14. INTEGRATION VON VEKTORFUNKTIONEN
|
|
|
- Edith Möller
- vor 9 Jahren
- Abrufe
Transkript
1 120 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und im Verluf der Vorlesung MAT 182 vollständig durchrbeiten. Für Ihre eigenen Bedürfnisse in dieser Vorlesung MAT 182 dürfen Sie dieses PDF-Dokument bspeichern und beliebig ändern. Für eine weitergehende Verwendung usserhlb der Vorlesung MAT 182 kontktiere mn bitte vorgängig den Dozenten Christoph Luchsinger, Universität Zürich. Ds Copyright ist bei Birkhäuser! 14. INTEGRATION VON VEKTORFUNKTIONEN (14.2) Gewöhnliche Integrtion von Vektorfunktionen Eine Vektorfunktion x(t), gegeben durch x(t) = x 1(t) x 2 (t), x 3 (t) wird beknntlich (vgl. (8.5)) koordintenweise bgeleitet: x = ẋ1(t) ẋ 2 (t). ẋ 3 (t) Gnz nlog knn mn ds bestimmte Integrl koordintenweise berechnen. Wir definieren: x 1(t) dt x(t) dt = b x 2(t) dt. x 3(t) dt Der Wert dieses Integrls ist lso wieder ein Vektor. Wir betrchten nun Anwendungen dieses Konzepts. Beispiele Zur Vorbereitung repetieren wir us Kpitel 8 den Zusmmenhng zwischen Geschwindigkeit und Strecke im eindimensionlen Fll.
2 14.2 Gewöhnliche Integrtion von Vektorfunktionen Von einem bewegten Mssenpunkt sei der Geschwindigkeitsvektor v(t) = v 1(t) v 2 (t) v 3 (t) zu einem beliebigen Zeitpunkt t beknnt. Zur Zeit t 0 befinde er sich n der durch den Ortsvektor x(t 0 ) = x 0 gegebenen Stelle. Wo befindet er sich zum Zeitpunkt t? Es sei x(t) der Ortsvektor des Mssenpunkts zur Zeit t. Nch (8.4) ist dnn v(t) = x(t). Für die 1. Koordintenfunktion gilt dher Durch Integrtion erhlten wir t t 0 v 1 (u) du = v 1 (t) = ẋ 1 (t). t t 0 ẋ 1 (u) du = x 1 (t) x 1 (t 0 ), denn x 1 (t) ist ntürlich eine Stmmfunktion von ẋ 1 (t). (D die obere Integrtionsgrenze t heisst, wurde die Integrtionsvrible neu mit u bezeichnet.) Anloge Formeln gelten für die beiden ndern Koordinten. Diese drei Beziehungen lssen sich gemäss der obenstehenden Definition zur folgenden Vektorgleichung zusmmenfssen: t v(u) du = x(t) x(t 0 ). t 0 Wir erhlten ls Antwort uf die eingngs gestellte Frge x(t) = x(t 0 ) + t t 0 v(u) du. Wir stellen fest, dss die Integrtion uch für Vektoren ls Umkehrung der Differentition betrchtet werden knn (vgl. (12.8), wo uch ds eindimensionle Anlogon der obigen Formel steht). Ein konkretes Beispiel: Ein Punkt bewegt sich im Rum mit der Geschwindigkeit v(t) = 2t 1 3t t 3 Wo ist er zur Zeit t = 2, wenn er zur Zeit t = 0 ) im Nullpunkt, b) im Punkt P (1, 1, 2) wr?
