9 Differenzierbare Funktionen

Größe: px
Ab Seite anzeigen:

Download "9 Differenzierbare Funktionen"

Transkript

1 9 Differezierbare Fuktioe Lerziele: Kozept: Ableitugbegriff Reultat: Ketteregel Defiito. E ei I R ei Itervall. Eie Fuktio f : I R eißt ifferezierbar im Pukt a I, fall er Grezwert f (a) := lim x a f(a;x) = lim x a f(x) f(a) (1) exitiert. f (a) eißt a ie Ableitug vo f a er Stelle a I. Beipiele. a) Für eie affie Fuktio f : x cx+ at ma f(a;x) = (cx+) (ca+) = cx ca = c u omit f (a) = c für alle a R. I er Tat it er Grap vo f eie Gerae, ie atürlic i jeem Pukt ire eigee Tagete it. b) Für ie Potezfuktio p 2 : x x 2 gilt alo p 2 (a) = 2a für a R. c) Für ie Wurzelfuktio w 2 : x x gilt w 2 (b) = 1 2 für b > 0 ac (8.3); i 0 b agege it w 2 ict ifferezierbar. Bemerkuge. a) Obige Defiitio erfaßt auc recteitige Ableituge f +(a) u likeitige Ableituge f (a) (vgl. Bemerkug c) auf S. 39) b) Der Differezequotiet i (1) wir mit x := oft i er Form f(a;x) = f gecriebe; füreie Limef (a) = lim üblic: x 0 f x x it aer auciefolgeebezeicug f (a) =: f (a) =: ( f)(a). (2) x x 9.1 Fettellug. Eie i a I ifferezierbare Fuktio it ort auc tetig. Beipiel. Die Umkerug vo Fettellug 9.1 gilt i.a. ict. So it etwa ie Betragfuktio A : x x auf R tetig, i 0 jeoc ict ifferezierbar. I er Tat gilt A (0) = 1 u A + (0) = +1.

2 Ableitug er Potezfuktioe. Für ie Betimug er Ableitug er Potezfuktioe p : x x, N, gebe wir zwei Metoe a; eie weitere folgt i Beipiel b) auf S. 45. a) I er geometrice Summeformel (2.5) (1 q)(1+q + +q 1 ) = 1 q etze wir für a R u x 0 eifac q = a x mit x ie Formel für N ei u eralte ac Multiplikatio ()(x 1 +ax 2 + +a 1 ) = x a für N. (3) Offebar it iee auc für x = 0 rictig. Damit ergibt ic u mittel Satz 8.2a) p (a;x) = x a = x 1 +ax 2 + +a 1 a 1 für x a. Somit gilt p (a) = a 1 für alle a R u N; ac obigem Beipiel a) it ie auc für = 0 rictig. Mit er Bezeicug au (2) gilt alo x (x ) = x 1 für alle x R u N 0. (4) b) Mit := gilt für e Lime i (1) auc f (a) = lim 0 f(a+) f(a). (5) Nu liefert er biomice Satz 3.2 (a+) a = a 1 + ( ) 2 a a 1 +, u mittel Satz 8.2 folgt arau für 0: p (a+) p (a) = a 1 + ( ) 2 a a 1. Beacte Sie bitte, aß für iee Argumet ie geaue Keti er Biomialkoeffiziete ict erforerlic it; e geügt ie vorläufige Variate (3.1) e biomice Satze. Ableitug vo Siu u Koiu. a) Wir zeige zuäct ie Auage lim 0 i = 1. (6) Offebar gilt ie Abcätzug i für 0 < < π 2. (7) Aerereit gilt auc i co für 0 < < π 2. (8)

3 I er Tat it i ie Läge er Strecke QA i Abb. 9a, u 1 it er Fläceialt e Dreieck OQA. Etprece it 1 er Fläceialt e Kreiektor co 2 co 2 OQP (vgl. 15 u??), u amit it (8) offeictlic. Au (7) u (8) folgt co i 1 für 0 < < π 2. (9) Au limco = 1 (vgl. S. 41) ergibt ic u i 1 für 0 +, u wege 0 i( ) = i folgt ie auc für 0. Damit it (6) gezeigt. b) Für 0 < < π 2 ac (6) alo gilt weiter co 1 1 = co2 1 co+1 lim 0 = i co+1 i, co 1 = 0. (10) c) Au e Fuktioalgleicuge (4.10) u (4.11) owie (6) u (10) ergibt ic i(x+) i x co(x+) co x = ix co+cox i ix = co 1 ix+ i = cox co ix i cox = co 1 cox cox, i cox i ix ix für x R, alo i x = cox, co x = ix, x R. (11) 9.2 Satz. Si f, g : I R i a I ifferezierbar, o gilt ie auc für ie Fuktioe f +g, f g u, im Fall g(a) 0, für f. E gelte ie Regel g (f +g) (a) = f (a)+g (a), (12) (f g) (a) = f (a) g(a)+f(a) g (a) (Prouktregel), (13) Bewei. [A1], ( f g ) (a) = f (a) g(a) f(a) g (a) g(a) 2 (Quotieteregel). (14) Beipiele. a) Wir gebe eie Iuktiobewei für Formel (4): Für = 0 u = 1 it x (x ) = x 1 offebar rictig. Gilt ie für, o folgt mit (13) x (x+1 ) = x (x x ) = 1 x +x x 1 = (+1)x. b) Für x 0 u N ergibt ic ie Ableitug vo x x = 1 x zu x (x ) = x 1 x 2 = x 1 aufgru er Quotieteregel. Formel (4) gilt alo für alle gaze Zale Z. c) Für x > 0 u N ergibt ic aufgru vo (8.3) u er Prouktregel ie Ableitug er Fuktio x x +1 2 := x x zu x (x+1 2) = x 1 x+x 1 2 x = (+ 1 2 )x 1 2. (15)

