Matrixprodukt und Basiswechsel bei Abbildungen

Größe: px
Ab Seite anzeigen:

Download "Matrixprodukt und Basiswechsel bei Abbildungen"

Transkript

1 Matrixprodukt und Basiswechsel bei Abbildungen 1

2 Erster Teil: Das Matrixprodukt Wie multipliziert man eine Matrix mit einer Matrix? 2

3 Zur Erinnerung: Wie multipliziert man einen Zeilenvektor mit einem Spaltenvektor? [ p q ] a c = pa + qc Zeile mal Spalte-Regel Beziehung zum Skalarprodukt: z s = < z T, s > 3

4 Zur Erinnerung: Wie multipliziert man eine Matrix mit einem Spaltenvektor? p q r s a c Mit der Zeile mal Spalte-Regel: p q r s a c = pa + qc ra + sc 4

5 Produkt von (2 2)-Matrizen: M = p q r s, L = a b c d ML := pa + qc ra + sc pb + qd rb + sd. 5

6 Erste Interpretation des Matrixprodukts: M transformiert jede Spalte von L getrennt: L = [ s 1, s 2 ] M L = M [ s 1, s 2 ] = [ M s 1, M s 2 ]. M = p q r s, L = a b c d ML := pa + qc ra + sc pb + qd rb + sd. 6

7 Zweite Interpretation: Skalarprodukte der Zeilen von M mit den Spalten von L ML = (Zeile-mal-Spalte Regel): M = z 1 z 2 < z T 1, s 1 > < z T 1, s 2 >.. < z T 2, s 1 > < z T 2, s 2 > L = [ s 1, s 2 ] = z 1 s 1 z 1 s 2.. z 2 s 1 z 2 s 2 7

8 Zur Erinnerung: Die Transponierte einer Matrix L, L T ist die Matrix L mit Zeilen und Spalten vertauscht: L = [ s 1, s 2 ] L T = s T 1 s T 2 8

9 BEISPIEL Wenn die Spalten von L orthonormal sind: L = [ s 1, s 2 ], < s 1, s 1 > = < s 2, s 2 > = 1, < s 1, s 2 >= 0 dann gilt nach der Zeile-mal-Spalte Regel L T L = s T 1 s 1 s T 1 s 2.. s T 2 s 1 s T 2 s 2 = = I (die Identitätsmatrix, auch Einheitsmatrix genannt). 9

10 Definition: Eine 2 2-Matrix L mit orthonormalen Spalten L = [ s 1, s 2 ], < s 1, s 1 > = < s 2, s 2 > = 1, < s 1, s 2 >= 0 nennt man eine orthogonale Matrix. 10

11 Beispiel: Jede Basiswechselmatrix zwischen orthonormalen Basen C, B ist eine orthogonale Matrix. Denn die Spalten sind die Koordinatenvektoren ( b 1 ) C, ( b 2 ) C. Und nach Vorlesung 5a (Fünfter Akt) ist < x C, y C > = < x, y >. 11

12 Zwischenspiel: Die Matrixdarstellung einer linearen Abbildung (Eine Erinnerung an Vorlesung 4b) 12

13 Zur Erinnerung (Vorlesung 4b) Eine lineare Abbildung L : R 2 R 2 kann man als Matrixmultiplikation mit den Koordinatenvektoren darstellen: (L x) B = L x A Multiplikation mit der Matrix L macht aus dem A-Koordinatenvektor von x den B-Koordinatenvektor von L x. 13

14 Die Spalten der Matrixdarstellung L sind die B-Koordinaten der Bilder von a 1 und a 2 : L = [(L a 1 ) B, (L a 2 ) B ] 14

15 Beispiel: L x := kx 1 + lx 2 mx 1 + nx 2 L 1 0 L 0 1 = = k m l n Die Matrixdarstellung von L bezüglich A = B = E (der Standardbasis) ist L := k l m n 15

16 Beispiel: L : R 2 R 2 habe die Singulärwertzerlegung L a 1 = 1.5 b 1, L a 2 = 0.8 b 2 mit den orthonormalen Basen A = { a 1, a 2 }, a 1 = B = { b 1, b 2 }, b1 = , a 2 = , b 2 = L AB =? 16

17 a 1 a 2 b2 b1 a 1 = , a 2 = b1 = , b 2 = L AB = L a 1 = 1.5 b 1, L a 2 = 0.8 b 2 17

