s n =a 1 1 qn 1 q Für unendliche Reihen mit q 1 gilt: s=a 1

Größe: px
Ab Seite anzeigen:

Download "s n =a 1 1 qn 1 q Für unendliche Reihen mit q 1 gilt: s=a 1"

Transkript

1 Fiazmathematik Folge Arithmetische Geometrische Rekursiosformel a 1 =a d a 1 =a q N-tes Glied a =a 1 1 d a =a 1 q 1 N-te Partialsummer Prozetreche Grudwert, Bezugsgrösse Prozetfuss Prozetsatz i p s = 2 a 1 a K i= p 100 Prozetwert Z Z =Ki Zisreche Begriffe Ziszuschlagtermie Zisperiode s =a 1 1 q 1 q Für uedliche Reihe mit q 1 gilt: s=a q Zeitpukte, zu dee Zise fällig werde. Zeitraum zwische zwei Ziszuschlagtermie Nachschüssige (dekursive) Verzisug Zis am Ede der Kapitalüberlassug bezahlt Vorschüssige (atizipative) Verzisug Zis zu Begi der Kapitalüberlassug bezahlt Eifache Verzisug Diskotierug Zis wird Kapital zugeschlage, aber icht verzist Afagskapital aus Edwert bereche. Iflatiosrate Eifache/Lieare Verzisug Afagskapital K 0 (Diskotierug) K K 0 = 1 i Edwert K K =K 0 1 i Zissatz i Laufzeit i= K K 0 K 0 = K K 0 K 0 i

2 Äquivalezprizip Mittlerer Zahlugstermi t Ratezahlug L=GL We icht explizit Ausgemacht, gilt als Stichtag das Datum der letzte Zahlug t = K j t K j K = Nachschüssig t = m 1 2 Vorschüssig t = m 1 2 K j K j 1 i t j =K 1 i t K =Rm 1 i m 1 2m K =Rm 1 i m 1 2m Edbetrag K, Rate R, Azahl Rate m Ziseszis Edkapital K, K t K =K 0 1 i Verdoppelugszeit T Äquivalezprizip Effektiver Zissatz i Redite Gemischte Verzisug (uterjährig liear, gaze Jahre expoetiell) Uterjährige Verzisug K =K 0 q Tageschreibweise K t = K 0 1 i t / T = l 2 l 1 p 100 L=GL Stichtag frei wählbar i= 1 i k 1 i=1 K t = K 0 1 i t i N 1 i t mit t=t 1 N t 2 K =K 0 1 i m m Laufzeit i Jahre m Azahl Zistermie pro Jahr i omieller Jahreszissatz Periodezissatz i p =i rel = i m

3 Mittlerer Zahlugstermi / Fälligkeitstermi eier eimalige Zahlug Duratio / Mittlere Bidugsdauer Duratio festverzislicher Aleihe = D= r lg [ j =1 r t =1 r t =1 r K j ] lg[ lg 1 i t Z t 1 i t Z t 1 i t Barwert i t fälliger Zahlug K j 1 i j ] Z t 1 i t D= 1 i K 1 i 1 T 1 i i i K 1 i [ 1 i 1 1] Ti D= 1 i K T 1 i i i K [ 1 i 1] T i i Marktzissatz Laufzeit T Rückzahlugsbetrag K Kupo (Nomialwert * Nomialzis) Stetige Verzisug Edkapital K t K t = K 0 e i t Äquivalezbezieh ug Effektiver Aufzisfaktor i eff =e i s 1 Stetiger Aufzisfaktor i s =l 1 i eff Rete Barwert B Sparkasseformel B= R q 1 q (achschüssig) B '= R q 1 (vorschüssig) q 1 B '=B q K =K 0 q ±R q 1 K = K 0 q ± R q q 1 (achschüssig) (vorschüssig) Soderfall: Kapital mit Rate aufbrauche ( K =0 ) 1 lg 1 i K 0 R = lg q

4 Ewige Rete Aufgeschobee Rete Uterbrochee Rete Spezialfälle B= R B '= R q (achschüssig) (vorschüssig) Barwertfaktore ä = 1 a q k = q k 1 q k 1 k Jahre zwische Zahluge B= R 1 q 1 qm m Azahl Zahluge m + Wartezeit B= R R... R R q k 1 q k 2 q k 1 q k k 1 bis k sid jee Periode, i welche Zahluge stattfide. (ur gültig, we das Jahr i m gleich grosse Teile zerlegt) Zahlug Verzisug Edwert K / Barwert B Rete, uterjährig, achschüssig Rete, uterjährig, vorschüssig Rete, jährlich, achschüssig Jährlich (Jahresede) Jährlich (Jahresede) uterjährig K =R [m i m ] q m Azahl uterjähriger Zahluge Azahl Jahre K =R [m i m ] q m Azahl uterjähriger Zahluge Azahl Jahre K m = R q m 1 q m 1 m Azahl uterjähriger Zistermie Azahl Jahre Rete, jährlich, vorschüssig uterjährig q=1 i m K m = R q m q m 1 q m 1 B= K m q m m Azahl uterjähriger Zistermie Azahl Jahre q=1 i m

5 Rete, uterjährig, achschüssig Rete, uterjährig, vorschüssig uterjährig uterjährig K m = R q m 1 B= K m q = R m q m 1 m q m Azahl uterjähriger Zistermie Azahl Jahre q=1 i m K m = Rq q m 1 B= K m q = R m m q m 1 q 1 m Azahl uterjähriger Zistermie Azahl Jahre q=1 i m Auitätetilgug Afagsschuld S 1 S1 = E q N Edwert E Auität / Rate a=r Jährlich gleichbleibede Rückzahlug S 1 =r q N 1 q N S 1 =t 1 qn 1 E=r q N 1 a=s 1 q N q N 1 a=s 1 1 a N 1 a N 1 a N = qn q N 1 Restschuld r r =S 1 q r q 1 r =t 1 qn q Tilgug t t =t 1 q 1 Summe aller Zise Dauer N Z j t 1 =a S 1 i N Z j = N a S 1 N = l 1 S 1 r l q

6 Effektivzisermittlug...bei Darlehe...bei Ratekredite Dq T =R qt 1 Darlehe D, Rate R, Laufzeit T T T 12 K 0 q Eff =r q 12 1 Rate r= K 0 T K b 0 T K i 0 Ratekredit K 0, Zissatz p.m. i Eim. Bearbeitugsgebühr % b, Laufzeit i M T Ivestitiosrechug Kapitalwertmethode lohed, we KW>1 KW = A 0 L 1 i S Iterer Ertragssatz-Methode Kombiatorik S=Ü 1 i t =Ü 1 1 i t=1 i Aschaffugskoste A 0, Liquidatioswert L Überschuss Ü, Dauer KW = A 0 L q S 1 t q S=Ü q t t= Ü 1 Ü kost. Aschaffugskoste A 0, Liquidatioswert L Überschuss Ü, Dauer Permutatio (Aordugsprobleme) Permutatio Azahl Möglichkeite, verschiedee Elemete azuorde. Permutatio mit Wiederholuge Azahl Möglichkeite, Elemete azuorde, we we k Elemete gleich sid.!= P, k =! k!! P, k = k 1! k 2! k 3!...