3 Integrtion von Vektorfunktionen (14.3) Vektorfelder (vector field) Bis jetzt hben wir Vektorfunktionen x(t) betrchtet, bei denen der Vektor x vom Prmeter t, lso nur von einer Vriblen, bhing. Nun wollen wir Vektoren untersuchen, die vom Ort (welcher durch drei Vriblen, nämlich die drei Koordinten, beschrieben wird) bhängen. Diese Sitution lässt sich drstellen, indem mn in jedem Punkt X des Rumes den zu X gehörigen Vektor ufzeichnet. Die Länge und die Richtung dieses Vektors können sich von Punkt zu Punkt ändern. Die untenstehenden Illustrtionen sind us zeichnerischen Gründen zweidimensionl; in Wirklichkeit ht mn sich die Sitution räumlich vorzustellen. ) Eine Flüssigkeit strömt durch eine Röhre. In jedem Punkt X ist die n dieser Stelle herrschende Strömungsgeschwindigkeit (ein Vektor!) eingezeichnet: b) Windgeschwindigkeit. In jedem Punkt eines gewissen Teils der Lufthülle ist die zugehörige Windgeschwindigkeit eingetrgen (hier scheint gerde ein Wirbelsturm zu wüten): c) Krftfelder. Dies ist eine wichtige physiklische Anwendung. In jedem Punkt des Rumes (oder eines Teilgebiets dvon) wirkt eine bestimmte Krft, deren Grösse und Richtung im llgemeinen von ihrem Angriffspunkt bhängt:
4 14.3 Vektorfelder (vector field) 123 Nun betrchten wir die Sitution llgemein. Um den Punkt X vektoriell drstellen zu können, wählen wir einen Ursprung O. Zum Punkt X gehört dnn ein Ortsvektor, nämlich der Vektor x = OX. D der im Punkt X ngebrchte Vektor F von X und dmit von x bhängt, schreibt mn dfür F ( x). Dmit liegt eine Funktion vor, welche jedem Vektor x des Rumes einen neuen Vektor F ( x) zuordnet, lso eine Funktion, die uf R 3 definiert ist und Werte in R 3 nnimmt: F : R 3 R 3. Eine solche Funktion nennt mn ein Vektorfeld. Wenn der Vektor F eine Krft drstellt, wie im Beispiel c), dnn spricht mn uch von einem Krftfeld. Der Vektor F = F ( x) ist wie üblich durch seine drei Koordintenfunktionen gegeben: F ( x) = F 1( x) F 2 ( x). F 3 ( x) Dbei sind die Funktionswerte F 1 ( x), F 2 ( x), F 3 ( x) reelle Zhlen, welche vom Vektor x = x 1 x 2 x 3 lso jeweils von drei reellen Zhlen bhängen. F 1, F 2 und F 3 sind somit (reellwertige) Funktionen von drei Vriblen. Auf Funktionen von mehreren Vriblen wird später noch genuer eingegngen (Kpitel 22). Es folgen zwei formelmässig gegebene Beispiele: 1. Elektrosttisches Feld einer Punktldung:,
5 Integrtion von Vektorfunktionen Eine llgemeine Schlussfolgerung us dem ersten Beispiel, erklärt m Beispiel von Hndy strhlen:
6 14.3 Vektorfelder (vector field) 125 Weitere Beispiele zu dieser Schlussfolgerung: 2. Wenn die involvierten Funktionen nicht so gut beknnt sind, hilft eine Wertetbelle (Bilder Storrer Seite 188 und 189):
7 Integrtion von Vektorfunktionen (14.4) Kurvenintegrle (line integrl)