18 Zweiter Teil: Die Verkettung von zwei linearen Abbildungen 18

19 Was ist, wenn man zwei lineare Abbildungen hintereinander ausführt ( verkettet )? Seien A, B, C drei Kopien des R 2. Seien L und M lineare Abbildungen: A L B M C und sei K = ML die Verkettung von L und M ( zuerst L dann M ): A K C K( x) = (ML)( x) := M(L( x)). 19

20 Satz: Die Matrixdarstellung der Verkettung ist das Matrixprodukt In Formeln: Haben M und L die Matrixdarstellungen M := p q r s und L := a b c d, dann hat die Verkettung ML die Matrixdarstellung p q r s a b c d = pa + qc pb + qd ra + sc rb + sd 20

21 Beweis: Wir berechnen die Standardkoordinaten von M(L e 1 ) und M(L e 2 ): M = p q r s, L = a b c d L e 1 = a, L e c 2 = b d (M(L e 1 )) E = (M(L e 2 )) E = p q r s p q r s [(M(L e 1 )) E, (M(L e 2 )) E ] = a c b d p q r s a b c d. 21

22 Die Matrixdarstellung K einer Verkettung K = ML ist das Matrixprodukt ML. Das gilt nicht nur in den Standardbasen, sondern bezüglich beliebiger Basen A, B, C. Denn ML = M[(L a 1 ) B, (L a 2 ) B ] = [M(L a 1 ) B, M(L a 2 ) B ] = [(M(L a 1 )) C, (M(L a 2 )) C ] = [((ML) a 1 )) C, ((ML) a 2 ) C ]. (Zur Erinnerung: M x B = (M x) C ) 22

23 BEISPIEL In den üblichen (x, y)-koordinaten in der Ebene seien L = Spiegelung an der x-achse, M = Spiegelung an der y-achse. Wie sieht die Verkettung ML aus? Wir berechnen die Matrixdarstellungen in der Standardbasis: M = L = ML = ML ist die Rotation um π (oder - genau so gut - um π). 23

24 Dritter Teil: Basiswechsel bei Abbildungen 24

25 Eine Standardsituation ist die folgende: Man hat eine Abbildung L : A B in ihrer Singulärwertzerlegung vor sich: L a 1 = σ 1 b1, L a 2 = σ 2 b2 mit Orthonormalbasen A = { a 1, a 2 }, B = { b 1, b 2 }. Gesucht ist die Matrixdarstellung von L bezüglich der Standardbasen E (von A) und F (von B) 25

26 Die Antwort ist L E F = B L A B A T mit A... E-A-Basiswechselmatrix, mitttb... F-B-Basiswechselmatrix. A T Denn: konvertiert die Standardkoordinaten in A-Koordinaten, L AB B macht aus den A-Koordinaten von x die B-Koordinaten von L x =: y, konvertiert die B-Koordinaten zurück in Standardkoordinaten. 26

27 Mit anderen Worten: die Abbildung x E L E F y F wird in drei Schritten ausgeführt: x E A T x A L A B y B B y F. 27

28 Beispiel: L : R 2 R 2 habe die Singulärwertzerlegung L a 1 = 1.5 b 1, L a 2 = 0.8 b 2 mit den orthonormalen Basen A = { a 1, a 2 }, a 1 = B = { b 1, b 2 }, b1 = , a 2 = , b 2 = Aufgabe: Stelle L in Standardkoordinaten dar. 28

29 a 1 a 2 b2 b1 a 1 = , a 2 = b1 = , b 2 = A = A T = B =

30 B = , L A B = , A T = L A B A T = = B L A B A T = = L E F = B L A B A T =

31 Im Vorbeigehen sehen wir eine interessante Zerlegungseigenschaft von Matrizen: Satz: Für jede (2 2)-Matrix L gibt es orthogonale Matrizen A und B und Zahlen σ 1, σ 2 0 mit L = B σ σ 2 A T. 31

32 Beweis: Sei L diejenige Abbildung, die von der Matrix L in Standardkoordinaten dargestellt wird. Die Singulärbasen von L seien A und B, die entsprechenden Basiswechselmatrizen (aus den Standardkoordinaten) seien A und B. Die Singulärwerte von L seien σ 1 und σ 2. L = B Dann ist σ σ 2 A T. 32

Basiswechsel. Oder: Wie rechnet man die Koordinaten bzgl. einer Orthonormalbasis in die Koordinaten bzgl. einer anderen Orthonormalbasis um?

