonie: für < m ; für > m Symmetriechse: S = > 0 Prel nch oen geöffnet, < 0 Prel unten offen > 1 Streckung um in Richtung der Ordintenchse < 1 Stuchung um in Richtung der Ordintenchse Nullstellen: 1, c ± = Scheitelpunktform: c y =..Streckungsfktor; c S ;
Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9
Regiomontnus - Gymnsium Hßfurt - Grundwissen Mthemtik Jhrgngsstufe 9 Wissen und Können Zhlenmengen N Z Q R ntürliche gnze rtionle reelle Aufgen, Beispiele, Erläuterungen N, Z, Q, R Wurzeln (Qudrtwurzel)
Quadratische Funktionen
Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung
3. Ganzrationale Funktionen
3. Gnzrtionle Funktionen ) Definitionen und Beispiele Definition: Eine gnzrtionle Funktion n-ten Grdes ht ls Definitionsterm ein Polynom n-ten Grdes, d.h. y = f() = n n n-1 n-1 1 0. n 0, i ( i = 1, n)
Bruchterme I. Definitionsmenge eines Bruchterms
Bruchterme I Definitionsmenge eines Bruchterms Alle zulässigen Einsetzungen in einen Bruchterm ilden die Definitionsmenge D. Einsetzungen, für die der Nenner Null wird, gehören nicht zur Definitionsmenge.
Nullstellen quadratischer Gleichungen
Nullstellen qudrtischer Gleichungen Rolnd Heynkes 5.11.005, Achen Nch y ufgelöst hen qudrtische Gleichungen die Form y = x +x+c. Zeichnet mn für jedes x uf der rechten Seite und ds drus resultierende y
Repetitionsaufgaben Exponential-und Logarithmusfunktion
Repetitionsufgben Eponentil-und Logrithmusfunktion Inhltsverzeichnis A) Vorbemerkungen B) Lernziele C) Eponentilfunktionen mit Beispielen 2 D) Aufgben Ep.fkt. mit Musterlösungen 6 E) Logrithmusfunktionen
Lernkarten. Analysis. 11 Seiten
Lernkrten Anlysis Seiten Zum Ausdrucken muss mn jeweils eine Vorderseite drucken, dnn ds Bltt wenden, nochmls einlegen und die Rückseite drucken. Am esten druckt mn die Krten uf festem Ppier oder uf Visitenkrten-
Analysis mit dem Voyage 1
Anlysis mit dem Voyge 1 1. Kurvendiskussion Gegeben ist die Funktionschr Den Nenner erhält mn mit Hilfe der Funktion getdenom. Zeros liefert die Nullstellen des Nenners und dmit die Werte, die us dem Definitionsbereich
Mathematikaufgaben > Analysis > Funktionenscharen
Michel Buhlmnn Mthemtikugen > Anlysis > Funktionenschren Auge: Gegeen ist die Funktionenschr t t t mit reellen Prmeter t >. Die zugehörigen Schuilder heißen K t. Skizziere die Schuilder K,5, K und K jeweils
Abiturvorbereitung Mathematik Analysis. Copyright 2013 Ralph Werner
Aiturvorereitung Mthemtik Anlysis Copyright 2013 Rlph Werner 1 Aleitung einer Funktion Geometrische Entsprechung: Aleitung Die Aleitung einer Funktion f (2) = 4 y = 4 x - 4 n der Stelle x 0 f (x 0 ) git
Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben
Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr Stefn Gärtner Grundkurs Mthemtik Einführung in die Integrlrechnung Lösungen und Ergenisse zu den Aufgen Von llen Wissenschftlern können
DEMO. Algebraische Kurven 2. Ordnung ohne xy-glied INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL
Algerische Kurven. Ordnung ohne x-glied Üersicht üer lle möglichen Formen und Gleichungen Text Nr. 5301 DEO tnd 1. Juli 016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR CHULATHEATIK 5301 Algerische Kurven.