8 14.5 Weitere Informtionen über Kurvenintegrle 127 Somit können wir zusmmenfssend sgen: Die in der besprochenen Sitution geleistete Arbeit ist definiert durch W = F ( x(t)) x(t) dt. Ein Integrl dieser Form heisst ein Kurvenintegrl. Es knn uch für beliebige Vektorfelder, unbhängig vom Begriff der Arbeit, definiert werden. Wir hlten lso llgemein fest: Es sei F = F ( x) ein beliebiges Vektorfeld und C sei ein Kurvenstück, gegeben durch die Prmeterdrstellung x = x(t) (t [, b]). Unter dem Kurvenintegrl (oder Linienintegrl) von F über C versteht mn ds Integrl (1) F ( x(t)) x(t) dt. Bechten Sie, dss es sich bei (1) um ein gnz gewöhnliches Integrl einer Funktion einer Vriblen hndelt. Ist die Definition des Kurvenintegrls einml vorhnden, so knn mn den Begriff der Arbeit in seiner llgemeinsten Form ls ein derrtiges Kurvenintegrl definieren die motivierenden Betrchtungen hben gezeigt, dss ds Kurvenintegrl für diesen Zweck unentbehrlich ist. Schreibt mn die Vektoren in Komponentenform so erhält mn, usführlich geschrieben: F ( x) = F 1( x) F 2 ( x), x(t) = x 1(t) x 2 (t), F 3 ( x) x 3 (t) (2) F ( x(t)) x(t) dt = ( F1 ( x(t))ẋ 1 (t) + F 2 ( x(t))ẋ 2 (t) + F 3 ( x(t))ẋ 3 (t) ) dt. Unter Verwendung der Formeln (1) oder (2) lssen sich Kurvenintegrle berechnen (siehe (14.6), wo uch ein Rechenschem ngegeben ist). (14.5) Weitere Informtionen über Kurvenintegrle
9 Integrtion von Vektorfunktionen (14.6) Beispiele zur Berechnung von Kurvenintegrlen
10 14.6 Beispiele zur Berechnung von Kurvenintegrlen Zu berechnen sei x d x, wobei C der Einheitskreis in der x-y Ebene sei. Für C C können wir die Prmeterdrstellung us (8.2.2) wählen: x(t) = cos t sin t, t [0, 2π]. 0 Ds Vektorfeld F ( x) ist hier schon ls Integrnd gegeben, nämlich durch F ( x) = x, in Koordinten lso einfch F ( x) = x 1 x 2. x 3 Unser Rechenschem liefert F ( x(t)) = cos t sin t 0, Für den Integrnden F ( x(t)) x(t) erhält mn Dmit wird uch ds Kurvenintegrl x(t) = sin t cos t. 0 cos t( sin t) + sin t cos t = 0. C x d x = 0. Die Ttsche, dss der Integrnd gleich Null ist, ht eine gnz nschuliche Begründung: D die Kurve C ein Kreis ist, steht der Tngentilvektor x stets senkrecht uf dem Vektor x (= F ( x)). Ds Sklrprodukt ist lso Null. Noch etws nschulicher und mit gebührender Vorsicht: Fssen wir F ls Krftfeld uf, so steht bei einer Kreisbewegung die Krft F ( x) = x stets senkrecht uf dem unendlich kleinen Kurvenstück d x. Somit ist ds Sklrprodukt x d x = 0 und dmit uch die geleistete Arbeit: x d x = 0. C Wichtig: 1. Lesen Sie jetzt ds komplette Kpitel im Storrer I selber durch. 2. Lösen Sie dnch mindestens 5 Aufgben hinten im Kpitel und vergleichen Sie mit den Lösungen m Schluss des Buches. Bei Bedrf lösen Sie mehr Aufgben. 3. Gehen Sie in die Übungsstunde. Drucken Sie ds Übungsbltt dzu vorher us, lesen Sie vorher die Aufgben durch und mchen sich erste Gednken dzu (zum Beispiel, wie mn sie lösen könnte). 4. Dnn lösen Sie ds Übungsbltt: zuerst immer selber probieren, flls nicht geht: Tipp von Mitstudi benutzen, flls immer noch nicht geht: Lösung von Mitstudi nschuen, 1 Stunde wrten, versuchen, us dem Kopf herus wieder zu lösen, flls immer noch nicht geht: Lösung von Mitstudi bschreiben (und verstehen - lso sollte mn insbesondere keine Fehler bschreiben!). 5. Lösen Sie die entsprechenden Prüfungsufgben im Archiv.