7 Stichprobe (Auswahlprobleme) Geordet (Reihefolge relevat) Ohe Zurücklege (Elemet ka ur 1 mal vorkomme) V k =! k! Mit Zurücklege (Elemet ka mehrmals vorkomme) V k = k Ugeordet (Reihefolge egal) C k = k =! k! k! N = r k 1 k Wahrscheilichkeitsrechug Ereigisse Ergebisraum S S={e 1, e 2,...,e 1,e } Elemetarereigis e i e 1 S Sicheres Ereigis A A=S Umögliches Ergebis S ={} Ereigis A S Gegeereigis A A A= S A A= Uvereibare Ereigisse A, B S A B= A ud B A B A oder B A B p A p B p A B Weder A och B A B p A p B p A B A B Nicht A ud B zusamme A B 1 p A p B p A B A B 1 p A p B p A B

8 B, aber icht A A B B oder icht A A B Häufigkeitsfuktio Umfag der Stichprobe N Absolute Häufigkeit e i relative Häufigkeit h e i h e i = e i, 0 h e i 1 N h S =1, h =0, h A h A =1 Wahrscheilichkeit Mächtigkeit eies Ereigisses Mögliche Fälle Güstige Fälle m g E Wahrscheilichkeit P E P E h E P= E S = g m P E 1 P E 2... P E 1 P E =1 Bedigte Wahrscheilichkeit p A/ B Bedigte Wahrscheilichkeit p A/ B (bei uabhägige Ereigisse) Totale Wahrscheilichkeit Revidierte Wahrscheilichkeit (Satz vo Bayes) p A p B j / A p A/ B = p A B p B p A/ B = p A p B p A = i=1 B i =S i=1 p B j / A = p B i p A/ B i i=1...midestes eimal... p E 1 p E 1 =1 p E p B j p A/ B j p B i p A/ B i

9 Rechetipps 0!=1 1!=1 2!=2 3!=6 4!=24 Wahrscheilichkeit, dass vo Elemete midestes k Elemete fuktioiere bei Wahrscheilichkeit p 1!= 1! x x =1 x y = x x y x y 1 x y = x 1 y 0 x 1 x 2 x... x x 1 x x =2 x p Z = i=k i pi 1 p i Darstellugshilfe

Mathematische Grundlagen

Mathematische Grundlagen olad Eicheberger Matheatische Grudlage Folge aufzählede For a 1, a 2, a 3,, a k, a a 1 a k a das erste Glied der Zahlefolge, das allgeeie Glied der Zahlefolge, das letzte Glied der Zahleege letztes Glied

Mehr

Leseprobe. Wolfgang Eichholz, Eberhard Vilkner. Taschenbuch der Wirtschaftsmathematik ISBN:

Leseprobe. Wolfgang Eichholz, Eberhard Vilkner. Taschenbuch der Wirtschaftsmathematik ISBN: Leseprobe Wolfgag Eichholz, Eberhard Vilker Taschebuch der Wirtschaftsmathematik ISN: 978-3-446-41775-5 Weitere Iformatioe oder estelluge uter http://www.haser.de/978-3-446-41775-5 sowie im uchhadel. Carl

Mehr

Taschenbuch der Wirtschaftsmathematik

Taschenbuch der Wirtschaftsmathematik Taschebuch der Wirtschaftsmathematik vo Wolfgag Eichholz, Eberhard Vilker 4., überarbeitete ud erweiterte Auflage Haser Müche 7 Verlag C.H. eck im Iteret: www.beck.de ISN 978 3 446 41117 3 Zu Ihaltsverzeichis

Mehr

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i 1.1. Jährliche Retezahluge 111 1.1.1. Vorschüssige Retezahluge Ausgagspukt: Über eie edliche Zeitraum wird aus eiem Kapital (Retebarwert RBW v,i ), das ziseszislich agelegt ist, jeweils zu Begi eies Jahres

Mehr

Die Größe G nennt man Grundwert, p Prozentsatz und P Prozentwert, so dass sich die Beziehung

Die Größe G nennt man Grundwert, p Prozentsatz und P Prozentwert, so dass sich die Beziehung Fiazmathematik Prozetrechug Beispiel 1: (Siehe Aufgabesammlug) Eier Zeitugsmeldug ist zu etehme, dass Uterehme A seie Umsatz im Jahr 2004 um 4% gegeüber dem Umsatz vo 2003, der 4,3 Mio. Euro betrug, steiger

Mehr

(Grob-) Gliederung. B Finanzmathematische Grundlagen C Zinsrechnungen D Rentenrechnungen E Tilgungsrechnungen F Kurs und Rendite

(Grob-) Gliederung. B Finanzmathematische Grundlagen C Zinsrechnungen D Rentenrechnungen E Tilgungsrechnungen F Kurs und Rendite (Grob-) Gliederug A Eiführug Reterechuge B Fiazmathematische Grudlage C Zisrechuge D Reterechuge E Tilgugsrechuge F Kurs ud Redite Dr. Alfred Brik Dr. A. Brik Istitut für Wirtschafts- ud Sozialwisseschafte

Mehr

Kennzeichen: Die Berechnungsbasis bleibt während der gesamten Verzinsungsdauer unverändert (lineares Wachstum)

Kennzeichen: Die Berechnungsbasis bleibt während der gesamten Verzinsungsdauer unverändert (lineares Wachstum) 5. Fiazmathematik 5.1. Zis- ud Ziseszisrechug 5.1.1. Eifache Verzisug Kezeiche: Die Berechugsbasis bleibt währed der gesamte Verzisugsdauer uverädert (lieares Wachstum) Die Verzisug wird ach dem Zeitpukt