Der Kreissektor (Kreisausschnitt) Kreissektors mit dem Mittelpunktswinkel ϕ : Bogenlänge: b Sektor. Flächeinhalt:: ASektor
Grundwissen Mthemtik 0.Klsse 0 / Die Kugel Volumen der Kugel: Oberfläche der Kugel: V O Kugel Kugel 4 πr 4πr Der Kreissektor (Kreisusschnitt) Kreissektors mit dem Mittelpunktswinkel ϕ : ϕ Bogenlänge: b
Mathematik-Aufgabenpool > Normalparabeln, spezielle allgemeine Parabeln I
Michel Buhlmnn Mthemtik-Aufgbenool > Normlrbeln, sezielle llgemeine Prbeln I Einleitung: Normlrbeln sind qudrtische Funktionen von der Form: y = + + q (Normlform), y = ( d) + c (Scheitelform), y = (- )(-
3. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner
3. Mthemtik-Schulrbeit für die 5. Klsse Autor: Gottfried Gurtner Arbeitszeit: 75 Minuten Lernstoff: Mthemtische Grundkompetenzen: AG.1 Einfche Terme und Formeln ufstellen, umformen und im Kontext deuten
360 2 r. 360 r2. α Bogenmaß. α 360. α 2π. 4 3 r3 V K. 4 r 2 O K
Grundwissen Mthemtik 10. Klsse Kreis Länge eines Kreisbogens b 360 r r r b Fläche eines Kreissektors 360 r r r Bogenmß Bogenmß des Winkels : Umrechnungsformel: b α Bogenmß r α Bogenmß π α 360 Grdmß Kugel
Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1
www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)
6. Quadratische Gleichungen
6. Qudrtische Gleichungen 6.1 Voremerkungen Potenzieren und Wurzelziehen, somit uch Qudrieren und Ziehen der Qudrtwurzel, sind entgegengesetzte Oertionen. Sie heen sich gegenseitig uf. qudrieren Qudrtwurzel
Die Hyperbeläste kommen den Koordinaten-achsen beliebig nahe. Sie sind Asymptoten der Hyperbel.
.8. Die indirekte (umgekehrte) Proportionlität Die Funktion f : y \ heisst umgekehrte (indirekte) Proportionlität. Spezilfll : f: Bilde den Kehrwert der gegebenen Zhl. An der Stelle ist die Funktion nicht
Bruchterme und gebrochen rationale Funktionen ================================================================== Der Quotient zweier Terme
Bruchterme und gebrochen rtionle Funktionen Der Quotient zweier Terme Es ist ist 3 : 4 3 und. 4 : 3 4 3 4 Dehnt mn die Bruchschreibweise uf Terme us, dnn erhält mn sog. Bruchteme. ² ( + ) : (3 + 4) + 3
5 Gleichungen (1. Grades)
Mthemtik PM Gleichungen (. Grdes) Gleichungen (. Grdes). Einführung Betrchtet mn und (, Q) und vergleicht sie miteinnder, so git es Möglichkeiten:. > ist grösser ls. = ist gleich gross wie. < ist kleiner
Ortskurven besonderer Punkte
Ortskurven besonderer Punkte 1. Wir betrchten die Funktionenschr f mit f (x = x+ e x, D f =R und R\{0}. ( Bestimme in Anhängigkeit des Schrprmeters die Nullstellen von f und ds Verhlten von f für x ±.