4 Tage. a) Der Tage wir außeralb er Nulltelle e Koiu al Quotiet vo Siu u Koiu erklärt, alo tax := ix cox, x R\{kπ + π 2 k Z}. Wege ta( x) = i( x) = ix i(x+π) = tax u ta(x + π) = = i x = co( x) cox co(x+π) co x ta x it er Tage auf eiem Defiitiobereic eie ugerae u π- perioice Fuktio. b) Nac er Quotieteregel at ma für x R\{kπ + π 2 k Z}: ta x = cox cox ix ( ix) = 1 co 2 x co 2 x (16) = co2 x+i 2 x = 1 + ta 2 x. co 2 x (17) 9.3 Satz (Ketteregel). E eie I, J R Itervalle u f : I J owie : J R Fuktioe. It f ifferezierbar i eiem Pukt a I u ifferezierbar im Pukt b := f(a) J, o it auc f : I R ifferezierbar i a, u e gilt ( f) (a) = (f(a)) f (a). (18) Bewei. Wir uterceie zwei Fälle: a) E gibt δ > 0 mit f(x) f(a) für alle x I mit 0 < x a < δ. Für eie Folge I\{a} x a gilt a f(x ) f(a) aufgru er Stetigkeit vo f owie f(x ) f(a) für große. Für iee gilt a ( f)(a;x ) = (f(x)) (f(a)) x a u e folgt ( f)(a;x ) (f(a)) f (a). = (f(x)) (f(a)) f(x ) f(a) f(x ) f(a) x a, (19) b) Gilt ie Vorauetzug vo a) ict, o gibt e zu N Pukte z I mit 0 < z a < 1 u f(z ) = f(a). Die impliziert offebar f (a) = lim f(z ) f(a) z a = 0. Wir zeige, aß a auc ( f) (a) = 0 gelte muß, (18) alo erfüllt it: Wege (b;y) (b) gilt δ > 0 y J : 0 < y b < δ (y) (b) y b (b) +1. (20) Nu ei (x ) eie Folge i I\{a} mit x a. Für Iize N mit f(x ) f(a) gilt a (19), wege (20) alo ( f)(a;x ) ( (b) +1) f(x) f(a) x a (21) für große. Für alle aere Iize it aber ogar ( f)(a;x ) = 0, (21) alo ert rect erfüllt. Au f(a;x ) 0 folgt omit ( f)(a;x ) 0, u ie zeigt ( f) (a) = 0.

5 Beipiele. a) Für g : x (x 2 +1), Z, at ma g = f mit f : x x 2 +1 u : y y. Au (18) u (4) folgt alo g (x) = (x 2 +1) 1 2x. b) Die Wurzelfuktio w 2 : [0, ) R it ac Satz 6.12 tetig u ac Beipiel c) auf S. 43 auf (0, ) ifferezierbar. Für eie ifferezierbare Fuktio f : I [0, ) it omit g := f auf I tetig u außeralb er Nulltelle vo f ifferezierbar, u ort gilt g (x) = 1 2 f(x) f (x) (für f(x) 0). (22) c) Speziell für f : x r 2 x 2 it ie Fuktio g : x r 2 x 2 auf [ r,r] tetig u auf ( r, r) ogar ifferezierbar mit g (x) = x r 2 x 2, x < r. ) Si i er Situatio vo Satz 9.3 ie Fuktioe u f Umkerfuktioe voeiaer, gilt alo ( f)(x) = x für alle x I, o impliziert (18) ofort (f(a)) f (a) = 1 (23) (vgl. S. 37), ibeoere alo f (a) 0 u (f(a)) 0. Defiitioe. a) Eie Fuktio f : I R eißt ifferezierbar auf em Itervall I, we f i jeem Pukt vo I ifferezierbar it. b) It f : I R ifferezierbar auf I u ie urc f : x f (x) efiierte Ableitugfuktio vo f tetig, o eißt f tetig ifferezierbar auf I. Mit C 1 (I) wir ie Mege aller tetig ifferezierbare Fuktioe auf I bezeicet. c) It f : I R ifferezierbar auf I u f : I R ebefall ifferezierbar auf I, o eißt f zweimal ifferezierbar auf I. Die Ableitug f := (f ) : I R vo f eißt zweite Ableitug vo f. Zweite Ableituge. a) Wie auf S. 37 bezeice (t) e Ort eie Maepukte auf eier Gerae zur Zeit t R. It ie Fuktio zweimal ifferezierbar, o it ire Ableitug v = ṡ ie Gecwiigkeit, ire zweite Ableitug b = v = ie Becleuigug e Maepukte. I er Pyik were Ableituge ac er Zeit meit urc eie Pukt = bezeicet. Auc für aere zeitabägige Größe t it ere Ableitug al Äeruggecwiigkeit zu iterpretiere. b) Die geometrice Beeutug zweiter Ableituge wir i Abcitt?? ikutiert.

6 Beipiele. a) Die Ableitug eier ifferezierbare Fuktio it i. a. ict tetig. Ei olce Beipiel it gegebe urc ie ozillieree Fuktio (vgl. S. 42) u 2 : x x 2 u(x) = { x 2 co 1 x, x 0 0, x = 0 E it u tetig auf R, u für x 0 berece wir Weiter gilt u 2(x) = 2xco 1 x +x2 ( i 1 x ) ( 1 x 2 ) = 2xco 1 x +i 1 x. (24) u 2 (x;0) = u 2(x) u 2 (0) x = x co 1 x 0 für x 0, u omit exitiert u 2(0) = 0. Wege (24) exitiere aber ie eieitige Grezwerte u 2 (0+ ) u u 2 (0 ) ict; folglic it u 2 auf R ifferezierbar, u 2 i 0 aber utetig. { x 2, x 0 b) Die Fuktio f : x x x = x 2 it ifferezierbar auf R\{0} mit, x < 0 f (x) = 2 x für x 0. Weiter at ma f(0;x) = x x 0 x 0 = x 0 für x 0, alo f (0) = 0. Somit gilt f (x) = 2 x für alle x R, u aer f C 1 (R). Da aber f i 0 ict ifferezierbar it, it f ict zweimal ifferezierbar. 9.4 Defiitio. a) Für 2 m N efiiere wir rekuriv C m (I) := {f C 1 (I) f C m 1 (I)} u etze f (m) := (f ) (m 1) für f C m (I). b) Fuktioe, ie i jeem C m (I) liege, eiße uelic oft ifferezierbar auf em Itervall I, Notatio: f C (I). Für f C m (I) eißt f (m) C(I) ie m-te Ableitug vo f. Wir creibe auc f (1) = f, f (2) = f, f (3) = f, allgemei f (m) (x) = m f (x) = (( x m x )m f)(x), u für m = 0 auc f (0) := f. Beipiele. a) Für ie Potezfuktio p : x x ( N) at ma p (x) = x 1, p (x) = ( 1)x 2, p (x) = ( 1)( 2)x 3, p () (x) =! u p(k) (x) = 0 für k >. (25) Ibeoere gilt p C (R). b) Für ie Iverio j : x 1 / x gilt über R\{0}: j (x) = 1 x 2, j (x) = 2 x 3,..., j (m) (x) = ( 1) m m! x m+1,..., (26)