Mehr

III. Grundlagen der Lebensversicherungsmathematik III.2. Grundlagen der Zinsrechnung

III. Grundlagen der Lebensversicherungsmathematik III.2. Grundlagen der Zinsrechnung III. Grudlage der Lebesversicherugsmathematik III.2. Grudlage der Zisrechug Uiversität Basel Herbstsemester 2015 Dr. Ruprecht Witzel ruprecht.witzel@aktuariat-witzel.ch www.aktuariat-witzel.ch III.2. Grudlage

Mehr

Finanzmathematik. = K 0 (1+i) n = K 0 q n

Finanzmathematik. = K 0 (1+i) n = K 0 q n Fiazmathematik 1. Kapitalverzisug: Beispiel 1: Ei Kapital vo 3000 wird mit 5% verzist. Wie viel bekommt ma am Ede eies Jahres samt Zise? Die Zise Z werde so berechet: Z = K 0 p/100 = 3000 5/100 = 0. Das

Mehr

) 100. C. Zinsrechnungen Lösungen. C. Zinsrechnungen Lösungen ... Arithm. Reihe mit a 1 = 0,05 und a n = 0,05 - (n-1) 0,001

) 100. C. Zinsrechnungen Lösungen. C. Zinsrechnungen Lösungen ... Arithm. Reihe mit a 1 = 0,05 und a n = 0,05 - (n-1) 0,001 Aufgabe C/4 Eie apitalalage verzise sich im erste Jahr mit 5 %, daach immt der Zisfuß jährlich um,1 Prozetpukte ab. Nach wie viele Jahre verdoppelt sich das apital bei jährlicher Verzisug mit a eifache

Mehr

Finanzmathematik. = K 0 (1+i) n = K 0 q n

Finanzmathematik. = K 0 (1+i) n = K 0 q n Fiazmathematik 1. Kapitalverzisug: Beispiel 1: Ei Kapital vo 3000 wird mit 5% verzist. Wie viel bekommt ma am Ede eies Jahres samt Zise? Die Zise Z werde so berechet: Z = K 0 p/100 = 3000 5/100 = 0. Das

Mehr

Aufgabe 4.2. (a) lim 7 + = (b) lim. ( 2n 3 6n 2 + 3n 1. (c) lim n n 2 ( 1) n n 3) = lim. (d) n n + 1. lim. (e) n n. Aufgabe 4.3.

Aufgabe 4.2. (a) lim 7 + = (b) lim. ( 2n 3 6n 2 + 3n 1. (c) lim n n 2 ( 1) n n 3) = lim. (d) n n + 1. lim. (e) n n. Aufgabe 4.3. Folge Eie Folge ist eie Aordug vo reelle Zahle. Die eizele Zahle heiße Glieder der Folge. Kapitel 4 Folge ud Reihe Formal: Eie Folge ist eie Abbildug a : N R, a Folge werde mit a i i oder kurz a i bezeichet.

Mehr

Kapitel 4. Folgen und Reihen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 4 Folgen und Reihen 1 / 38. a : N R, n a n

Kapitel 4. Folgen und Reihen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 4 Folgen und Reihen 1 / 38. a : N R, n a n Kapitel 4 Folge ud Reihe Josef Leydold Auffrischugskurs Mathematik WS 2017/18 4 Folge ud Reihe 1 / 38 Folge Eie Folge ist eie Aordug vo reelle Zahle. Die eizele Zahle heiße Glieder der Folge. Formal: Eie

Mehr

Kombinatorik. Systematisches Abzählen und Anordnen einer endlichen Menge von Objekten unter Beachtung vorgegebener Regeln.

Kombinatorik. Systematisches Abzählen und Anordnen einer endlichen Menge von Objekten unter Beachtung vorgegebener Regeln. Systematisches Abzähle ud Aorde eier edliche Mege vo Objekte uter Beachtug vorgegebeer Regel Permutatioe Variatioe Kombiatioe Permutatioe: Eie eieideutige (bijektive) Abbildug eier edliche Mege i sich

Mehr

Übungsblatt Folgen, Reihen, Finanzmathematik

Übungsblatt Folgen, Reihen, Finanzmathematik Tutorium zu Mathematik für WFB Übugsblatt Folge, Reihe, Fiazmathematik Aufgabe (Grezwerte vo Folge) Bestimme Sie die Grezwerte der Folge ( ), N 4 b) c) d) e) si( ) f) a () g) a cos( ) Aufgabe (4 ) 4 b)

Mehr

Lösungen der Aufgaben zur Selbstüberprüfung

Lösungen der Aufgaben zur Selbstüberprüfung Lösuge der Aufgabe zur Selbstüberprüfug 1. a) (a) = {(I, - 3), (2, - 3/2), (3, -1),..., (50, - 3/50),... ) (a) = ( -3, - 3/2, - 1,..., -3/50,... ) (a) ist streg mooto wachsed, de - 3/ < - 3/( + 1), das

Mehr

a) p% = 3% b) p% = 7% c) p% = 4,2% d) p% = 3,6% e) p% = 5,3% f) p% = 5,5% g) p% = 6,75% h) p% = 2,2%

a) p% = 3% b) p% = 7% c) p% = 4,2% d) p% = 3,6% e) p% = 5,3% f) p% = 5,5% g) p% = 6,75% h) p% = 2,2% Berufskolleg aufmäische Schule des reises Düre Mathematik-Übugsaufgabe Thema: Ziseszisrechug Schulform: Höhere Hadelsschule Ziseszisrechug eimalige Zahluge 1. Löse die Formel = 0 q ach 0, q bzw. auf. 2.

Mehr

Finanzmathematische Modelle

Finanzmathematische Modelle Fiazmathematische Modelle Zum Zeitpukt der Erstellug dieses apitels Afag 7 war das absolute Zistief. Bei Guthabezissätze i der Größeordug vo, % macht die Betrachtug vieler asoste wichtiger fiazmathematischer

Mehr

Auf welches Endkapital wächst ein Kapital von 4352,40 bei 3,5 % Zinsverzinsung in 8 Jahren an?