f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1
III. Funktionen und Gleichungen ================================================================== 3.1. Lineare Funktionen Eine Funktion mit der Zuordnungvorschrift f : x y = mx + t und m, t R heißt lineare
Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 4.1
. Dr. Jürgen Roth Fchbereich 6: Abteilung Didktik der Mthemtik Elemente der Algebr . Inhltsverzeichnis Elemente der Algebr & Argumenttionsgrundlgen, Gleichungen und Gleichungssysteme Qudrtische und Gleichungen
Mathematik 9/E1 oder 10/E1 Test zu den Übungsaufgaben Übergang in die Einführungsphase E1
Mthemtik 9/E1 oder 10/E1 Test zu den Übungsufgben Übergng in die Einführungsphse E1 Freitg, 0. September 016 Zeit : 90 Minuten Nme :!!! Dokumentieren Sie lle Ansätze und Zwischenrechnungen!!! Teil A (ohne
1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg
Arithmetik Lösungen Lö. Kpitel: Arithmetik. Ergenisse mit und ohne Lösungsweg Zu Aufge.: ) 7 ist eine rtionle Zhl, d sie sich ls Bruch us zwei gnzen Zhlen (Nenner 0) drstellen lässt: 7 7. 6 ) Eenso, denn
STRATEGIEPAPIER für Abschlussprüfungen
.) Gleichungen: STRATEGIEPAPIER für Aschlussprüfungen.) normle Gleichungen : Auflösen nch (oder einer nderen Vrilen) Bestimmen der Lösungsmenge (L). Beispiel: + + / Zusmmenfssen + / + + / 9 / : { } L.)
Grundwissen. Die Menge der reellen Zahlen 0 =0. Beispiele
Grundwissen Klsse 9 Die Menge der reellen Zhlen Die Umkehrung des Qudrierens wird für nicht negtive Zhlen ls Ziehen der Wurzel oder Rdizieren ezeichnet. Die Qudrtwurzel us (kurz: Wurzel us ) ist dei die
Abiturprüfung Mathematik 13 Technik A I - Lösung mit CAS
GS 0.06.207 - m7_3t-_lsg_cas_gs.pdf Abiturprüfung 207 - Mthemtik 3 Technik A I - Lösung mit CAS Teilufgbe Gegeben sind die Funktionen f mit f ( ) Definitionsmenge D f IR. mit IR \ {0} und der e Teilufgbe.
lokales Maximum lokales u. globales Minimum
6 Extrempunte Deinition: Eine Funtion : x (x) ht n der Stelle x ID ein loles (reltives) Mximum/Minimum, wenn die Funtionswerte in einer beliebig leinen Umgebung von x leiner/größer ls n dieser Stelle sind
Brückenkurs Lineare Gleichungssysteme und Vektoren
Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem
Basistext Funktionen. Eine Funktion f ordnet jedem Element x aus einer Definitionsmenge D f genau ein Wert y zu.
Basistext Funktionen Definition Eine Funktion f ordnet jedem Element x aus einer Definitionsmenge D f genau ein Wert y zu. Man schreibt: f: x -> y mit y = f(x) Die Wertemenge einer Funktion f besteht aus
Wertetabelle : x 0 0,5 1 2 3 4 0,5 1. y = f(x) = x 2 0 0,25 1 4 9 16 0,25 1. Graph der Funktion :
Quadratische Funktionen ================================================================= 1. Die Normalparabel Die Funktion f : x y = x, D = R, heißt Quadratfunktion. Wertetabelle : x 0 0,5 1 3 4 0,5 1
Aufgabensammlung: Vertiefung der Schulmathematik 1.1 Handelt es sich bei den folgenden Zuordnungen um Funktionen? Begründen Sie ihre Entscheidung.
Fkultät für Mthemtik Cmpus Essen Wielnd Wilzek.8.-.9.06 Aufgensmmlung: Vertiefung der Schulmthemtik. Hndelt es sich ei den folgenden Zuordnungen um Funktionen? Begründen Sie ihre Entscheidung. ) Person
ARBEITSBLATT 5L-11 BERECHNEN VON RAUMINHALTEN
Mthemtik: Mg. Schmid Wolfgng+LehrerInnentem ) Rottion um die -Achse ARBEITSBLATT 5L- BERECHNEN VON RAUMINHALTEN Es geht hier um folgende Aufgenstellung. Eine gegeene Funktion f() soll in einem estimmten
ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE
Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-CHSE Wie wir die Fläche zwischen einer Funktion und der -chse erechnen, hen wir rechentechnische ereits geklärt.