7 wie ma leict iuktiv betätigt. Alo it j C (0, ) u j C (,0). c) Au (11) ergibt ic ofort i C (R) u co C (R). Da ie Differetiatioregel 9.2 u 9.3 igemäß auc für C m - Fuktioe gelte (vgl. e folgee Satz 9.5), it auc er Tage eie C - Fuktio auf eiem Defiitiobereic. Au e Sätze 9.2 u 9.3 ergibt ic: 9.5 Satz. E eie I,J R Itervalle u 0 m. a) Au f C m (I) u g C m (I) folgt auc f +g C m (I). b) Au f C m (I) u g C m (I) folgt auc f g C m (I). c) E eie f C m (I) mit f(i) J u C m (J). Da folgt auc f C m (I). ) It f C m (I) u f(x) 0 für x I, o folgt auc 1 f Cm (I). Bewei. [A1], Die Mege C m (I) i alo Vektorräume, ogar Algebre. Der Raum C(I) = C 0 (I) it auc ei Vektorverba, a au f C(I) auc f C(I) folgt. Letztere gilt ict für C m (I) u m 1. Frage: 1. E eie I R ei offee Itervall u f : I R i jeem Pukt x I ifferezierbar mit f (x) > 0. Zeige Sie, aß f treg mooto wace it. 2. E eie I R ei offee Itervall u f : I R i jeem Pukt x I ifferezierbar mit f (x) = 0. Zeige Sie, aß f kotat it. 3. Veruce Sie, Fuktioe f C 1 (0, ) zu fie mit f (x) = 5x 2 3 x 2, f (x) = co 2 x ix, f (x) = 4 1+x 2, f (x) = 1 x, f (x) = ix x.

18 Exponentialfunktion und Logarithmus

18 Exponentialfunktion und Logarithmus 8 Epoetialfuktio u Logarithmus Lerziele: Kozepte: Epoetialfuktio u Logarithmus Resultat: Wachstumshierarchie für Fuktioe u Folge Kompeteze: Berechug weiterer Itegrale I iesem Abschitt führe wir e Logarithmus

Mehr

1. Funktionen einer reellen Variablen

1. Funktionen einer reellen Variablen . Fuktioe eier reelle Variable Wohe_7. Grafishe Darstellug im kartesishe Kooriatesystem Eie Fuktio y f() lässt sih als Kurve im rehtwiklige Kooriatesystem arstelle. Eifahe Äeruge es Fuktiosverlaufs / Kurvebils

Mehr

Die Ableitung. In der Vorlesung nur kurz angesprochen: Wie kann die Definition motiviert werden?

Die Ableitung. In der Vorlesung nur kurz angesprochen: Wie kann die Definition motiviert werden? Nr.5-.6.6 Die Ableitug Didaktisce Überleguge Da es sic um eie Defiitio adelt Wie lautet diese faclic korrekt? Muss/ka der faclice Aspruc reduziert werde? I der Vorlesug ur kurz agesproce: Wie ka die Defiitio

Mehr

Grundbegriffe der Differentialrechnung

Grundbegriffe der Differentialrechnung Wirtschaftswisseschaftliches Zetrum Uiversität Basel Mathematik für Ökoome 1 Dr. Thomas Zehrt Grudbegriffe der Differetialrechug Referez: Gauglhofer, M. ud Müller, H.: Mathematik für Ökoome, Bad 1, 17.

Mehr

Ableitungen. Manfred Hörz. ..., f (x n. ,..., x i. ,..., x n ) +Δ x,..., x n

Ableitungen. Manfred Hörz. ..., f (x n. ,..., x i. ,..., x n ) +Δ x,..., x n Ableituge Mafred Hörz. Partielle Ableitug Hat eie Fuktio mer als eie Variable ud leitet ma pro Variable ab, idem ma die adere als kostat betractet, so sprict ma vo partielle Ableituge. Alle Ableituge zusamme

Mehr

Klausur Analysis I (WS 2010/11) mit Lösungen

Klausur Analysis I (WS 2010/11) mit Lösungen Humboldt-Uiversität zu Berli Istitut für Matematik Prof. Dr. B. Kummer Klausur Aalysis I (WS 00/) mit Lösuge Vorbemerkuge: Wäle Sie aus de vorgegebee Ausgabe 8 aus! Trage Sie am Ede i der folgede Tabelle

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: A. Kirchhoff, T. Pfrommer, M. Kutter, Dr. I. Rybak. Gruppeübug zur Vorlesug Höhere Mathematik Sommersemester 00 Prof. Dr. M. Stroppel Prof. Dr. A. Säig Lösugshiweise zu e Hausaufgabe: Aufgabe H 7. Potezreihe

Mehr

Nennenswertes zur Stetigkeit

Nennenswertes zur Stetigkeit Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit

Mehr

Mehrdimensionale Differenzialrechnung

Mehrdimensionale Differenzialrechnung Szabolcs Rozsyai Stetigkeit Eie Fuktio f heißt stetig a er Stelle D, falls lim f( eistiert u lim f(. Die Fuktio heißt stetig falls sie i alle Pukte es Defiitiosbereichs stetig ist. laut Skript: f : R R

Mehr

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2 D-MATH Topologie FS 15 Theo Bühler Musterlösug 2 1. a) Per Defiitio ist A = {x : x berührt A}. I der Vorlesug wurde die Formel (X A) = ( A ) c gezeigt, also A = ( X A ) c. Daher ist A = A A = A (A ) c

Mehr

Resultate: Vertauschbarkeit von Grenzprozessen, Konvergenzverhalten von Potenzreihen

Resultate: Vertauschbarkeit von Grenzprozessen, Konvergenzverhalten von Potenzreihen 26 Gleichmäßige Kovergez ud Potezreihe 129 26 Gleichmäßige Kovergez ud Potezreihe Lerziele: Kozepte: Puktweise ud gleichmäßige Kovergez Resultate: Vertauschbarkeit vo Grezprozesse, Kovergezverhalte vo

Mehr

Stetigkeit und Differenzierbarkeit

Stetigkeit und Differenzierbarkeit Didaktik der Mathematik der Sek II Umkehrfuktioe Ableitugsregel für Umkehrfuktioe (Umkehrregel) Beispiele für die Awedug der Umkehrregel Stetigkeit ud Differezierbarkeit Neuma/Roder Umkehrfuktio Fuktio

Mehr

Aufgaben zur Analysis I

Aufgaben zur Analysis I Aufgabe zur Aalysis I Es werde folgede Theme behadelt:. Logik, Iduktio, Mege, Abbilduge 2. Supremum, Ifimum 3. Folge, Fuktioefolge 4. Reihe, Potezreihe 5. Mootoie ud Stetigkeit 6. Differetialrechug 7.