Basiswechsel. Oder: Wie rechnet man die Koordinaten bzgl. einer Orthonormalbasis in die Koordinaten bzgl. einer anderen Orthonormalbasis um? Basiswechsel Oder: Wie rechnet man die Koordinaten bzgl. einer Orthonormalbasis in die Koordinaten bzgl. einer anderen Orthonormalbasis um? Unser Beispiel: R 2 1 Das Logo der Stunde: x x e 2 b2 b1 e 1

Mehr

Quadratische Formen. und. Symmetrische Matrizen

Quadratische Formen. und. Symmetrische Matrizen Quadratische Formen und Symmetrische Matrizen 1 Ouverture: Lineare Funktionen von R n nach R 1 2 Beispiel: n = 2 l : (x 1, x 2 ) T 0.8x 1 + 0.6x 2 = < x, g > mit g := (0.8, 0.6) T. Wo liegen alle x = (x

Mehr

mit "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor"

mit Skalarprodukt aus i-tem Zeilenvektor und j-tem Spaltenvektor Zusammenfassung Matrizen Transponierte: Addition: mit Skalare Multiplikation: Matrixmultiplikation: m x p m x n n x p mit ES "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor" "Determinante"

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

44 Orthogonale Matrizen

44 Orthogonale Matrizen 44 Orthogonale Matrizen 44.1 Motivation Im euklidischen Raum IR n haben wir gesehen, dass Orthonormalbasen zu besonders einfachen und schönen Beschreibungen führen. Wir wollen das Konzept der Orthonormalität

Mehr

Lineare Algebra I 14. Tutorium Lineare Abbildungen und Matrizen

Lineare Algebra I 14. Tutorium Lineare Abbildungen und Matrizen Lineare Algebra I 4 Tutorium Lineare Abbildungen und Matrizen Fachbereich Mathematik WS / Prof Dr Kollross 7 Februar Dr Le Roux Dipl-Math Susanne Kürsten Aufgaben Aufgabe G (Bewegungen im ) Als Bewegung

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

L5 Matrizen I: Allgemeine Theorie

L5 Matrizen I: Allgemeine Theorie L5 Matrizen I: Allgemeine Theorie Matrix: (Plural: Matrizen) Vielfältige Anwendungen in der Physik: - Lösung von linearen Gleichungsystemen - Beschreibung von Drehungen - Beschreibung von Lorenz-Transformationen

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

Lineare Abbildungen L : R 2 R 2

Lineare Abbildungen L : R 2 R 2 Lineare Abbildungen Lineare Abbildungen L : R 2 R 2 Eine Abbildung Eine Abbildung ordnet jedem Element aus einer Menge A Eine Abbildung ordnet jedem Element aus einer Menge A ein Element aus einer Menge

Mehr

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden?

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden? Kapitel Lineare Abbildungen Verständnisfragen Sachfragen Was ist eine lineare Abbildung? Erläutern Sie den Zusammenhang zwischen Unterräumen, linearer Unabhängigkeit und linearen Abbildungen! 3 Was ist

Mehr

Koordinaten und darstellende Matrizen

Koordinaten und darstellende Matrizen Koordinaten und darstellende Matrizen Olivier Sète 4 Juli 2008 Inhaltsverzeichnis Koordinatenabbildung 2 Definition und Eigenschaften 2 2 Beispiel 3 2 Matrixdarstellung eines Vektorraumhomomorphismus 3

Mehr

4 Lineare Abbildungen

4 Lineare Abbildungen 17. November 2008 34 4 Lineare Abbildungen 4.1 Lineare Abbildung: Eine Funktion f : R n R m heißt lineare Abbildung von R n nach R m, wenn für alle x 1, x 2 und alle α R gilt f(αx 1 ) = αf(x 1 ) f(x 1

Mehr

Einführung in die Mathematik für Informatiker

Einführung in die Mathematik für Informatiker Einführung in die Mathematik für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 12.12.2016 9. Vorlesung Eigenschaften linearer Abbildungen Beschreibung linearer Abbildungen durch Matrizen... Eigenschaften