6. Quadratische Gleichungen
6. Qudrtische Gleichungen 6. Vorbemerkungen Potenzieren und Wurzelziehen, somit uch Qudrieren und Ziehen der Qudrtwurzel, sind entgegengesetzte Opertionen. Sie heben sich gegenseitig uf. qudrieren Qudrtwurzel
Berechnung von Flächen unter Kurven
Berechnung von Flächen unter Kurven Es soll die Fläche unter einer elieigen (stetigen) Kurve erechnet werden. Dzu etrchten wir die (sog.) Flächenfunktion, mit der die zu erechnende Fläche qusi ngenähert
Grundwissen Mathematik 8
Grundwissen Mthemtik 8 Proportionle Zuordnung Gehört bei einer Zuordnung zweier Größen zu einem Vielfchen der einen Größe ds gleiche Vielfche der nderen Größe, so heißt sie proportionle Zuordnung. Die
R. Brinkmann Seite Aufgabe Die Gerade g verläuft durch die Punkte P 4 3,5 und P 2,5 1.
R. Brinkmnn http://brinkmnn-du.de Seite 9.09.0 Lösung linere Funktionen Teil IX en: A A A A Die Gerde g verläuft durch die Punkte P,5 und P,5. 5 Die Gerde h verläuft durch die Punkte P( 5,5 ) und P. Wie
1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg
Arithmetik Lösungen Lö. Kpitel: Arithmetik. Ergenisse mit und ohne Lösungsweg Zu Aufge.: 7 ist eine rtionle Zhl, d sie sich ls Bruch us zwei gnzen Zhlen (Nenner 0) drstellen lässt: 7 7. 6 Eenso, denn 5?
QUADRATISCHE FUNKTIONEN
QUADRATISCHE FUNKTION DARSTELLUNG MIT DER FUNKTIONSGLEICHUNG Allgemeine Form - Vorzeichen von a gibt an, ob die Funktion nach oben (+) oder unten (-) geöffnet ist. Der Wert (Betrag) von gibt an, ob die
Eine Parabel dritten Ordnung die symmetrisch zum Ursprung ist, hat in dem Punkt P( 2 6) eine Tangente, die parallel zur Geraden y = x + 1 ist.
Aufge Eine Prel dritten Ordnung die symmetrisch zum Ursprung ist, ht in dem Punkt P 6 eine Tngente, die prllel zur Gerden y ist Bestimmen Sie die Gleichung dieser Prel Die Funktion f ist durch die Prel
2010 A I Lösung. a IR. 1.1 Ermitteln Sie in Abhängigkeit von a die Anzahl, Lage und Vielfachheiten der Nullstellen von f P 4. so, dass der Punkt.
00 A I Lösung.0 Gegeben sind die reellen Funktionen f : x x x x mit ID f IR.. Ermitteln Sie in Abhängigkeit von die Anzhl, Lge und Vielfchheiten der Nullstellen von f. IR und ( BE) f x x x x 0 x 0; x ;
Flächenberechnung. Aufgabe 1:
Flächenerechnung Aufge : Berechnen Sie den Flächeninhlt zwischen dem Funktionsgrphen und der -Achse in den Grenzen von is von: ) f() = ) f() = - Skizzieren Sie die Funktionsgrphen und schrffieren Sie die
Differenzial- und Integralrechnung III
Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in
1 Kurvendiskussion /40
009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.
F u n k t i o n e n Potenzfunktionen
F u n k t i o n e n Potenzfunktionen Die Kathedrale von Brasilia steht in der brasilianischen Hauptstadt Brasilia wurde von Oscar Niemeyer (*907 in Rio de Janeiro). Die Kathedrale von Brasilia besteht
6-1 Elementare Zahlentheorie. mit 1 b n und 0 a b (zusammen mit der Ordnung ) nennt man die n-te Farey-Folge, zum Beispiel ist
6- Elementre Zhlentheorie 6 Frey-Folgen Die Menge F n der rtionlen Zhlen mit n und (zusmmen mit der Ordnung ) nennt mn die n-te Frey-Folge, zum Beispiel ist F = { < < < < < < < < < < } Offensichtlich gilt:
Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf:
Aufgbe : ) Lösen Sie die folgenden Gleichungen nch uf: = kein Problem einfch die Wurel iehen und ds ± nicht vergessen.. = = ±, b) + 5 = 0 Hier hben wir bei jedem Ausdruck ein, lso können wir usklmmern:
4. Lineare Gleichungen mit einer Variablen
4. Linere Gleichungen mit einer Vrilen 4. Einleitung Werden zwei Terme einnder gleichgesetzt, sprechen wir von einer Gleichung. Enthlten eide Terme nur Zhlen, so entsteht eine Aussge, die whr oder flsch
5.5. Integralrechnung
.. Integrlrechnung... Berechnung von Integrlen mit der Streifenmethode Definition: Gegeen seien, R mit < und eine uf [; ] stetige Funktion f. Der orientierte Inhlt der Fläche, die durch die -Achse, ds
Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999
Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden
Strophoiden DEMO. Text Nr Stand 17. April 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.