Mehr

dx f(x). Den Kern dieser Definition kann man in der folgenden Formel zusammenfassen: = f (x 0 ) 0 = 0

dx f(x). Den Kern dieser Definition kann man in der folgenden Formel zusammenfassen: = f (x 0 ) 0 = 0 Kapitel 4 Differetialrecug 4. Ableitug eier differezierbare Fuktio Die Ableitug eier Fuktio ist der zetrale Begriff der Differetialrecug. Diese Teorie wurde uabägig voeiader vo Leibiz ud Newto begrüdet.

Mehr

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 =

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 = Aufgabe 1: (6 Pukte) Zeige Sie für alle N die Formel: 1 2 + 2 3 + 3 4 +... + ( + 1) = ( + 1)( + 2). 3 Lösug: Beweis durch vollstädige Iduktio. Iduktiosafag: Für = 1 gilt: 1 2 = 2 = 1(1 + 1)(1 + 2) 3 Iduktiosschritt:

Mehr

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa 20 I. Zahle, Kovergez ud Stetigkeit 4 Kovergete Folge 4. Dezimalzahle ud Itervallschachteluge. a) Reelle Zahle werde meist als Dezimalzahle dargestellt, etwa 7,304 = 0+7 +3 0 +0 00 +4 000. Edliche Dezimalzahle

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

HISTORIE DAS BESTIMMTE INTEGRAL

HISTORIE DAS BESTIMMTE INTEGRAL HITORIE Die Itegralrecug ettad urprüglic au dem Prolem, de Ialt olcer eee Bereice zu erkläre, die vo elieige Kurve egrezt werde. Die Itegralrecug ediet ic daei der Uterucug vo Grezwerte ud ägt eg mit der

Mehr

Aufgabe 8.24 Bestimme das Minimum und das Maximum der stetigen Funktion

Aufgabe 8.24 Bestimme das Minimum und das Maximum der stetigen Funktion 58 II. ANALYSIS Aufgabe 8.24 Bestimme das Miimum ud das Maximum der stetige Fuktio f : [ 2,2] R : x 1 2x x 2. Aufgabe 8.25 Überprüfe, ob die folgede Fuktioe f eie Umkehrfuktio besitze ud bestimme diese

Mehr

M a t h e m a t i k k l a u s u r Nr Hj Gk M 11

M a t h e m a t i k k l a u s u r Nr Hj Gk M 11 M a t e m a t i k k l a u s u r Nr. 2. Hj Gk M Aufgabe a) Gegebe sid die Pukte B ( /0), S ( 2/3) ud S 2 (6/9). Bestimme Sie die Gleicug des Kreises, auf dem diese drei Pukte liege. Gebe Sie die Koordiate

Mehr

Konvexität und Ungleichungen

Konvexität und Ungleichungen Koveität ud Ugleichuge Tag der Mathematik 2003 Holger Stepha Weierstraß Istitut für Agewadte Aalysis ud Stochastik http://www.wias-berli.de/people/stepha = Für mathematisch iteressierte Schüler = Folie

Mehr

1 Lösungen zu Analysis 1/ 12.Übung

1 Lösungen zu Analysis 1/ 12.Übung Lösuge ausgewählter Beispiele zu Aalysis I, G. Bergauer, Seite Lösuge zu Aalysis / 2.Übug. Eileitug Gleichmäßige Kovergez ist eie starke Eigeschaft eier Fuktioefolge. Formuliert ma sie für Netze, statt

Mehr

3. Taylorformel und Taylorreihen

3. Taylorformel und Taylorreihen Prof Dr Siegfried Echterhoff Aalysis Vorlesug SS 9 3 Taylorformel ud Taylorreihe Sei I R ei Itervall ud sei f : I R eie Fuktio Ziel: Wolle utersuche, wa sich die Fuktio f i eier Umgebug vo eiem Pukt I

Mehr

INHALTSVERZEICHNIS MITTWOCH

INHALTSVERZEICHNIS MITTWOCH Luca Turi / Vorkurs: Matematik Recefertigkeite / UNIZH / Mittwoc - I - VORKURS: MATHEMATIK RECHENFERTIGKEITEN Mittwoc: Aweduge der scriftlice Polyomdivisio wie «Abspalte vo Nullstelle» ud «Bestimmug eier

Mehr

INHALTSVERZEICHNIS MITTWOCH

INHALTSVERZEICHNIS MITTWOCH Luca Turi / Vorkurs: Matematik Recefertigkeite 6 / UNIZH / Mittwoc - I - VORKURS: MATHEMATIK RECHENFERTIGKEITEN 6 Mittwoc: Aweduge der scriftlice Polyomdivisio wie «Abspalte vo Nullstelle» ud «Bestimmug

Mehr

INHALTSVERZEICHNIS MITTWOCH

INHALTSVERZEICHNIS MITTWOCH Luca Turi / Vorkurs: Matematik Recefertigkeite 7 / UNIZH / Mittwoc - I - VORKURS: MATHEMATIK RECHENFERTIGKEITEN 7 Mittwoc: Aweduge der scriftlice Polyomdivisio wie «Abspalte vo Nullstelle» ud «Berecug

Mehr

Bsp.: Kostenfunktion: Gerade, nichtlineare Kurve Stichwort: Fixkosten, Variable Kosten, proportional/überproportional steigend

Bsp.: Kostenfunktion: Gerade, nichtlineare Kurve Stichwort: Fixkosten, Variable Kosten, proportional/überproportional steigend FerUNI Hage WS 00/0 Differetialrechug für Fkt. Eier Variable Ziel: Maß für lokale Äderuge eier Fuktio Bei Etscheiduge sid of icht die absolute Koste iteressat, soder vielmehr die Veräderug, die eie Produktio

Mehr

Lösungsvorschlag zur Klausur zur Analysis III

Lösungsvorschlag zur Klausur zur Analysis III Prof. Dr. H. Garcke, D. Deper WS 9/ NWF I - Mathematik 8..9 Uiversität Regesburg Lösugsvorschlag zur Klausur zur Aalysis III 6 Pukte pro Aufgabe) Aufgabe i) Bestimme Sie für die Fuktioefolge f :, 4) R,