12. STAMMFUNKTIONEN UND DAS UNBESTIMMTE INTEGRAL
98 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und
11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG
91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und
12. STAMMFUNKTIONEN UND DAS UNBESTIMMTE INTEGRAL
98 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und
8. DIE ABLEITUNG EINER VEKTORFUNKTION
75 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch
Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor)
Kurvenintegrle Christin Mosch, Theoretische Chemie, Universität Ulm, [email protected] 7. Juli 26 (Korrigierte 2. Version Kurvenintegrle. Art (d.h. f ist Zhl, kein Vektor Bei Kurvenintegrlen. Art
3 Uneigentliche Integrale
Mthemtik für Ingenieure II, SS 29 Dienstg 9.5 $Id: uneigentlich.te,v.5 29/5/9 6:23:8 hk Ep $ $Id: prmeter.te,v.2 29/5/9 6:8:3 hk Ep $ 3 Uneigentliche Integrle Mn knn die eben nchgerechnete Aussge e d =,
2.4 Elementare Substitution
.4 Elementre Substitution 7.4 Elementre Substitution Im Übungsteil finden Sie folgende Aufgben zum Trining der in diesem Abschnitt behndelten Themen: Linere Substitution (LSub): Aufgbe 4.5 (S.4) und Aufgbe
7 Bewegung von Punkten
81 7 Bewegung von Punkten 7.1 Übersicht Bewegung von Punkten Differenzierbrkeit. Wo liegt die Ableitung Tylorreihe, Vektordreieck Physiklische Bezeichnungen Abstnd zu einer Kurve Geschwindigkeit Bogenlänge
Differenzial- und Integralrechnung III
Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in
10.5 Vektorfelder. Beispiele. . x. 2. Sei F(x,y) =. y 2. Jedes Gradientenfeld ist ein Vektorfeld, aber nicht jedes Vektorfeld ist ein Gradientenfeld.
28.5 Vektorfelder Wir hben gesehen, dss der Grdient einer Funktion z = f(x,y : D R jedem Punkt (x,y D einen Vektor, nämlich f(x,y R 2, zuordnet. Eine solche Zuordnung nennt mn Vektorfeld. Ds Vektorfeld
Resultat: Hauptsatz der Differential- und Integralrechnung
17 Der Huptstz der Differentil- und Integrlrechnung Lernziele: Konzept: Stmmfunktion Resultt: Huptstz der Differentil- und Integrlrechnung Methoden: prtielle Integrtion, Substitutionsregel Kompetenzen:
Crashkurs - Integration
Crshkurs - Integrtion emerkung. Wir setzen hier elementre Kenntnisse des Differenzierens sowie der Produktregel, Quotientenregel und Kettenregel vorus (diese werden später in der VO noch usführlich erklärt).
G2 Grundlagen der Vektorrechnung
G Grundlgen der Vektorrechnung G Grundlgen der Vektorrechnung G. Die Vektorräume R und R Vektoren Beispiel: Physiklische Größen wie Krft und Geschwindigkeit werden nicht nur durch ihre Mßzhl und ihre Einheit,
Grundlagen der Integralrechnung
Grundlgen der Integrlrechnung W. Kippels 0. April 2014 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 2 Ds bestimmte Integrl 4 Beispielufgben 7.1 Beispielufgbe 1............................... 7.2 Beispielufgbe
Grundlagen der Integralrechnung
Grundlgen der Integrlrechnung Wolfgng Kippels 8. April 018 Inhltsverzeichnis 1 Vorwort Ds unbestimmte Integrl Ds bestimmte Integrl 5 4 Beispielufgben 8 4.1 Beispielufgbe 1...............................
Vorkurs Mathematik DIFFERENTIATION
Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt
t 1 t cos(t) sin(t) haben als Spur jeweils den Einheitshalbkreis in der oberen Halbebene.