Strophoiden Tet Nr. 5415 Stnd 17. April 016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5415 Strophoiden Vorwort Strophoiden sind wenig beknnte Kurven. Sie werden über eine
1.7 Inneres Produkt (Skalarprodukt)
Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ
Arkus-Funktionen. Aufgabensammlung 1
ANALYSIS Arkus-Funktionen Aufgbensmmlung 1 Dtei Nummer 4730 Stnd: 15. November 017 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 4730 Aufgbensmmlung Arkusfunktionen Aufgbe 1 (Lösung Seite
5) Laplace-Wahrscheinlichkeit eines Zufallsexperiments
von Jule Menzel, 12Q4 5) Lplce-Whrscheinlichkeit eines ufllsexperiments Ergenis ω 1 ω 2 ω 3 ω 4 ω 1 Ω ω 2 ω 3 ω 4 Ergenismenge ist ein Ereignis ist Teilmenge von Ω kurz: c Ω Ws ist ein Ereignis? Beispiel:
Die gleiche Lösung erhält man durch Äquivalenzumformung:
R. Brinkmann http://brinkmann-du.de Seite 3..0 Quadratische Gleichungen Reinquadratische Gleichung Lösen Sie die Gleichung x = 5 Durch probieren erhält man die Lösung: x = 5 oder x = 5 Denn x = 5 = 5 oder
MC-Serie 12 - Integrationstechniken
Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz
Relationen: Äquivalenzrelationen, Ordnungsrelationen
TH Mittelhessen, Sommersemester 202 Lösungen zu Üungsltt 9 Fchereich MNI, Diskrete Mthemtik 2. Juni 202 Prof. Dr. Hns-Rudolf Metz Reltionen: Äquivlenzreltionen, Ordnungsreltionen Aufge. Welche der folgenden
Mathematik schriftlich
WS KV Chur Abschlussprüfungen 00 für die Berufsmtur kufmännische Richtung Mthemtik schriftlich LÖSUNGEN Kndidtennummer Nme Vornme Dtum der Prüfung Bewertung mögliche erteilte Punkte Punkte. Aufgbe 0. Aufgbe
Die Geschwindigkeit v ist die lokale Änderungsrate des Ortes x d.h. v = lim. Zeit 3s 7s Entfernung vom Bezugspunkt. 3s 2 m = 6 m 6 m + 1 Bezugspunkt s
6 Integrlrechnung ================================================================== 6.1 Lokle Änderungsrte und Gesmtänderung ------------------------------------------------------------------------------------------------------------------
D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9
D-MAVT/D-MATL Anlysis I HS 26 Dr. Andres Steiger Lösung - Serie 9. MC-Aufgben (Online-Abgbe). Es sei f die Funktion f() = e + 7. Welche der folgenden Funktionen sind Stmmfunktionen von f? () g() = 2 2
Grundwissen Mathematik Klasse 9 Übungsaufgaben
Grundwissen Mthemtik Klsse 9 Übungsufgben Rechnen mit Wurzeln:. Rdiziere so weit wie möglich! 7 8 b c d) e) ( b ) f) b c ( ) g) b b. Berechne! ( 8 8 )( 7 ) 7 9 9. Mche den Nenner rtionl und vereinfche
Die Keplersche Fassregel
Die Keplersche Fssregel K. Gerer Bei vielen Aufgen, z.b. ei der Lösung von Differentilgleichungen, tucht die Schwierigkeit uf, dss Integrtionen nicht durchgeführt werden können. So können z.b. die folgenden
Funktionen. Kapitel 6. Reelle Funktion. Graph einer Funktion. Beispiel. Beispiel. Zeichnen eines Graphen. Bijektivität