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n

Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n Universität Stuttgart Physik und ihre Didaktik PD Dr Holger Cartarius Matrizen Matrizen: Ein rechteckiges Zahlenschema der Form a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A a m,1 a m,2 a m,n (a) nennt man eine

Mehr

9. Vorlesung Lineare Algebra, SVD und LSI

9. Vorlesung Lineare Algebra, SVD und LSI 9. Vorlesung Lineare Algebra, SVD und LSI Grundlagen lineare Algebra Vektornorm, Matrixnorm Eigenvektoren und Werte Lineare Unabhängigkeit, Orthogonale Matrizen SVD, Singulärwerte und Matrixzerlegung LSI:Latent

Mehr

MLAN1 1 MATRIZEN 1 0 = A T =

MLAN1 1 MATRIZEN 1 0 = A T = MLAN1 1 MATRIZEN 1 1 Matrizen Eine m n Matrix ein rechteckiges Zahlenschema a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 amn mit m Zeilen und n Spalten bestehend aus m n Zahlen Die Matrixelemente

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 25 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 8 Aufgabe 8 Basen für Bild und Kern Gegeben sind die beiden 2 Matrizen:

Mehr

Matrizen. Jörn Loviscach. Versionsstand: 12. April 2010, 19:00 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung.

Matrizen. Jörn Loviscach. Versionsstand: 12. April 2010, 19:00 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Matrizen Jörn Loviscach Versionsstand: 12. April 2010, 19:00 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. 1 Matrix Ein rechteckige Anordnung von mathematischen Objekten

Mehr

Erster Akt: Begriffe und Beispiele

Erster Akt: Begriffe und Beispiele Eigenvektoren 1 Erster Akt: Begriffe und Beispiele 2 Sei L : A A eine lineare Abbildung von einem Vektorraum A in sich sich selbst. (Man denke an z. B. an A = R 2.) 3 Ein Vektor a A, a 0, heißt ein Eigenvektor

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Vektoren und Matrizen Die multivariate Statistik behandelt statistische Eigenschaften und Zusammenhänge mehrerer Variablen, im Gegensatz zu univariaten Statistik, die in der Regel nur eine Variable untersucht.

Mehr

Lineare Algebra. 1 Lineare Abbildungen

Lineare Algebra. 1 Lineare Abbildungen Lineare Algebra Die lineare Algebra ist ein Teilgebiet der Mathematik, welches u. A. zur Beschreibung geometrischer Abbildungen und diverser Prozesse und zum Lösen linearer Gleichungssysteme mit Hilfe

Mehr

Matrizen. Jörn Loviscach

Matrizen. Jörn Loviscach Matrizen Jörn Loviscach Versionsstand: 7. April 2010, 14:27 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu: http://www.youtube.com/joernloviscach 1 Matrix Ein

Mehr

Definition, Rechenoperationen, Lineares Gleichungssystem

Definition, Rechenoperationen, Lineares Gleichungssystem Bau und Gestaltung, Mathematik, T. Borer Aufgaben /3 Aufgaben Matrizen Definition, Rechenoperationen, Lineares Gleichungssystem Lernziele - die Bezeichnung der Matrixelemente kennen und verstehen. - den

Mehr

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte Mathematik I Matrizen In diesem Kapitel werden wir lernen was Matrizen sind und wie man mit Matrizen rechnet. Matrizen ermöglichen eine kompakte Darstellungsform vieler mathematischer Strukturen. Zum Darstellung

Mehr

8 Lineare Abbildungen und Matrizen

8 Lineare Abbildungen und Matrizen 8 Lineare Abbildungen und Matrizen 8.1 Lineare Abbildungen Wir beschäftigen uns nun mit Abbildungen zwischen linearen Räumen. Von besonderem Interesse sind Abbildungen, die die Struktur der linearen Räume

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 5 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe. Skalarprodukt und Orthogonalität.a) Bezüglich des euklidischen

Mehr

Übungsblatt

Übungsblatt Übungsblatt 3 3.5.27 ) Die folgenden vier Matrizen bilden eine Darstellung der Gruppe C 4 : E =, A =, B =, C = Zeigen Sie einige Gruppeneigenschaften: a) Abgeschlossenheit: Berechnen Sie alle möglichen