Kpitel Kurvenintegrle Kurven Sei I = [, b] R ein Intervll Eine Weg ist eine Abbildung dieses Intervlls in den R d, d, : I R d Dbei nennt mn () den Anfngspunkt, (b) den Endpunkt und ds Bild ([, b]) die
Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration
Integrieren Regeln (f() + g())d = f()d + g()d c f()d = c f()d b f()d = f()d b Einige Integrle die mn uswendig kennen sollte s d = s + s+ + C (für s ) d = ln + C cos d = sin + C sin d = cos + C sinh d =
8 Längenberechnungen Winkelberechnungen - Skalarprodukt
8 Längenberechnungen Winkelberechnungen - Sklrprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt Wir wissen, wie mn zwei Vektoren und b ddiert b b. Mn knn zwei Vektoren ber uch miteinnder multiplizieren!
2. Flächenberechnungen
Anlysis Integrlrechnung. Flächenberechnungen.. Die Flächenfunktion ) Flächenfunktionen ufzeichnen Skizziere zur gegebenen Funktion diejenige Funktion, welche die Fläche unterhlb der Funktionskurve misst.
BINOMISCHE FORMELN FRANZ LEMMERMEYER
BINOMISCHE FORMELN FRANZ LEMMERMEYER Ds Distributivgesetz. Die binomischen Formeln sind im wesentlichen Vrinten des Distributivgesetzes. Dieses kennen wir schon; es besgt, dss () (b + = b + c und ( + b)c
Einführung in die Integralrechnung
Einführung in die Integrlrechnung Vorbereitung für ds Probestudium n der LMU München 3. bis 7. September von W. Frks und O. Forster Integrle ls Flächeninhlte. Motivtion Flächeninhlte von Rechtecken sind
Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning
Krlsruher Institut für Technologie KIT SS 3 Institut für Anlysis 943 Prof Dr Tobis Lmm Dr Ptrick Breuning Höhere Mthemtik II für die Fchrichtung Physik 3 Übungsbltt Aufgbe Sei K ein Kreis im R vom Rdius
E. AUSBAU DER INFINITESIMALRECHNUNG 17. UMKEHRFUNKTIONEN (INVERSE FUNCTION)
160 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch
Brückenkurs Lineare Gleichungssysteme und Vektoren
Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem
3 Hyperbolische Geometrie
Ausgewählte Kpitel der Geometrie 3 Hperbolische Geometrie [... ] Im Folgenden betrchten wir nun spezielle gebrochen-linere Abbildungen, nämlich solche, für die (mit den Bezeichnungen ϕ,b,c,d wie oben die
f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen.
Trnsformtionsstz von Sebstin üller Integrtion über Normlgebiete Allgemein knn mn im R n ein Normlgebiet wie folgt definieren: G : { R n 1 b, ϕ 1 ( 1 ) ψ 1 ( 1 ), ϕ ( 1, ) 3 ψ ( 1, ),... ϕ n 1 ( 1,...,
Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2)
. Stmmfunktion Definition Stmmfunktion: Gegeen sei eine Funktion f(). Gesucht ist eine Funktion F (), so dss d = f(). Die Funktion F() heisst Stmmfunktion. Schreiweise: F () = f()d. Mn spricht uch vom
a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x
Bltt 1: Hilfe zur Umformung von Gleichungen mit vielen Vriblen Im Mthemtikunterricht hben Sie gelernt, wie mn Gleichungen mit einer Vriblen umformt, um diese Vrible uszurechnen. Meistens hieß sie. In Physik
8.4 Integrationsmethoden
8.4 Integrtionsmethoden 33 8.4 Integrtionsmethoden Die Integrtion von Funktionen erweist sich in prktischen Fällen oftmls schwieriger ls die Differenzition. Während sich ds Differenzieren durch Anwendung
2 Trigonometrische Formeln
Mthemtische Probleme, SS 015 Donnerstg 7.5 $Id: trig.tex,v 1.11 015/05/19 17:1:13 hk Exp $ $Id: convex.tex,v 1.17 015/05/18 11:15:36 hk Exp $ Trigonometrische Formeln.3 Spezielle Werte der trigonometrischen
Kurvenintegrale und Potenzialfelder
Kurvenintegrle und Potenzilfelder. Kurvenintegrle von Vektorfeldern Sei R n immer ein Gebiet, lso eine offene und zusmmenhängende Teilmenge des R n. Definition Ein Vektorfeld uf ist eine Abbildung F :!