Auf welches Endkapital wächst ein Kapital von 4352,40 bei 3,5 % Zinsverzinsung in 8 Jahren an? 2--3 Übugsblatt Lösuge. Aufgabe: Auf welches Edkapital wächst ei Kapital vo 432,4 bei 3, % Zisverzisug i Jahre a? K K q geg: K = 432,4 ; p = 3,; = Jahre ges: K K 432,4,3 K 73,2 Das Edkapital ach Jahre

Mehr

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren Forelsalug zur Fiazatheatik 1. Eifache Zisrechug (lieare Verzisug) 1.1 Berechug des Edwerts eier Eialalage bei liearer gazjähriger Verzisug ach Verzisugsjahre p = 1 + = ( 1+ i ) 1 1.2 Berechug des Gegewartswerts

Mehr

7.2 Grundlagen der Wahrscheinlichkeitsrechnung

7.2 Grundlagen der Wahrscheinlichkeitsrechnung 7.2 Grudlage der Wahrscheilichkeitsrechug Ei Ereigis heißt i Bezug auf eie Satz vo Bediguge zufällig, we es bei der Realisierug dieses Satzes eitrete ka, aber icht ubedigt eitrete muss. Def. 7.2.: Ei Experimet

Mehr

Der Wald als Vermögen. und seine finanzmathematische Darstellung

Der Wald als Vermögen. und seine finanzmathematische Darstellung Der Wald als Vermöge ud seie fiazmathematische Darstellug 1. Wald als Vermöge 2. Ziseszisrechug 3. Reterechug 4. Zusammefassug Wald als Vermöge? 1. Wälder sid Quelle vo Eikomme => Vermöge 2. Dadurch sid

Mehr

Formelsammlung. Deskriptive Statistik und Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen

Formelsammlung. Deskriptive Statistik und Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen Formelsammlug Deskriptive Statistik ud Elemetare Wahrscheilichkeitsrechug Prof. Dr. Ralf Rude Statistik ud Ökoometrie, Uiversität Siege Prof. Dr. Ralf Rude - Uiversität Siege I Statistische Grudbegriffe

Mehr

Studiengang Betriebswirtschaft Fach

Studiengang Betriebswirtschaft Fach Studiegag Betriebswirtschaft Fach Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BB-WMT-S-0 / BW-WMT-S-0 Datum..00 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich:

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. Vo der relative Häufigkeit zur Wahrscheilichkeit Es werde 20 Schüler befragt, ob sie ei Hady besitze. Das Ergebis der Umfrage lautet: Vo 20 Schüler besitze 99 ei Hady. Ereigis E: Schüler besitzt ei Hady

Mehr

19. Zinseszinsrechnungen

19. Zinseszinsrechnungen 19. Ziseszisrechuge 19.1 Eileitug Jede Beutzug vo fremdem apital für eie bestimmte Zeitraum ist mit oste verbude. Diese oste, die Zise, etspreche der Etschädigug des apitalehmers a de apitalgeber für die

Mehr

( ) Formelsammlung. Kombinatorik. Permutation: ohne Wiederholung. n! = n (n - 1) (n - 2)... 3 2 1 n= alle Elemente. Permutation: mit Wiederholung

( ) Formelsammlung. Kombinatorik. Permutation: ohne Wiederholung. n! = n (n - 1) (n - 2)... 3 2 1 n= alle Elemente. Permutation: mit Wiederholung Formelsammlug Kombiatori Permutatio: ohe Wiederholug! = ( - 1) ( - 2).... 3 2 1 = alle Elemete Permutatio: mit Wiederholug!! P, = = usw. = gleiche Elemete! 1! K 2! Stichprobe (SP) = geordete Auswahl Geordete

Mehr

Finanzmathematische Formeln und Tabellen

Finanzmathematische Formeln und Tabellen Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,

Mehr

Wahrscheinlichkeit & Statistik

Wahrscheinlichkeit & Statistik Wahrscheilichkeit & Statistik created by Versio: 3. Jui 005 www.matheachhilfe.ch ifo@matheachhilfe.ch 079 703 7 08 Mege als Sprache der Wahrscheilichkeitsrechug, Begriffe, Grudregel Ereigisraum: Ω Ω Mege

Mehr

Studiengang Betriebswirtschaft Modul. Wirtschaftsmathematik Art der Leistung Studienleistung Klausur-Knz. BB-WMT-S Datum

Studiengang Betriebswirtschaft Modul. Wirtschaftsmathematik Art der Leistung Studienleistung Klausur-Knz. BB-WMT-S Datum Studiegag Betriebswirtschaft Modul Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BB-WMT-S-07060 Datum 0.06.007 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede

Mehr

Finanzmathematik - Vortrag

Finanzmathematik - Vortrag Fiazmathematik - Vortrag eterechug 2 Patrick Ammo Dietmar Gierlich 11. Aufgabe Das Vermöge vo A ist mit 1. DM doppelt so hoch wie das Vermöge vo B. A spart jährlich 4. DM achschüssig, währed B 8. DM spart.

Mehr

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Fassug vom 13. Februar 2006 Mathematik für Humabiologe ud Biologe 129 9.1 Stichprobe-Raum 9.1 Stichprobe-Raum Die bisher behadelte Beispiele vo Naturvorgäge oder Experimete

Mehr

Zählterme (Seite 1) Aufgabe: Wie viele Nummernschilder kann es theoretisch im Raum Dresden geben? Wann müsste die 4.Ziffer eingeführt werden?

Zählterme (Seite 1) Aufgabe: Wie viele Nummernschilder kann es theoretisch im Raum Dresden geben? Wann müsste die 4.Ziffer eingeführt werden? Bemerkug: I Mathematik sollte ma keie Fahrpläe verwede, i der Stochastik erst recht icht. Zitat vo S.L. Das Baumdiagramm ist aber fast immer ei geeigetes Hilfsmittel. Produktregel Aufgabe: Wie viele Nummerschilder

Mehr

Demo-Text für Darlehen Bausparverträge. Finanzmathematik Teil 3 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Demo-Text für   Darlehen Bausparverträge. Finanzmathematik Teil 3 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Fiazmathematik Teil 3 Darlehe Bausparverträge Vor allem für die Oberstufe geeiget Text Nr. 18931 Stad: 17. November 2018 FIEDICH W. BUCKEL INTENETBIBLIOTHEK FÜ SCHULMATHEMATIK 18931 Fiazmathematik 3: Darlehe