Reelle Funktion Kpitel 6 Funktionen Reelle Funktionen sind Abbildungen, in denen sowohl die Definitionsmenge ls uch die Wertemenge Teilmengen von R üblicherweise Intervlle) sind. Bei reellen Funktionen
Kapitel 7. Integralrechnung für Funktionen einer Variablen
Kpitel 7. Integrlrechnung für Funktionen einer Vriblen In diesem Kpitel sei stets D R, und I R ein Intervll. 7. Ds unbestimmte Integrl (Stmmfunktion) Es sei f : I R eine Funktion. Eine differenzierbre
Quadratische Gleichungen und Funktionen
Qudrtische Gleichungen und Funktionen Bei einer udrtischen Gleichung kommt die Unbeknnte Vrible mindestens einml in der.potenz vor, ber in keiner höheren Potenz. b c udrtischer Anteil linerer Anteil konstnter
Analytischen Geometrie in vektorieller Darstellung
Anltische Geometrie Anltischen Geometrie in vektorieller Drstellung Anltische Geometrie Gerden Punkt-Richtungs-Form () Mit Hilfe von Vektoren lssen sich geometrische Ojekte wie Gerden und Eenen eschreien
+ 2 2 = 0 = 1 ± Die drei Nullstellen. x x x 2,3
Hilfsmittelfreier Teil. Beispielufgbe 1 zur Anlysis Gegeben ist die Funktion f mit der Gleichung f ( x ) = x 3 + x x. Die zeigt den Grphen der Funktion f. (1) Berechnen Sie lle Nullstellen der Funktion
TECHNISCHE UNIVERSITÄT MÜNCHEN
TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufge 69. Quizz Integrle. Es sei Höhere Mthemtik für Informtiker II (Sommersemester
Aufgabe 1 mit Lösung. Stelle x x + 2a x 2a VZW EPArt Wert
Aufgbe mit Lösung 4 ( 8 ) ( 4 8 ) f x = x x x + x= f x Achsensymmetrie + =. 4 lim x x + : Fll = c+ d 0! < 0 + x ±... Extrempunkte = = =. NB: f ( x) ( 4x 6 x) x( x ) x( x ) x MESt ( f ) { ;0;}. HB: 0 =
Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele
Themen Direkte Proportionlität Eigenschften Besonderheiten - Beispiele Zwei Größen und y heißen direkt proportionl, wenn gilt: Zum k-fchen Wert von gehört der k-fche Wert von y; Der Quotient q = y ht für
1 Folgen. 1. Februar 2016 ID 03/455. a) Folgende Folge ist gegeben: a n+1 = 7a n 12a n 1, a 0 = 1, a 1 = 0 (1) Charakteristisches Polynom:
Tutorium Ynnick Schrör Lösung zur Bonusklusur vom WS 1/13 [email protected] 1. Februr 016 ID 03/455 1 Folgen ) Folgende Folge ist gegeben: n+1 7 n 1 n 1, 0 1, 1 0 (1) Chrkteristisches Polynom: q 7q
Es berechnet die Fläche zwischen Kurve und x-achse.
1. Welche Idee steckt hinter dem Integrl? 2. Welche geometrische Bedeutung ht ds Integrl? 3. Wie erechnet mn ein Integrl? Aufsummieren unendlich vieler infinitesiml kleiner Beiträge, die lle die Form eines
Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung
Herzlich willkommen zur der Um sich schnell innerhlb der c. 50.000 Mthemtikufgben zu orientieren, benutzen Sie unbedingt ds Lesezeichen Ihres Acrobt Reders: Ds Icon finden Sie in der links stehenden Leiste.