Mehr

Definition, Rechenoperationen, Lineares Gleichungssystem

Definition, Rechenoperationen, Lineares Gleichungssystem Bau und Gestaltung, Mathematik, T. Borer Aufgaben / Aufgaben Matrizen Definition, Rechenoperationen, Lineares Gleichungssystem Lernziele - die Bezeichnung der Matrixelemente kennen und verstehen. - den

Mehr

LINEARE ALGEBRA II. FÜR PHYSIKER

LINEARE ALGEBRA II. FÜR PHYSIKER LINEARE ALGEBRA II FÜR PHYSIKER BÁLINT FARKAS 4 Rechnen mit Matrizen In diesem Kapitel werden wir zunächst die so genannten elementaren Umformungen studieren, die es ermöglichen eine Matrix auf besonders

Mehr

Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen.

Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen. Definition: Lineare Abbildung Lineare Abbildungen Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen. 8.1 Definition: Lineare Abbildung Eine Funktion f : V Ñ W zwischen

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof Dr H Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 11 Rang von Matrizen Definition 111 Es sei K ein Körper und sei M eine m n-matrix über K Dann nennt man die Dimension des von

Mehr

Singulärwertzerlegung

Singulärwertzerlegung LMU München Centrum für Informations- und Sprachverarbeitung WS 10-11: 13.12.2010 HS Matrixmethoden im Textmining Dozent: Prof.Dr. Klaus U. Schulz Referat von: Erzsébet Galgóczy Singulärwertzerlegung 1

Mehr

Homogenität Assoziativgesetz A (B 1 + B 2 ) = A B 1 + A B 2 Distributivgesetz 1 (A 1 + A 2 ) B = A 1 B + A 2 B Distributivgesetz 2

Homogenität Assoziativgesetz A (B 1 + B 2 ) = A B 1 + A B 2 Distributivgesetz 1 (A 1 + A 2 ) B = A 1 B + A 2 B Distributivgesetz 2 1. Formatbedingungen der Matrixoperationen Die Addition (Subtraktion) A ± B verlangt gleiches Format der Operanden A und B. Das Ergebnis hat das Format der Operanden. Skalarmultiplikation λa: Es gibt keine

Mehr

Euklidische und unitäre Vektorräume

Euklidische und unitäre Vektorräume Kapitel 7 Euklidische und unitäre Vektorräume In diesem Abschnitt ist der Körper K stets R oder C. 7.1 Definitionen, Orthonormalbasen Definition 7.1.1 Sei K = R oder C, und sei V ein K-Vektorraum. Ein

Mehr

Ferienkurs - Lineare Algebra. Hanna Schäfer. Merkinhalte

Ferienkurs - Lineare Algebra. Hanna Schäfer. Merkinhalte Technische Universität München, Fakultät für Physik Ferienkurs - ineare Algebra Hanna Schäfer 03. März 04 0. inearität. f : M N, x : y = f(x) Merkinhalte. f(x + λy) = f(x) + λf(y), x, y V, λ K 3. ineare

Mehr

2.8. ABBILDUNGSMATRIZEN UND BASISWECHSEL 105. gramms kommutativ:

2.8. ABBILDUNGSMATRIZEN UND BASISWECHSEL 105. gramms kommutativ: 2.8. ABBILDUNGSMATRIZEN UND BASISWECHSEL 105 gramms kommutativ: V ϕ W ψ X c B c C c D K n x MC B(ϕ) x K m x MC D (ψ) x K l x M C D (ψ)mb C (ϕ) x Dies bedeutet, dass das gesamte Diagramm kommutativ ist.

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 15.11.2013 Alexander Lytchak 1 / 12 Erinnerung Eine Abbildung f : V W zwischen reellen Vektorräumen ist linear, wenn

Mehr

C A R L V O N O S S I E T Z K Y. Transformationen. Johannes Diemke. Übung im Modul OpenGL mit Java Wintersemester 2010/2011

C A R L V O N O S S I E T Z K Y. Transformationen. Johannes Diemke. Übung im Modul OpenGL mit Java Wintersemester 2010/2011 C A R L V O N O S S I E T Z K Y Transformationen Johannes Diemke Übung im Modul OpenGL mit Java Wintersemester 2010/2011 Motivation Transformationen Sind Grundlage vieler Verfahren der Computergrafik Model-