Mehr

Grundlagen der Finanzmathematik

Grundlagen der Finanzmathematik Otto Praxl Grudlage der Fiazmathematik Eie kurze Eiführug mit Berechugsbeispiele. 2 Otto Praxl: Grudlage der Fiazmathematik, 2. Ausgabe Impressum Verfasser: Otto Praxl. Iteretseite: www.praxelius.de Urheberrecht:

Mehr

Lerneinheit 2: Grundlagen der Investition und Finanzierung

Lerneinheit 2: Grundlagen der Investition und Finanzierung Lereiheit 2: Grudlage der Ivestitio ud Fiazierug 1 Abgrezug zu de statische Verfahre Durchschittsbetrachtug wird aufgegebe Zeitpukt der Zahlugsmittelbewegug explizit berücksichtigt exakte Erfassug der

Mehr

Ausführliche Lösungen

Ausführliche Lösungen usführliche Lösuge,6 8. Lohsteuer: 8,, Lohsteuersatz: 6,7%. a),9 9.9,6 Netto,,6 brutto B Zuschlagsfaktor B gegeüber Zuschlag MWSt..8, Der MWSt-Faktor,6 ka gekürzt werde, der Bruttopreis ist also bei B

Mehr

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v Tao De / Pa JiaWei Ihrig/Pflaumer Fiazmathematik Oldeburg Verlag 1999 1..Ei Darlehe vo. DM soll moatlich mit 1% verzist ud i Jahre durch kostate Auitäte getilgt werde. Wie hoch sid a) die Moatsrate? b)

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brikma http://brikma-du.de Seite 1.0.014 Lösuge zur Biomialverteilug I Ergebisse: E1 E E E4 E E E7 Ergebis Ei Beroulli-Experimet ist ei Zufallsexperimet, das ur zwei Ergebisse hat. Die Ergebisse werde

Mehr

Derivate und im Transaction Banking der HypoVereinsbank tätig.

Derivate und im Transaction Banking der HypoVereinsbank tätig. Derivate ud im Trasactio Bakig der HypoVereisbak tätig. Zum Ihalt: Dieses kompakte Lehrbuch behadelt eierseits das otwedige fiazmathematische Basiswisse ud greift adererseits zetrale Awedugsmöglichkeite

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Studiegag Betriebswirtschaft Fach Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BB-WMT-S-0606 / BW-WMT-S-0606 Datum.06.006 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich:

Mehr

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i D. Reterechug 1.1. Jährliche Retezahluge 1.1.1. Vorschüssige Retezahluge Ausgagspukt: Über eie edliche Zeitraum wird aus eiem Kapital (Retebarwert RBW v,i ), das ziseszislich agelegt ist, jeweils zu Begi

Mehr

Wirtschaftsmathematik. Klausur-Kennzeichen BB-WMT-S Datum

Wirtschaftsmathematik. Klausur-Kennzeichen BB-WMT-S Datum Studiegag Betriebswirtschaft Modul Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kezeiche BB-WMT-S 08068 Datum 8.06.008 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich:

Mehr

Formelsammlung Mathematik

Formelsammlung Mathematik Formelsammlug Mathematik 1 Fiazmathematik 1.1 Reterechug Sei der Zissatz p%, der Zisfaktor q = 1 + p 100. Seie R die regelmäßig zu zahlede Rate, die Laufzeit. Edwert: Barwert: achschüssig R = R q 1 q 1

Mehr

Lösungsvorschlag Probeklausur zur Elementaren Wahrscheinlichkeitsrechnung

Lösungsvorschlag Probeklausur zur Elementaren Wahrscheinlichkeitsrechnung Prof. Dr. V. Schmidt WS 200/20 G. Gaiselma, A. Spettl 7.02.20 Lösugsvorschlag Probeklausur zur Elemetare Wahrscheilichkeitsrechug Hiweis: Der Umfag ud Schwierigkeitsgrad dieser Probeklausur muss icht dem

Mehr

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel:

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel: E Tilgugsrechug.. Jährliche Raeilgug Ausgagspuk: Bei Raeilgug wird die chuldsumme (Newer des Kredis [Aleihe, Hypohek, Darleh]) i gleiche Teilberäge T geilg. Die Tilgugsrae läss sich ermiel als: T =.. Jährliche

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Studiegag Betriebswirtschaft Fach Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BW-WMT-S1 050430 Datum 30.04.005 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede

Mehr

Investitionsausgabe (Zeitpunkt t 0 ): Für einen Gewerbebetrieb ist - wie bei einem optierenden Betrieb - die MwSt kein Kostenfaktor.

Investitionsausgabe (Zeitpunkt t 0 ): Für einen Gewerbebetrieb ist - wie bei einem optierenden Betrieb - die MwSt kein Kostenfaktor. - 12 - Aufgabe 3: (50 Pukte) Dyamische Ivestitiosrechug 1. Ivestitiosrechug 1.1 Kalkulatioszissatz: Gewichteter Mittelwert vo Fremd- ud Eigekapitalkoste: Für das Eigekapital würde der Ivestor als alterative

Mehr

AngStat1(Ue13-21).doc 23

AngStat1(Ue13-21).doc 23 3. Ereigisse Versuchsausgäge ud Wahrscheilicheite: a) Wie wird die Wahrscheilicheit des Auftretes eies Elemetarereigisses A geschätzt? A Ω heißt Elemetarereigis we es ur eie Versuchsausgag ethält also

Mehr

Formelsammlung Mathematik Zentrale Prüfungen 10 Anforderungsniveau HSA

Formelsammlung Mathematik Zentrale Prüfungen 10 Anforderungsniveau HSA Ebee Figure Quadrat Aaaa u a Dreieck g h A u a b c Formelsammlug Mathematik Zetrale Prüfuge 0 Aforderugsiveau HSA Rechteck A ab u a b Parallelogramm A g h u a b Traez a c A h u a b c d reis Radius: r Durchmesser:

Mehr

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield Augabeblatt 4 Lösuge A. Deiitioe Zis = Rate Ziskurve = Zisstruktur Redite = Yield A. Deiitioe Zerobod = Nullkupoaleihe = Zero coupo bod Aleihe, die vor Ede der Lauzeit keie Zahluge leistet ud am Ede der

Mehr

Kombinatorik. Alexander (Axel) Straschil. 8. Dezember Begrie. 2 Permutationen, Kombinationen und Variationen