G2 Grundlagen der Vektorrechnung
G Grundlgen der Vektorrechnung G Grundlgen der Vektorrechnung G. Die Vektorräume R und R Vektoren Beispiel: Physiklische Größen wie Krft und Geschwindigkeit werden nicht nur durch ihre Mßzhl und ihre Einheit,
Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie -
Für den Mthe GK, Henß - Linere Alger und nlytische Geometrie - Bis uf die Astände ist jetzt lles drin.. Ich h noch ne tolle Seite entdeckt mit vielen Beispielen und vor llem Aufgen zum Üen mit Lösungen..
Anforderungsniveau Prüfungsteil Sachgebiet digitales Hilfsmittel erhöht B Analysis CAS
Gemeinsme Abiturufgbenpools der Länder Aufgbensmmlung Aufgbe für ds Fch Mthemtik Kurzbeschreibung Anforderungsniveu Prüfungsteil Schgebiet digitles Hilfsmittel erhöht B Anlysis CAS 1 Aufgbe 1 Gegeben ist
1 Analysis Kurvendiskussion
1 Analysis Kurvendiskussion 1.1 Allgemeingültige Betrachtungen Die folgenden aufgezeigten Betrachtungen und Rechenschritte gelten für alle Arten von Funktionen. Funktion (z.b. Polynom n-ten Grades) Schreibweise
Zentrale schriftliche Abiturprüfung Mathematik. Grundkurs
Ministerium für Bildung, Jugend und Sport Zentrle schriftliche Abiturprüfung 2006 Aufgbenstellungen A1 und A2 (Whl für Prüflinge) Mthemtik für Prüflinge Aufgbenstellungen A3 (siehe Extrbltt) (wird durch
7.9A. Nullstellensuche nach Newton
7.9A. Nullstellensuche nch Newton Wir hben früher bemerkt, dß zur Auffindung von Nullstellen einer gegebenen Funktion oft nur Näherungsverfhren helfen. Eine lte, ber wirkungsvolle Methode ist ds Newton-Verfhren
R. Brinkmann Seite Brüche, Terme und lineare Funktionen zur Vorbereitung einer Klassenarbeit. b)
R. Brinkmnn http://brinkmnn-du.de Seite 9.09.0 Lösungen Linere Funktionen VBKA I Brüche, Terme und linere Funktionen zur Vorbereitung einer Klssenrbeit E E ) + = 8 0 0 ) 5 5 = 6 b) 7 9 = 8 7 56 b) 5 :
2.2. Aufgaben zu Figuren
2.2. Aufgen zu Figuren Aufge 1 Zeichne ds Dreieck ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erechne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und
Kleine Algebra-Formelsammlung
Immnuel-Knt-Gymnsium Heiligenhus Gierhrt Kleine Alger-Formelsmmlung Mittelstufe (is Klsse 0) Drgestellt sin ie wichtigsten Fkten un Gesetze, woei iverse Ausnhmeregeln wie z.b. s Verot er Division urch
mathphys-online Abschlussprüfung Berufliche Oberschule 2010 Mathematik 12 Nichttechnik - A II - Lösung
mthphys-online Abschlussprüfung Berufliche Oberschule Mthemtik Nichttechnik - A II - Lösung Teilufgbe. Der Grph G f einer gnzrtionlen Funktion f dritten Grdes besitzt den Extrempunkt E( / ), 7 schneidet
Kegelschnitte. Geschichte der Kegelschnitte
Kegelschnitte Kegelschnitte ds sind geometrische Figuren, die sich ergeen, wenn mn einen Kegel und eine Eene einnder schneiden lässt. Wir unterscheiden 3 Tpen von Kegelschnitten: Prel, Ellipse und Hperel.
(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)!
0.. Lösung der Aufgbe. Wir schreiben f = sup{ f : [0, ]}. Für ξ ]0, [ und n N gibt es nch dem Stz von Tlor ein c ]ξ, [ so, dss: f = fξ + n ξ k f k ξ + k! k= Aus der Ttsche, dss f k 0 für lle k N ist, folgt