Mehr

8. Die Exponentialfunktion und die trigonometrischen Funktionen

8. Die Exponentialfunktion und die trigonometrischen Funktionen 8. Die Expoetialfuktio ud die trigoometrische Fuktioe 8.1 Defiitio der Expoetialfuktio Fudametallemma: Für jede Folge w mit dem Grezwert w gilt: lim 1 w k 0 k w. k! Defiitio der Expoetialfuktio : k 2 3

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 04..05 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 6. Übugsblatt Aufgabe

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum. Übugsblatt

Mehr

Mathe II 7. Übung mit Lösungshinweisen

Mathe II 7. Übung mit Lösungshinweisen Facbereic Matemati Prof. Dr. Fels Marti Fucssteier TECHNISCHE UNIVERSITÄT DARMSTADT ASS 007 3. Jui 007 Mate II 7. Übug mit Lösugsiweise Gruppeübuge (G ) Offee/Abgesclossee ud ompate Mege Etsceide Sie,

Mehr

8. Die Exponentialfunktion und die trigonometrischen Funktionen. 8.1 Definition der Exponentialfunktion

8. Die Exponentialfunktion und die trigonometrischen Funktionen. 8.1 Definition der Exponentialfunktion 8. Die Expoetialfuktio ud die trigoometrische Fuktioe 8. Defiitio der Expoetialfuktio Fudametallemma: Für jede Folge w mit dem Grezwert w gilt: w lim + = k = 0 k w. k! Defiitio der Expoetialfuktio : k

Mehr

Michael Buhlmann Mathematik > Analysis > Newtonverfahren

Michael Buhlmann Mathematik > Analysis > Newtonverfahren Michael Buhlma Mathematik > Aalysis > Newtoverfahre Eie Abbildug {a }: N -> R, die jeder atürliche Zahl eie reelle Zahl a zuordet, heißt (uedliche (Zahle- Folge: -> a oder {a } εn, a das -te Folgeglied.

Mehr

KAPITEL 11. Ungleichungen. g(x) g(x 0 ) + K 0 (x x 0 ).

KAPITEL 11. Ungleichungen. g(x) g(x 0 ) + K 0 (x x 0 ). KAPITEL 11 Ugleichuge 111 Jese-Ugleichug Defiitio 1111 Eie Fuktio g : R R heißt kovex, we ma für jedes x R ei K = K (x ) R fide ka, so dass für alle x R gilt: g(x) g(x ) + K (x x ) Bemerkug 111 Eie Fuktio

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n,

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n, f : a P UNIVERSIÄ DES SAARLANDES FACHRICHUNG 6. MAHEMAIK Prof. Dr. Rolad Speicher M.Sc. obias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 202 Musterlösug zu Blatt Aufgabe. Zeige Sie durch Abwadlug

Mehr

Übungen zur Funktionentheorie

Übungen zur Funktionentheorie Mathematisches Istitut SS 2009 Uiversität Müche Prof. Dr. M. Schotteloher C. Paleai M. Schwigeheuer A. Stadelmaier Übuge zur Fuktioetheorie Übugsblatt. (a) Sei α: C C x y x + iy y x da ist α offesichtlich

Mehr

Grundlagen der Differentialrechnung mit mehreren Veränderlichen

Grundlagen der Differentialrechnung mit mehreren Veränderlichen www.atheatik-etz.de Copyright, Page 1 of 6 Grudlage der Differetialrechug it ehrere Veräderliche Die Differezierbarkeit eier Fuktio f:m eier Veräderliche (d.h. M ) i eie Häufugspukt a M bedeutet a - geoetrisch

Mehr

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n)

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n) Übugsaufgabe Aalysis I Aufgabe. Beweise oder widerlege Sie: a Jede i R kovergete Folge ist beschräkt. b Es gibt Cauchy-Folge im R, die icht kovergiere. c Beschräkte Folge sid koverget. d Folge mit eiem

Mehr

Die Hochzahl wird vor die x-potenz kommt als Faktor. Ergänzen Sie auf diese Weise die fehlenden Ableitungen in der Tabelle.

Die Hochzahl wird vor die x-potenz kommt als Faktor. Ergänzen Sie auf diese Weise die fehlenden Ableitungen in der Tabelle. Scülerarbeitsblätter: Defiiere ud Beweise i der Aalysis Arbeitsblatt : Herleitug der Potezregel Ziel: Zu de Potezfuktioe f() = ; f() = 3 ; f() = 4 usw. soll die Ableitug gefude werde. Aufgabe Bearbeite

Mehr

Das kollektive Risikomodell. 12. Mai 2009

Das kollektive Risikomodell. 12. Mai 2009 Kirill Rudik Das kollektive Risikomodell 12. Mai 2009 4.1 Eileitug Wir betrachte i diesem Kapitel die Gesamtforderuge im Laufe eies Jahres. Beim Abschluss eies Versicherugsvertrages weiß der Versicherer

Mehr

Klausur zum Grundkurs Höhere Mathematik I

Klausur zum Grundkurs Höhere Mathematik I Korrektur 6.06.06:.,3. ; 7.07.06: 3. Name, Vorame: Studiegag: Matrikelummer: 3 4 5 6 Z Pukte Note Klausur zum Grudkurs Höhere Mathematik I für BNC, GtB, MB, EC, TeM, VT, KGB, WWT, ESM, FWK, BGi, WiW 0.

Mehr

Die Jensensche Ungleichung

Die Jensensche Ungleichung Die Jesesche Ugleichug Has-Gert Gräbe, Uiv Leipzig Februar 1998 1 Kovexe ud kokave Fuktioe Wir betrachte eie stetige Fuktio y = (x), die au eiem oee Itervall ]a, b[ deiiert sei möge Eie solche Fuktio köe

Mehr

Wintersemester 2006/2007, Universität Rostock Abgabetermin: spätestens 24.10.2006, 09:00 Uhr. Aufgabe 1.1: (5 P)

Wintersemester 2006/2007, Universität Rostock Abgabetermin: spätestens 24.10.2006, 09:00 Uhr. Aufgabe 1.1: (5 P) Serie Abgabetermi: spätestes 24.0.2006, 09:00 Uhr Aufgabe.: 5 P Zeige Sie, dass das geometrische Mittel icht größer ist als das arithmetische Mittel, d.h., dass für alle Zahle a, b R mit a, b 0 gilt ab

Mehr

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln 6 Kovergete Folge Lerziele: Kozepte: Grezwertbegriff bei Folge, Wachstumsgeschwidigkeit vo Folge Resultat: Mootoe beschräkte Folge sid koverget. Methode: Hero-Verfahre, Erweiterug vo Differeze vo Quadratwurzel