Kombinatorik. Alexander (Axel) Straschil. 8. Dezember Begrie. 2 Permutationen, Kombinationen und Variationen Kombiatori Alexader (Axel Straschil 8. Dezember 2006 Diese urze Zusammefassug über Permutatioe, Variatioe, Kombiatioe ud de Biomische Lehrsatz etstad im laufe meies Iformatistudiums a der Techische Uiversität

Mehr

Investitions- analysen

Investitions- analysen Dr.-Ig. habil. Jörg Wollack IA. Ivestitios- aalyse siehe auch Schierebeck: Grudzüge der Betriebswirtschaftlehre, BWB 08 Dyamische Ivestitiosaalyse berücksichtige betrachted vom gegewärtige Zeitpukt t 0

Mehr

Versicherungstechnik

Versicherungstechnik Operatios Research ud Wirtschaftsiformati Prof. Dr. P. Recht // Marius Radermacher, M.Sc. DOOR Aufgabe 5 Versicherugstechi Übugsblatt 2 Abgabe bis zum Mittwoch, dem 02.11.2016 um 10 Uhr im Kaste 19 Eie

Mehr

K O M B I N A T O R I K

K O M B I N A T O R I K Tel: 0650/673 34 34 0699/1981 01 14 K O M B I N A T O R I K Permutatio, Variatio, Kombiatio Weitere Übugsuterlage fidest du auf www.bosphorus-educatio.at/beispiele-mathematik V15.1.2017 1. PERMUTATION

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürge Seger IDUKTIVE STTISTIK Wahrscheilichkeitstheorie, Schätz- ud Testverfahre ÜBUG - LÖSUGE erutatioe. zahl der erutatioe vo verschiedefarbige erle!! 0. zahl der erutatioe vo 0 uerierte Kugel! 0!.8.800

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Empirische Wirtschaftsforschug ud Ökoometrie Dr. Rolad Füss Statistik II: Schließede Statistik SS 2007 6. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug

Mehr

FINANZMATHEMATIK. 1. Zinsen und Zinseszinsen. Finanzmathematik 59

FINANZMATHEMATIK. 1. Zinsen und Zinseszinsen. Finanzmathematik 59 Fiazmathematik 59 FINANZMATHEMATIK. Zise ud Ziseszise Die Zise als Preis für die Zurverfügugstellug vo Geld bilde das zetrale Elemet i der Fiazmathematik. Hierbei sid verschiedee Arte der Verzisug zu uterscheide.

Mehr

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen Aufgabe 1: WS 2000/2001 Aufgabe 1: (4 P (4 Pukte) Gebe Sie die Formel zur Bestimmug des relative sowie des koforme Zissatzes a ud erläuter Sie die Uterschiede bzw. Gemeisamkeite der beide Zisfüße. Lösug:

Mehr

Strukturelle Modelle in der Bildverarbeitung Markovsche Ketten II

Strukturelle Modelle in der Bildverarbeitung Markovsche Ketten II Strukturelle Modelle i der Bildverarbeitug Markovsche Kette II D. Schlesiger TUD/INF/KI/IS Statioäre Verteilug Verborgee Markovsche Kette (HMM) Erkeug stochastisches Automate D. Schlesiger SMBV: Markovsche

Mehr

Beispiel 4 (Die Urne zu Fall 4 mit Zurücklegen und ohne Beachten der Reihenfolge ) das Sitzplatzproblem (Kombinationen mit Wiederholung) Reihenfolge

Beispiel 4 (Die Urne zu Fall 4 mit Zurücklegen und ohne Beachten der Reihenfolge ) das Sitzplatzproblem (Kombinationen mit Wiederholung) Reihenfolge 1 Beispiel 4 (Die Ure zu Fall 4 mit Zurücklege ud ohe Beachte der Reihefolge ) das Sitzplatzproblem (Kombiatioe mit Wiederholug) 1. Übersicht Ziehugsmodus ohe Zurücklege des gezogee Loses mit Zurücklege

Mehr

Aufgaben zur Übung und Vertiefung

Aufgaben zur Übung und Vertiefung Aufgabe zur Übug ud Vertiefug BESCHRÄNKTE ND NBESCHRÄNKTE ZAHLENFLGEN Berufliches Gymasium / terstufe Wozu sid eigetlich Schrake da? Geau! Damit der Zug icht auf die Straße fährt Bei der Eisebah markiere

Mehr

Geben Sie bitte Ihren Namen und Ihre Matrikelnummer an: Aufgaben und Ihre Lösungen: n 01 : Lösen Sie die Kapitalverzehrsformel : 0= q

Geben Sie bitte Ihren Namen und Ihre Matrikelnummer an: Aufgaben und Ihre Lösungen: n 01 : Lösen Sie die Kapitalverzehrsformel : 0= q Klaus R. F. Bätjer, Dr., Prof., TFH Wildau, FB IW / WIW, Haus, Raum 5, Friedrich Egels Straße 3 WFG Klausur Nr. 3, Witersemester /,.., Semiarraum, Haus, 5.3 Uhr Allgemeie Hiweise:. Stelle Sie sicher, daß

Mehr

Stochastik. Eine Vorlesung für das Lehramtsstudium. Verfasst von Franz Hofbauer, Wintersemester 2018/19. bearbeitet von Gernot Greschonig

Stochastik. Eine Vorlesung für das Lehramtsstudium. Verfasst von Franz Hofbauer, Wintersemester 2018/19. bearbeitet von Gernot Greschonig Stochastik Eie Vorlesug für das Lehramtsstudium Verfasst vo Fraz Hofbauer, bearbeitet vo Gerot Greschoig Witersemester 08/9 Vorwort Der Begriff Wahrscheilichkeit wird üblicherweise mit Häufigkeit assoziiert.