Antworten auf Anfragen von Kursteilnehmern. Zu folgender Aussage aus den Multiple-Choice-Aufgaben: f (n) (a) (x a) n n! n=0
Ferienkurs Anlysis 1 WS 11/12 Florin Drechsler Antworten uf Anfrgen von Kursteilnehmern Zu Tylorreihen Zu folgender Aussge us den Multiple-Choice-Aufgben: Es gibt Funktionen f C (R) mit konvergenter Tylorreihe
Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM
Mthemtik: Mg Schmid Wolfgng Arbeitsbltt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Bisher hben wir die Lge von Punkten und Gerden lediglich in der Ebene betrchtet. Nun wollen wir die Lge dieser
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR
Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine
Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren
Vektoren In nderen Bereichen der Nturwissenschften treten Größen uf, die nicht nur durch eine Zhlenngbe drgestellt werden können, wie Krft, die Geschwindigkeit. Zur vollständigen Beschreibung z.b. der
1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3
.6 Bruchterme Inhltsverzeichnis Einführung und Repetition 2 2 Multipliktion und Division von Bruchtermen 3 3 Die Addition von zwei Bruchtermen-Methode I 3 4 Doppelbrüche 5 5 Die Addition von zwei Bruchtermen
1.6 Bruchterme. 1 Theorie Lernziele Repetition Die Addition von zwei Bruchtermen-Methode I Doppelbrüche...
.6 Bruchterme Inhltsverzeichnis Theorie. Lernziele............................................ Repetition............................................3 Die Addition von zwei Bruchtermen-Methode I.......................
- 1 - VB Inhaltsverzeichnis
- - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit
Lineare Algebra und Numerische Mathematik für D-BAUG
R Käppeli L Herrmnn W Wu Herbstsemester 206 Linere Algebr und Numerische Mthemtik für D-BAUG Beispiellösung für Serie 5 ETH Zürich D-MATH Aufgbe 5 5) Seien u und v Lösungen des LGS Ax = b mit n Unbeknnten
Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2
Zum Stz von Tylor Klus-R. Loeffler Inhltsverzeichnis 1 Der verllgemeinerte Stz von Rolle 1 2 Der Stz von Tylor 2 3 Folgerungen, Anwendungen und Gegenbeispiele 4 3.1 Jede gnzrtionle Funktion ist ihr eigenes
Mathematik-Tutorium: Handwerkszeug und Kochrezepte für Maschinenbauer
Vektorrechnung Differentilrechnung Integrlrechnung Mthemtik-Tutorium: Hndwerkszeug und Kochrezepte für Mschinenbuer Johnnes Wiedersich 7. Dezember 007 http://www.e13.physik.tu-muenchen.de/wiedersich/ Vektorrechnung
π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x
Wir substituieren x x(t) r sin(t), t [ π, π ]. Dnn ist x (t) r cos(t), lso r x dx π π r π r r sin (t)r cos(t) dt π cos (t) cos(t) dt r π π cos (t) dt Wir integrieren cos mittels prtieller Integrtion: Sei
8 Integralrechnung. 8.1 Das Riemann-Integral
8 Integrlrechnung Der Integrlbegriff ist wie der Ableitungsbegriff motiviert durch die physiklische Beschreibung von Bewegungsbläufen (Geschwindigkeit, Beschleunigung). Er ist u.. uch von Bedeutung bei
Prof. Dr. Siegfried Echterhoff.. 1 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG
Vorlesung SS 29 Anlysis 2 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG Teil : Fortsetzung des Studiums von Funktionen in einer reellen Vriblen (Integrtion und Tylorreihen). Huptstz der Integrl und Differentilrechnung
Multiplikative Inverse
Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll
4. DIE ABLEITUNG (DERIVATIVE)
31 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch
Parameterabhängige Integrale, Kurven, Kurvenintegrale Vorlesung
Prmeterbhängige Integrle, Kurven, Kurvenintegrle Vorlesung Mrcus Jung 2.9.21 Inhltsverzeichnis Inhltsverzeichnis 1 Einführung 3 2 Eigenschften Prmeterbhängiger Integrle 3 2.1 Stetigkeit....................................