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 13. DAS NEWTONsche NÄHERUNGSVERFAHREN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 13. DAS NEWTONsche NÄHERUNGSVERFAHREN Mathematik: Mag. Schmi Wolgag Arbeitsblatt 3 6. Semester ARBEITSBLATT 3 DAS NEWTONsche NÄHERUNGSVERFAHREN Mit em Itervallschachtelugsverahre Siehe Arbeitsblatt habe wir bereits ei Verahre kee gelert, mit

Mehr

Analysis I. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching Aalysis I 5. Übugsstude Steve Battilaa steveb@studet.ethz.ch battilaa.uk/teachig March 9, 07 Erierug Satz. Quotietekriterium (bei!,,...) Das Quotietekriterium zeigt absolute Kovergez. lim a +

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Gazratioale Fuktioe 9. Defiitio gazratioaler Fuktioe Im Folgede werde ebe lieare ud quadratische Fuktioe auch solche betrachtet, bei dee die Variable i der dritte, vierte oder auch i eier och höhere Potez

Mehr

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man: Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes

Mehr

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig.

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. 1.3 Fuktioe Seie M ud N Mege f : M N x M : 1 y N : y fx et ma Fuktio oder Abbildug. Beachte: Zuordug ist eideutig. Bezeichuge: M : Defiitiosbereich N : Bildbereich Zielmege vo f Der Graph eier Fuktio:

Mehr

i=0 a it i das erzeugende Polynome von (a 0,..., a j ).

i=0 a it i das erzeugende Polynome von (a 0,..., a j ). 4 Erzeugede Fuktioe ud Polyome Defiitio 4 Sei a = (a 0, a, eie Folge vo atürliche Zahle, da heißt die formale Potezreihe f a (t := i 0 a it i die erzeugede Fuktio vo a Gilt a i = 0 für i > j, so heißt

Mehr

4 Konvergenz von Folgen

4 Konvergenz von Folgen 4 Kovergez vo Folge Defiitio 4.. Sei M eie Mege. Ist 0 Z ud für jedes Z mit 0 ei a M gegebe, so et ma die Abbildug { Z; 0 } M, a eie Folge i M. Abkürzed schreibt ma für eie solche Abbildug auch a ) 0 oder

Mehr

Anhang A: Die Gamma-Funktion

Anhang A: Die Gamma-Funktion O. Forster: Zetafuktio ud Riemasche Vermutug Ahag A: Die Gamma-Fuktio A.. Defiitio. Die Gamma-Fuktio ist für eie komplee Variable z mit Rez > durch das Euler-Itegral Γz := t z e t defiiert. Da mit := Rez

Mehr

= = 1 0,5 0, 5 0,5 1,875 = = 1 0,5 0,5 0,5 0, 5 0, 5 1,96875

= = 1 0,5 0, 5 0,5 1,875 = = 1 0,5 0,5 0,5 0, 5 0, 5 1,96875 Tutorium Mathe MT Potezreihe & Taylorreihe. Uedliche Reihe Uedliche Reihe ket vielleicht der ei oder adere eher au Kobelaugabe, wie ie ab ud zu i Mathematikbücher zu ide id. Hier geht e u darum, wie ma

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

24 Konvergente Teilfolgen und Cauchy-Kriterium

24 Konvergente Teilfolgen und Cauchy-Kriterium 120 IV. Uedliche Reihe ud Taylor-Formel 24 Kovergete Teilfolge ud Cauchy-Kriterium Lerziele: Kozepte: Teilfolge, Häufugswerte, Limes superior ud iferior, Cauchy-Folge Resultate: Satz vo Bolzao-Weierstraß,

Mehr

Zahlenfolgen. Zahlenfolgen

Zahlenfolgen. Zahlenfolgen Zahlefolge Eie Zahlefolge a besteht aus Zahle a,a,a 3,a 4,a 5,... Die eizele Zahle eier Folge heiße Glieder oder Terme. Beispiele für Zahlefolge sid die atürliche Zahle: 3 4 5 6 7 8 9 0 3 4 5..., die gerade

Mehr

Stochastisches Integral

Stochastisches Integral Kapitel 11 Stochastisches Itegral Josef Leydold c 26 Mathematische Methode XI Stochastisches Itegral 1 / 2 Lerziele Wieer Prozess ud Browsche Bewegug Stochastisches Itegral Stochastische Differetialgleichug

Mehr

KAPITEL 2. Zahlenfolgen

KAPITEL 2. Zahlenfolgen KAPITEL Zahlefolge. Kovergete Zahlefolge...................... 35. Grezwertbestimmug....................... 38.3 Grezwertbestimmug durch Abschätzug............. 4.4 Mootoe Folge..........................

Mehr

Konvergenz von Fourier-Reihen

Konvergenz von Fourier-Reihen Kovergez vo Fourier-Reihe Ausarbeitug zum Semiar zur Fourieraalysis, 3..27 obias Reimes Diese Ausarbeitug beschäftigt sich mit der Kovergez vo Fourier-Reihe. Hierzu werde im erste Abschitt eiige Vorbemerkuge

Mehr

18 2 Zeichen, Zahlen & Induktion *

18 2 Zeichen, Zahlen & Induktion * 18 2 Zeiche, Zahle & Idutio * Ma macht sich z.b. sofort lar, dass das abgeschlossee Itervall [ 3, 4] die Eigeschafte if[ 3, 4] 3 mi[ 3, 4] ud sup[ 3, 4]4max[ 3, 4] besitzt, währed das offee Itervall 3,

Mehr

Höhere Mathematik I für die Fachrichtung Physik

Höhere Mathematik I für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Sebastia Schwarz SS 5 7.9.5 Höhere Mathematik I für die Fachrichtug Physik Lösugsvorschläge zur Bachelor-Modulprüfug

Mehr

Reelle Folgen. Definition. Eine reelle Folge ist eine Abbildung f : N R. liefert ( 7 9, 37

Reelle Folgen. Definition. Eine reelle Folge ist eine Abbildung f : N R. liefert ( 7 9, 37 Reelle Folge Der Begriff der Folge ist ei grudlegeder Baustei der Aalysis, weil damit u.a. Grezprozesse defiiert werde köe. Er beschreibt de Sachverhalt eier Abfolge vo Elemete, wobei die Reihefolge bzw.