Mehr

Finanzmathematik für HAK

Finanzmathematik für HAK Fiazmathematik für HAK Dr.Mafred Gurter 2008. Kapitalverzisug bei der Bak mit lieare (eifache) Zise währed des Jahres Beispiel : Ei Kapital vo 3000 wird mit 5% für 250 Tage verzist. Wie viel bekommt ma

Mehr

Stochastik. Eine Vorlesung für das Lehramtsstudium. Franz Hofbauer

Stochastik. Eine Vorlesung für das Lehramtsstudium. Franz Hofbauer Stochastik Eie Vorlesug für das Lehramtsstudium Fraz Hofbauer SS 01 Vorwort Der Begriff Wahrscheilichkeit wird üblicherweise mit Häufigkeit assoziiert. Was oft eitritt, hat hohe Wahrscheilichkeit, was

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Statistik ud Wahrscheilichkeitsrechug Übug 6 3.03.20 Ihalt der heutige Übug Aufgabe D.7: Reche mit Zufallsvariable Erwartugswert- ud Variazoperator Statistik ud Wahrscheilichkeitsrechug

Mehr

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik Prof. Dr. Güter Hellig lausureskript Fiazatheatik Ihalt: lausur vo WS 9/. Eifache Zise: Vorschüssigkeit ud Nachschüssigkeit. Reterechug: Reteedwert ud Retebarwert 3. Tilgugsrechug: Tilgugspla bei Ratetilgug

Mehr

A Ω, Element des Ereignisraumes

A Ω, Element des Ereignisraumes ue biostatisti: grudlegedes zur wahrscheilicheit ud ombiatori 1/6 WAHRSCHEINLICHKEIT / EINIGE BEGRIFFE Ereigisraum Ω Elemetarereigis A: Ω ist die Mege aller mögliche Elemetarereigisse A Ω, Elemet des Ereigisraumes

Mehr

Diskrete Zufallsvariablen

Diskrete Zufallsvariablen Erste Beispiele diskreter Verteiluge Diskrete Zufallsvariable Beroulli-Verteilug Eie diskrete Zufallsvariable heißt beroulliverteilt mit arameter p, falls sie die Wahrscheilichkeitsfuktio p,, f ( ) ( )

Mehr

Kapitel VI. Einige spezielle diskrete Verteilungen

Kapitel VI. Einige spezielle diskrete Verteilungen Kapitel VI Eiige spezielle diskrete Verteiluge D 6 (Hypergeometrische Verteilug) Eie Zufallsvariable X heißt hypergeometrisch verteilt, we sie folgede Wahrscheilichkeitsfuktio besitzt: M N M P ( X ) p

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

Wahrscheinlichkeit und Statistik

Wahrscheinlichkeit und Statistik ETH Zürich HS 2015 Prof. Dr. P. Embrechts Wahrscheilichkeit ud Statistik D-INFK Lösuge Serie 2 Lösug 2-1. (a Wir bereche P [W c B] auf zwei Arte: (a Wir betrachte folgede Tabelle: Azahl W W c B 14 6 B

Mehr

11 Divide-and-Conquer und Rekursionsgleichungen

11 Divide-and-Conquer und Rekursionsgleichungen 160 11 DIVIDE-AND-CONQUER UND REKURSIONSGLEICHUNGEN 11 Divide-ad-Coquer ud Rekursiosgleichuge Divide-ad-Coquer Problem aufteile i Teilprobleme Teilproblem (rekursiv) löse Lösuge der Teilprobleme zusammesetze

Mehr

HTBLA VÖCKLABRUCK STET

HTBLA VÖCKLABRUCK STET HTBLA VÖCKLABRUCK STET Folge ud Reihe INHALTSVERZEICHNIS 1. EINFÜHRUNG... 3. DARSTELLUNG EINER FOLGE... 3 3. BEISPIELE... 4 4. ENDLICHE REIHE... 4 5. ARITHMETISCHE FOLGEN UND REIHEN... 4 6. GEOMETRISCHE

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik für Iformatiker -- 9 Folge -- 6.1.215 1 Folge: Defiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reihefolge wichtig,

Mehr

Übungsaufgaben zur Investitionsrechnung

Übungsaufgaben zur Investitionsrechnung Übugsaufgabe zur Ivestitiosrechug Übugsaufgabe (Statische Ivestitiosrechug): Ihre Uterehmug plat die Aschaffug eier eue Maschie. Zur Wahl stehe die beide Alterative A ud B. Folgede Date sid für die beide

Mehr

1 a+ 5 a b + 5a b 5ab(a+ = 10 a + 10a b 10a (a+ 2 3a. b a ab a. a a ab+ ab b b

1 a+ 5 a b + 5a b 5ab(a+ = 10 a + 10a b 10a (a+ 2 3a. b a ab a. a a ab+ ab b b 8. Jahrgagsstufe (G8) Zahle Bruchterme sid um Beispiel: + a b,, a c+ d.. Erweiter ud Küre Ei Bruchterm wird erweitert (gekürt), idem ma Zähler ud Neer mit dem selbe Term multipliiert (durch de selbe Term

Mehr

Logarithmus- und Exponentialgleichungen (Klasse 10)

Logarithmus- und Exponentialgleichungen (Klasse 10) Logarithmus- ud Expoetialgleichuge (Klasse 10) Aufgabe 1 Löse Sie die logarithmische Gleichuge, idem Sie sie auf die Form lg a = b brige ud i die 10.Potez erhebe. a) lg(x-5) = -2 d) lg(7x+9) - lg x = 1

Mehr

Kombinatorik VL

Kombinatorik VL Kombiatorik VL 6.1.2009 Bei eiem Sportwettkampf trete acht Sportler gegeeiader a. 1. Wie viele verschiedee Möglichkeite der Platzverteilug gibt es? 2. Wie viele Möglichkeite gibt es die Medaille old, Silber

Mehr

SBP Mathe Aufbaukurs 1. Absolute und relative Häufigkeit. Das arithmetische Mittel und seine Eigenschaften. Das arithmetische Mittel und Häufigkeit

SBP Mathe Aufbaukurs 1. Absolute und relative Häufigkeit. Das arithmetische Mittel und seine Eigenschaften. Das arithmetische Mittel und Häufigkeit SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf # 0 Atwort Diese Lerkarte sid sorgfältig erstellt worde, erhebe aber weder Aspruch auf Richtigkeit och auf Vollstädigkeit. Das Lere mit Lerkarte fuktioiert ur

Mehr

Fundamentale Prinzipien der Kombinatorik und elementare Abzählkoeffizienten Wolfram Koepf

Fundamentale Prinzipien der Kombinatorik und elementare Abzählkoeffizienten Wolfram Koepf Fudametale Prizipie der Kombiatori ud elemetare Abzähloeffiziete Wolfram Koepf Die abzählede Kombiatori beschäftigt sich vor allem mit der Auswahl eier Teilmege, die ma häufig eie Stichprobe et (aus Wahrscheilicheitsrechug

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürge Seger INDUKTIVE STATISTIK Wahrscheilichkeitstheorie, Schätz- ud Testverfahre ÜBUNG 9 - LÖSUNGEN. Ziehug vo Kugel aus eier Ure a. Die Zahl der Permutatio der Kugel, die aus Klasse utereiader gleicher

Mehr

1) Wahrscheinlichkeitsbegriff und Rechnen mit Wahrscheinlichkeiten. P A = lim r N LI: ={ 1 LII: LIII: P A =1 P A

1) Wahrscheinlichkeitsbegriff und Rechnen mit Wahrscheinlichkeiten. P A = lim r N LI: ={ 1 LII: LIII: P A =1 P A FORMELSAMMLUNG V03 Alle Formel ohe Gewähr auf Korrektheit Grudlage der Wahrscheilichkeitstheorie 1) Wahrscheilichkeitsbegriff ud Reche mit Wahrscheilichkeite Relative Häufigkeit r N A = h N A N = Abs.