6. Quadratische Gleichungen
6. Qudrtische Gleichungen 6. Vorbemerkungen Potenzieren und Wurzelziehen, somit uch Qudrieren und Ziehen der Qudrtwurzel, sind entgegengesetzte Opertionen. Sie heben sich gegenseitig uf. qudrieren Qudrtwurzel
7. LINEARISIERUNG UND DAS DIFFERENTIAL
63 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch
Mathematik 1 für Bauwesen 14. Übungsblatt
Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,
Uneigentliche Riemann-Integrale
Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:
ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG
Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-6 FLÄHENBEREHNUNG MITTELS INTEGRLREHNUNG Geschichtlich entwickelte sich die Integrlrechnug us folgender Frgestellung: Wie knn mn den Flächeninhlt
Thema 7 Konvergenzkriterien (uneigentliche Integrale)
Them 7 Konvergenzkriterien (uneigentliche Integrle) In diesem Kpitel betrchten wir unendliche Reihen n= n, wobei ( n ) eine Folge von reellen Zhlen ist. Die Reihe konvergiert gegen s (oder s ist die Summe
Lineare DGL zweiter Ordnung
Universität Duisburg-Essen Essen, 03.06.01 Fkultät für Mthemtik S. Buer C. Hubcsek C. Thiel Linere DGL zweiter Ordnung Betrchten wir ds AWP { x + x + bx = 0 mit, b, t 0, x 0, v 0 R. Der Anstz xt 0 = x
Aufgabe 30: Periheldrehung
Aufge 30: Periheldrehung Auf einen Plneten soll zusätzlich zum Grvittionspotentil ds folgende Potentil einwirken U z = η r. (1 Im Folgenden sollen eene Polrkoordinten verwendet werden. Ds können wir mchen,
TECHNISCHE UNIVERSITÄT MÜNCHEN
TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufge 69. Quizz Integrle. Es sei Höhere Mthemtik für Informtiker II (Sommersemester
Probeklausur Mathematik für Ingenieure C3
Deprtment Mthemtik Dr. rer. nt. Lrs Schewe Mthis Sirvent Wintersemester 013/014 Probeklusur Mthemtik für Ingenieure C3 Anmerkungen zur Klusur: Die Arbeitszeit wird 90 Minuten betrgen. Sie können sämtliche
G2.3 Produkte von Vektoren
G Grundlgen der Vektorrechnung G. Produkte von Vektoren Ds Sklrprodukt Beispiel: Ein Schienenfhrzeug soll von einem Triler ein Stück s gezogen werden, der neen den Schienen fährt (vgl. Skizze). Wir wollen
Ungleichungen. Jan Pöschko. 28. Mai Einführung
Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................