Mehr

Der Satz von Stone-Weierstraß. 1 Approximationssatz von Weierstraß

Der Satz von Stone-Weierstraß. 1 Approximationssatz von Weierstraß Der Satz vo Stoe-Weierstraß Vortrag zum Prosemiar Aalysis, 28.06.2010 Valetia Gerber, Sabria Kielma Aus der Vorlesug Aalysis I ud II kee wir das Kozept des Approximieres. Us wurde die Begriffe Taylor-

Mehr

Der Durchschnitt einer Familie von σ-algebren auf M ist ebenfalls eine σ-algebra auf M. Ist also E M, so ist

Der Durchschnitt einer Familie von σ-algebren auf M ist ebenfalls eine σ-algebra auf M. Ist also E M, so ist Maßtheorie (Versio 0.3) 1. σ-algebra Ist M eie Mege, so et ma ei System vo Teilmege A M eie σ-algebra (auf M ), we gilt: A A A A c A Ist A N eie Familie vo Mege i A, so ist N A A A ist damit stabil uter

Mehr

Arithmetische Reihen Geometrische Reihen. Theorie und Musterbeispiele. Es wird auch das Arbeiten mit dem Summenzeichen geübt! Datei Nr.

Arithmetische Reihen Geometrische Reihen. Theorie und Musterbeispiele. Es wird auch das Arbeiten mit dem Summenzeichen geübt! Datei Nr. Zahlefolge Teil 3: Reihe Arithmetiche Reihe Geometriche Reihe Theorie ud Muterbeipiele E wird auch da Arbeite mit dem Summezeiche geübt! Datei Nr. 40050 Stad 7. September 06 Friedrich W. Buckel INTERNETBIBLIOTHEK

Mehr

Analysis II für M, LaG und Ph, WS07/08 Übung 2, Lösungsskizze

Analysis II für M, LaG und Ph, WS07/08 Übung 2, Lösungsskizze Gruppeübug Aalysis II für M, LaG ud Ph, WS7/8 Übug, Lösugsskizze G 4 (Zum warm werde). Begrüde die vo Physiker beliebte Näheruge si(x) x, cos(x) ud ta(x) x für kleie x R. Dies folgt direkt aus der Tayloretwicklug

Mehr

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung...

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung... KAPITEL 7 Zahlefolge 7. Kovergete Zahlefolge.............................. 30 7.2 Grezwertbestimmug............................... 32 7.3 Grezwertbestimmug durch Abschätzug..................... 35 7.4

Mehr

Die erste Zeile ("Nummerierung") denkt man sich also dazu. Häufig wird eine Indexschreibweise benutzt um ein Folgenglied zu kennzeichnen.

Die erste Zeile (Nummerierung) denkt man sich also dazu. Häufig wird eine Indexschreibweise benutzt um ein Folgenglied zu kennzeichnen. Folge ud Reihe (Izwische Stoff der Hochschule. ) Stad: 30.03.205. Folge Was sid Zahlefolge? Z.B. oder Das ist die vereifachte Wertetabelle eier Fuktio geschriebe wie üblich bei Fuktioe i eier Wertetabelle.

Mehr

1 Grenzwerte und Stetigkeit bei Funktionen mehrerer Variablen

1 Grenzwerte und Stetigkeit bei Funktionen mehrerer Variablen KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffma SS 204 6.04.204 Höhere Mathematik II für die Fachrichtug Iformatik. Saalübug (6.04.204) Grezwerte ud Stetigkeit

Mehr

Zahlenfolgen und Konvergenzkriterien

Zahlenfolgen und Konvergenzkriterien www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit

Mehr

Kapitel 6: Quadratisches Wachstum

Kapitel 6: Quadratisches Wachstum Kapitel 6: Quadratisches Wachstum Dr. Dakwart Vogel Ui Esse WS 009/10 1 Drei Beispiele Beispiel 1 Bremsweg eies PKW Bremsweg Auto.xls Ui Esse WS 009/10 Für user Modell des Bremsweges gilt a = a + d a =

Mehr

Musterlösung zu Übungsblatt 2

Musterlösung zu Übungsblatt 2 Prof. R. Padharipade J. Schmitt C. Schießl Fuktioetheorie 25. September 15 HS 2015 Musterlösug zu Übugsblatt 2 Aufgabe 1. Reelle Fuktioe g : R R stelle wir us üblicherweise als Graphe {(x, g(x)} R R vor.

Mehr

1 Funktionen und Flächen

1 Funktionen und Flächen Fuktioe ud Fläche. Fläche Defiitio: Die Ebee R ist defiiert als Mege aller geordete Paare vo reelle Zahle: R = {(,, R} Der erste Eitrag heißt da auch Koordiate ud der zweite Koordiate. Für zwei Pukte (,,

Mehr

2. METHODE NACH ARCHIMEDES

2. METHODE NACH ARCHIMEDES . METHODE NACH ARCHIMEDES Dem Recer gleic, der eie Kräfte ammelt, um eie Krei zu mee, ud ict fidet, ud auf de Leratz it, der ötig wäre,... 0 Date Aligieri Arcimede vo Syraku Mit dem eierzeit größte griecice

Mehr

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik

Mehr

10 Anwendungen der Differential- und Integralrechnung

10 Anwendungen der Differential- und Integralrechnung 0 Aweduge der Dieretial- ud Itegralrechug 0. Relative Extrema Eie Fuktio sei i eier Umgebug des Puktes ξ deiiert. ξ heißt relatives Miimum vo, we es eie Umgebug U vo ξ gibt mit (ξ) ür alle x U. I eiem

Mehr

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2014

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2014 Herzlich Willkomme zur Vorlesug Aalysis I SoSe 2014 Prof. Dr. Berd Dreseler Lebediges Lere: Aufgabe Ich Wir 2 Reelle Zahle 2.1 Körperstruktur vo (K1) Additio ud Multiplikatio kommutativ: a b b a, ab ba.