Mehr

Die vollständige Induktion - Lösungen 1. Aufgabe: Sind die folgenden Aussageformen in N allgemeingültig?

Die vollständige Induktion - Lösungen 1. Aufgabe: Sind die folgenden Aussageformen in N allgemeingültig? Start Mathematik Lektioe i Aalysis Aufgabe zur vollstädige Iduktio Die vollstädige Iduktio - Lösuge. Aufgabe: Sid die folgede Aussageforme i N allgemeigültig? a) We ei Vielfaches vo ist, da ist eie gerade

Mehr

A D A E B D D E D E D C C D E

A D A E B D D E D E D C C D E ie Kombiatori beschäftigt sich mit der Zusammestellug vo lemete eier Mege. s werde 2 Kugel ohe Zurüclege aus zwei Ure gezoge. ie erste Ure ethält 3 Kugel ; ; ud die zweite Ure 2 Kugel ;. ie erste Kugel

Mehr

FINANZMATHEMATIK. 1. Zinsen und Zinseszinsen. Finanzmathematik 81

FINANZMATHEMATIK. 1. Zinsen und Zinseszinsen. Finanzmathematik 81 Fiazmathematik 8 FINANZMATHEMATIK. Zise ud Ziseszise Die Zise als Preis für die Zurverfügugstellug vo Geld bilde das zetrale Elemet i der Fiazmathematik. Hierbei sid verschiedee Arte der Verzisug zu uterscheide.

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Eiführug i eiige Teilbereiche der Sommersemester 05 Prof. Dr. Stefa Etschberger Gliederug Fiazmathematik Zise Rete Tilgug Kursrechug Lieare Nebebediguge ud Zulässigkeit Zielfuktio Graphische Lösug 3 Differetialgleichuge

Mehr

Kurs P = Preis für den Ankauf von Zahlungsverpflichtungen (z.b. Wertpapiere/Anleihen), wird auch als Marktwert bezeichnet

Kurs P = Preis für den Ankauf von Zahlungsverpflichtungen (z.b. Wertpapiere/Anleihen), wird auch als Marktwert bezeichnet . Zusammehag zwische Kurs ud Redite Kurs P = Preis für de Akauf vo Zahlugsverpflichtuge (z.b. Wertpapiere/Aleihe), wird auch als Marktwert bezeichet Nomialwert NW = Newert (oder Rückzahlugsbetrag) der

Mehr

Darlehen: Gutschrift, Zinsen und Tilgung

Darlehen: Gutschrift, Zinsen und Tilgung Darlehe: Gutschrift, Zise ud Tilgug mk:@msitstore:c:\program%20files\buhl\mei%20büro\hadbuch\fibu.chm::/darlehe.htm Seite 1 vo 7 Darlehe: Gutschrift, Zise ud Tilgug Nachdem Sie mit eiem Kreditistitut oder

Mehr

Finanzmathematik Zinsrechnung Erstellt von Brülke Jörg/ Piesker Sven

Finanzmathematik Zinsrechnung Erstellt von Brülke Jörg/ Piesker Sven Fiazmathematik Zisrechug. - - Erstellt vo rülke Jörg/ Piesker Sve. Das ruttoiladsrodukt (i de Preise vo 98) der udesreublik betrug 97 34 Mrd. DM ud 98 48, Mrd. DM. ereche Sie die durchschittliche Wachstumsrate

Mehr

Wir sprechen von einer Rente, wenn die Ein- oder Auszahlungen (= Raten) regelmässig erfolgen und konstant immer in der gleichen Höhe erfolgen.

Wir sprechen von einer Rente, wenn die Ein- oder Auszahlungen (= Raten) regelmässig erfolgen und konstant immer in der gleichen Höhe erfolgen. 2. eteechge 2.1 Gdlage Weitee Afgabestellge i de Fiazmathematik egebe sich, we die apitaleilage ode die ückzüge egelmässig d i gleiche Höhe efolge. I diese Fälle spicht ma vo ete. Die Altesete ist davo

Mehr

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110 Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Studieleistug Datum 10.11.2001 BW-WMT-S12 011110 Verwede Sie ausschließlich das

Mehr

Zufallsvariablen und Wahrscheinlichkeitsverteilungen

Zufallsvariablen und Wahrscheinlichkeitsverteilungen Zufllsvrible ud Whrscheilichkeitsverteiluge Kombitorik Zusmmestellug bzw. Aordug vo Elemete Kombitorik mit Berücksichtigug der Reihefolge ohe Berücksichtigug der Reihefolge Permuttioe Vritioe ohe Wiederholug

Mehr

Kombinatorik. Permutationen Permutationen eines Kollektivs

Kombinatorik. Permutationen Permutationen eines Kollektivs Kombiatorik Permutatioe Permutatioe eies Kollektivs Kombiatorik Die Fuktio P perm_a gibt die kombiatorische Azahl der mögliche Aorduge oder Permutatioe a, die sich bei der Umordug der atürliche gaze Zahle,,...

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkomme zur der Aufgabesammlug Um sich schell ierhalb der ca. 35. Mathematikaufgabe zu orietiere, beutze Sie ubedigt das Lesezeiche Ihres Acrobat Readers: Das Ico fide Sie i der liks stehede

Mehr

Formelsammlung zur Statistik

Formelsammlung zur Statistik Darstellug uivariater Date Formelsammlug zur Statistik Urliste x i : x 1,... x, aufsteiged geordete Urliste x (i) Die k (verschiedee) Auspräguge: a 1

Mehr