Grundlagen zu Datenstrukturen und Algorithmen Schmitt, Schömer SS 2001
Grundlgen zu Dtenstrukturen und Algorithmen Schmitt, Schömer SS 001 http://www.mpi-sb.mpg.de/~sschmitt/info5-ss01 U N S A R I V E R S A V I E I T A S N I S S Lösungsvorschläge für ds 4. Übungsbltt Letzte
E. AUSBAU DER INFINITESIMALRECHNUNG
151 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch
4.6 Integralrechnung III. Inhaltsverzeichnis
4.6 Integrlrechnung III Inhltsverzeichnis 1 Integrlrechnung 10.03.2010 Theorie und Übungen 2 1 Exponentilfunktionen Aus der Differentilrechnung wissen wir, dss gilt: f(x)=e x f (x)=e x Stz 1 Für die ntürliche
Einführung in die Festkörperphysik I Prof. Peter Böni, E21
Einführung in die Festkörperphsik I Prof. Peter Böni, E21 Lösung zum 2. Übungsbltt (Besprechung: 0. - 1. Oktober 2006) P. Niklowitz, E21 Aufgbe 2.1: Zweidimensionle Wigner-Seitz-Zellen Vernschulichen Sie,
1.7 Inneres Produkt (Skalarprodukt)
Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ
Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.
Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn
Teil 1: Rechenregeln aus der Mittelstufe. Allgemeine Termumformungen
Teil 1: Rechenregeln us der Mittelstufe Allgemeine Termumformungen Kommuttivgesetz: Bei reinen Produkten oder Summen ist die Reihenfolge egl x y z = z y x = x z y =.. x+y+z = z+y+x = x+z+y =.. Ausklmmern:
Mathematik 1 für Wirtschaftsinformatik
Mthemtik für Wirtschftsinformtik Wintersemester 202/3 Stefn Etschberger Hochschule Augsburg Existenz von bestimmten Integrlen Mthemtik 2 Stefn Etschberger Gegeben: Reelle Funktion f : [, b] R. Dnn gilt:
Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt
KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmnn SS Höhere Mthemtik II für die Fchrichtung Informtik Lösungsvorschläge zum 8. Übungsbltt Aufgbe 9 erechnen
Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf:
Aufgbe : ) Lösen Sie die folgenden Gleichungen nch uf: = kein Problem einfch die Wurel iehen und ds ± nicht vergessen.. = = ±, b) + 5 = 0 Hier hben wir bei jedem Ausdruck ein, lso können wir usklmmern:
1. Stegreifaufgabe aus der Physik Lösungshinweise
. Stegreifufgbe us der Physik Lösungshinweise Gruppe A Aufgbe Ds.Newtonsche Gesetz lässt sich zum Beispiel so formulieren: Wirkt uf einen Körper keine Krft (oder ist die Summe ller Kräfte null) so bleibt
Integrationsmethoden
Universität Perborn Dezember 8 Institut für Mthemtik C. Kiser Integrtionsmethoen Prtielle Integrtion (Prouktintegrtion) Unbestimmte Integrtion er Prouktregel (u v) () = u ()v() + u()v () liefert (u v)()
Lösungsvorschläge zum 9. Übungsblatt.
Übung zur Anlysis II SS 1 Lösungsvorschläge zum 9. Übungsbltt. Aufgbe 33 () A : {(x, y) R : x [ 1, 1] und y oder x und y [ 1, 1]}. (b) A : {(x, y) R : x < y < 1 + x }. (c) A : {(x, y) R : x < y < 1 + x
Mathematik Bruchrechnung Grundwissen und Übungen
Mthemtik Bruchrechnung Grundwissen und Übungen von Stefn Gärtner (Gr) Stefn Gärtner -00 Gr Mthemtik Bruchrechnung Seite Inhlt Inhltsverzeichnis Seite Grundwissen Ws ist ein Bruch? Rtionle Zhlen Q Erweitern
Funktionen. Kapitel 6. Reelle Funktion. Graph einer Funktion. Beispiel. Beispiel. Zeichnen eines Graphen. Bijektivität
Reelle Funktion Kpitel 6 Funktionen Reelle Funktionen sind Abbildungen, in denen sowohl die Definitionsmenge ls uch die Wertemenge Teilmengen von R üblicherweise Intervlle) sind. Bei reellen Funktionen