Mehr

Basis eines Vektorraumes

Basis eines Vektorraumes Basis eines Vektorraumes Basisergänzungssatz: Ist U V ein Unterraum von V und dim V = n, so kann jede Menge linear unabhängiger Vektoren aus U zu einer Basis von U erweitert werden Und es gilt: Beweis:

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 4. Aufgabe 4.1. Dr. V. Gradinaru D. Devaud A. Hiltebrand.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 4. Aufgabe 4.1. Dr. V. Gradinaru D. Devaud A. Hiltebrand. Dr V Gradinaru D Devaud A Hiltebrand Herbstsemester 4 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 4 Aufgabe 4 Multiple Choice: Online abzugeben 4a) Wir betrachten

Mehr

47 Singulärwertzerlegung

47 Singulärwertzerlegung 47 Singulärwertzerlegung 47.1 Motivation Wir haben gesehen, dass symmetrische Matrizen vollständig mithilfe ihrer Eigenwerte und Eigenvektoren beschrieben werden können. Diese Darstellung kann unmittelbar

Mehr

In den USA verwendet man statt dessen eckige Klammern, was sich in der Software niederschlägt (mit Ausnahmen wie Wolfram Alpha):

In den USA verwendet man statt dessen eckige Klammern, was sich in der Software niederschlägt (mit Ausnahmen wie Wolfram Alpha): 3 Matrizen Jörn Loviscach Versionsstand: 20. März 2012, 16:02 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu: http://www.j3l7h.de/videos.html This work is licensed

Mehr

Singulärwert-Zerlegung

Singulärwert-Zerlegung Singulärwert-Zerlegung Zu jeder komplexen (reellen) m n-matrix A existieren unitäre (orthogonale) Matrizen U und V mit s 1 0 U AV = S = s 2.. 0.. Singulärwert-Zerlegung 1-1 Singulärwert-Zerlegung Zu jeder

Mehr

9. Übungsblatt zur Mathematik I für Maschinenbau

9. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 9. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-4.. Aufgabe G (Koordinatentransformation)

Mehr

2 Die Algebra der Matrizen

2 Die Algebra der Matrizen Die Algebra der Matrizen Ein Hauptziel der Vorlesung zur Linearen Algebra besteht darin, Aussagen über die Lösungsmenge linearer Gleichungssysteme zu machen Etwa ob das Gleichungssystem x y + z 1 x + y

Mehr

Definition, Abbildungsmatrix, Spiegelung, Projektion

Definition, Abbildungsmatrix, Spiegelung, Projektion Bau und Gestaltung, Mathematik 2, T. Borer Aufgaben 5-2/ Aufgaben 5 Lineare Abbildungen Definition, Abbildungsmatrix, Spiegelung, Projektion Lernziele - beurteilen können, ob eine gegebene Abbildung linear

Mehr

Euklidische und unitäre Vektorräume

Euklidische und unitäre Vektorräume Euklidische und unitäre Vektorräume In allgemeinen Vektorräumen gibt es keine Möglichkeit der Längenmessung von Vektoren und der Winkelmessung zwischen zwei Vektoren. Dafür ist eine zusätzliche Struktur

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 5 Aufgabe 5.1 Kommutierende Matrizen In der Vorlesung und vergangenen

Mehr

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching October 2, 207 Erinnerung Definition. Ein Skalarprodukt ist eine Abbildung, : E n E n E, v, w v, w = n k= v

Mehr

Musterlösung 7 Lineare Algebra für die Naturwissenschaften

Musterlösung 7 Lineare Algebra für die Naturwissenschaften Musterlösung 7 Lineare Algebra für die Naturwissenschaften Aufgabe Entscheiden Sie, ob folgende Abbildungen linear sind, und geben sie für die linearen Abbildungen eine Matrixdarstellung (in einer Basis

Mehr

09. Lineare Abbildungen und Koordinatentransformationen

09. Lineare Abbildungen und Koordinatentransformationen 09. Lineare Abbildungen und Koordinatentransformationen Definition. Seien V und W Vektorräume. Unter einer linearen Abbildung versteht man eine Abbildung F : V W, v F v w mit folgender Eigenschaft: F λ

Mehr

Ökonometrische Analyse

Ökonometrische Analyse Institut für Statistik und Ökonometrie, Freie Universität Berlin Ökonometrische Analyse Dieter Nautz, Gunda-Alexandra Detmers Rechenregeln für Matrizen Notation und Matrixeigenschaften: Eine Matrix A der

Mehr

Matrix: Eine rechteckige Anordnung reeller Zahlen a ij (i = 1,..., n i ; j = 1,..., m) in Zeilen und Spalten. Die a ij heiÿen Elemente von A.