Mehr

Stetigkeit und Differenzierbarkeit. Vorlesung zur Didaktik der Analysis

Stetigkeit und Differenzierbarkeit. Vorlesung zur Didaktik der Analysis Stetigkeit ud Dierezierbarkeit Vorlesug zur Didaktik der Aalysis Ihalt Nachtrag: Fuktioegrezwert Stetigkeit Aschauliche Bedeutug Mathematische Präzisierug Topologische Charakterisierug Gleichmäßige Stetigkeit

Mehr

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w Prof. Dr. Moritz Kaßma Fakultät für Mathematik Witersemester 04/05 Uiversität Bielefeld Übugsaufgabe zu Aalysis Lösuge vo Blatt XII vom 5.0.5 Aufgabe XII. 3 Pukte) Beweise Sie, dass für alle R ud N die

Mehr

Gleichwertige Feststellung von Schülerleistungen

Gleichwertige Feststellung von Schülerleistungen (c) 2006 ttp://www.emat.de Friedric-Sciller-Gymasium Ludwigsburg Jargagsstufe 3 Gleicwertige Feststellug vo Scülerleistuge Profilfac Matematik Tema: Verfasser: Kurslerer: Die -Fuktio Adrea Wedelgaß Frau

Mehr

1. Man zeige, daß (IR n, d i ), i = 1, 2, metrische Räume sind, wenn für x = (x 1,..., x n ), y = (y 1,..., y n ) IR n die Abstandsfunktionen durch

1. Man zeige, daß (IR n, d i ), i = 1, 2, metrische Räume sind, wenn für x = (x 1,..., x n ), y = (y 1,..., y n ) IR n die Abstandsfunktionen durch Ma zeige, daß IR, d i ), i,, metrische Räume sid, we für x x,, x ), y y,, y ) IR die Abstadsfuktioe durch d x, y) x y, d x, y) x y ), d x, y) max x y gegebe sid Lösug: Ma muß für alle drei Fuktio d i x,

Mehr

Formelsammlung Mathematik

Formelsammlung Mathematik Formelsammlug Mathematik 1 Fiazmathematik 1.1 Reterechug Sei der Zissatz p%, der Zisfaktor q = 1 + p 100. Seie R die regelmäßig zu zahlede Rate, die Laufzeit. Edwert: Barwert: achschüssig R = R q 1 q 1

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion KAPITEL 3 Empirische Verteilugsfuktio 3.1. Empirische Verteilugsfuktio Seie X 1,..., X uabhägige ud idetisch verteilte Zufallsvariable mit theoretischer Verteilugsfuktio F (t) = P[X i t]. Es sei (x 1,...,

Mehr

Dirichlet-Reihen II. 1 Konvergenzeigenschaften von Dirichlet-Reihen

Dirichlet-Reihen II. 1 Konvergenzeigenschaften von Dirichlet-Reihen Vortrag zum Semiar zur Fuktioetheorie, 7.2.2007 Holger Witermayr I diesem Vortrag werde wir Kovergezeigeschafte vo Dirichlet-Reihe erarbeite ud eie Vergleich zu Potezreihe ziehe. Ei weiteres Ziel dieses

Mehr

Übungen zu Einführung in die Analysis, WS 2014

Übungen zu Einführung in die Analysis, WS 2014 Übuge zu Eiführug i die Aalysis, WS 2014 Ulisse Stefaelli 19. Jauar 2015 1 Wiederholug 1. Seie p, q ud r Aussage. Zeige Sie, dass dei Aussage Tautologie sid. p ( p q), (b) ( p q) ( p q), [ ((p ) ( ) ]

Mehr

4. Der Weierstraßsche Approximationssatz

4. Der Weierstraßsche Approximationssatz H.J. Oberle Approximatio WS 213/14 4. Der Weierstraßsche Approximatiossatz Wir gebe i diesem Abschitt eie ostrutive Beweis des Weierstraßsche Approximatiossatzes, der mit de so geate Berstei-Polyome (Felix

Mehr

Das Riemann-Integral und seine Eigenschaften

Das Riemann-Integral und seine Eigenschaften Ds Riem-Itegrl u seie Eigeshfte Defiitio. Sei ie Fuktio f beshräkt uf [, b]. Stimme ie beie Drboux-Itegrle überei, heißt f Riem-itegrierbr uf [, b] (oer R-itegierbr). Der gemeisme Wert heißt Riem- Itegrl

Mehr

Repetitionsaufgaben Potenzfunktionen

Repetitionsaufgaben Potenzfunktionen Repetitiosaufgabe Potezfuktioe Ihaltsverzeichis A) Vorbemerkuge/Defiitio 1 B) Lerziele 1 C) Etdeckuge (Graphe) 2 D) Zusammefassug 7 E) Bedeutug der Parameter 7 F) Aufgabe mit Musterlösuge 9 A) Vorbemerkuge

Mehr

Seminar De Rham Kohomologie und harmonische Differentialformen - 2. Sitzung

Seminar De Rham Kohomologie und harmonische Differentialformen - 2. Sitzung Semiar De Rham Kohomologie ud harmoische Differetialforme - 2. Sitzug Torste Hilgeberg 26. April 24 1 Orietierug Defiitio: Zwei Karte heiße orietiert verbude, we das Differetial des Kartewechsels positive

Mehr

Gaußsches Integral und Stirling-Formel

Gaußsches Integral und Stirling-Formel Gaußsches Itegral ud Stirlig-Formel Lemma. Gaußsches Itegral Es gilt für alle a > : e ax dx π a Beweis: Wir reche: e dx ax e ax dx e ay dy e ax e ay dx dy mit dem Satz vo Fubii e ax +y dx dy. Nu verwede

Mehr

Numerische Integration (s. auch Applet auf

Numerische Integration (s. auch Applet auf Numerische Itegratio (s. auch Applet auf www.mathematik.ch) Voraussetzuge ud Zielsetzug Voraussetzug: Eie Fuktio f sei auf dem abgeschlossee Itervall I = [a,b] stetig. b Gesucht: Bestimmtes Itegral J =

Mehr

Konvergenz von Folgen von Zufallsvariablen

Konvergenz von Folgen von Zufallsvariablen Kapitel 5 Kovergez vo Folge vo Zufallsvariable 5.1 Fa-sichere ud ochaische Kovergez Seie Ω, A, P ei W-Raum, X N eie Folge R k -wertiger Zufallsvariable auf Ω ud X eie R k -wertige Zufallsvariable auf Ω

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Istitut für Techologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 3/4 Prof. Dr. J. Schmalia Blatt 7 Dr. P. P. Orth Abgabe ud Besprechug 3..3. Tayloretwicklug I 5 + 5 + 5 + 5

Mehr

Komplexe Zahlen. Lernziele dieses Abschnitts sind:

Komplexe Zahlen. Lernziele dieses Abschnitts sind: KAPITEL 1 Komplexe Zahle Lerziele dieses Abschitts sid: (1) Aalytische ud geometrische Darstellug komplexer Zahle, () Grudrechearte fur komplexe Zahle, (3) Kojugatio ud Betrag komplexer Zahle, (4) Losug

Mehr