Matrix: Eine rechteckige Anordnung reeller Zahlen a ij (i = 1,..., n i ; j = 1,..., m) in Zeilen und Spalten. Die a ij heiÿen Elemente von A. Matrizenrechnung Matrix: Eine rechteckige Anordnung reeller Zahlen a ij i = 1,..., n i ; j = 1,..., m in Zeilen und Spalten. Die a ij heiÿen Elemente von A. a 11 a 12... a ij... a 1m a 21 a 22.........

Mehr

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung Kapitel 3 Lineare Abbildungen Lineare Abbildungen sind eine natürliche Klasse von Abbildungen zwischen zwei Vektorräumen, denn sie vertragen sich per definitionem mit der Struktur linearer Räume Viele

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

Aufgabenkomplex 3: Vektoren und Matrizen

Aufgabenkomplex 3: Vektoren und Matrizen Technische Universität Chemnitz 15. November 010 Fakultät für Mathematik Höhere Mathematik I.1 Aufgabenkomplex : Vektoren und Matrizen Letzter Abgabetermin: 9. Dezember 010 in Übung oder Briefkasten bei

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Serie 5. ETH Zürich - D-MAVT Lineare Algebra II. Prof. Norbert Hungerbühler

Serie 5. ETH Zürich - D-MAVT Lineare Algebra II. Prof. Norbert Hungerbühler Prof. Norbert Hungerbühler Serie 5 ETH Zürich - D-MAVT Lineare Algebra II. a) Die Abbildung V n R n, v [v] B, die jedem Vektor seinen Koordinatenvektor bezüglich einer Basis B zuordnet, ist linear. Sei

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Matrizen als lineare Abbildungen, Permutationen

TECHNISCHE UNIVERSITÄT MÜNCHEN. Matrizen als lineare Abbildungen, Permutationen TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra WS 2/7 Lösungen Blatt 2 3..2 Matrizen als lineare Abbildungen, Permutationen Zentralübungsaufgaben

Mehr

In den USA verwendet man statt dessen eckige Klammern, was sich in der Software niederschlägt (mit Ausnahmen wie Wolfram Alpha):

In den USA verwendet man statt dessen eckige Klammern, was sich in der Software niederschlägt (mit Ausnahmen wie Wolfram Alpha): 3 Matrizen Jörn Loviscach Versionsstand: 28. März 2015, 21:32 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html This work is licensed

Mehr

6. Normale Abbildungen

6. Normale Abbildungen SKALARPRODUKE 1 6 Normale Abbildungen 61 Erinnerung Sei V ein n-dimensionaler prä-hilbertraum, also ein n-dimensionaler Vektorraum über K (R oder C) versehen auch mit einer Skalarprodukt, ra K Die euklidische

Mehr

8 Lineare Abbildungen

8 Lineare Abbildungen 80 8 Lineare Abbildungen In diesem Kapitel untersuchen wir lineare Abbildungen von R n nach R m wie zum Beispiel Spiegelungen, Drehungen, Streckungen und Orthogonalprojektionen in R 2 und R 3 Man nennt

Mehr

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015 Matrizenrechnung Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Matrizenrechnung Übersicht Grundsätzliches 1 Grundsätzliches Matrixbegriff Rechenregeln Spezielle Matrizen 2 Matrizenrechnung Determinanten

Mehr

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle.

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle. Nachschlag:Transposition von Matrizen Sei Explizit: Def: "Transponierte v. A": (tausche Zeilen mit Spalten d.h., spiegle in der Diagonale) m Reihen, n Spalten n Reihen, m Spalten z.b. m=2,n=3: Eigenschaft:

Mehr

Kapitel 7. Lineare Abbildungen. 7.1 Motivation

Kapitel 7. Lineare Abbildungen. 7.1 Motivation Kapitel 7 Lineare Abbildungen 71 Motivation Verschieben, Drehen und Scheren sind parallelentreu, dh sie lassen sich auch als Abbildung zwischen Vektorräumen fomulieren Die Verschiebung, beispielsweise,

Mehr

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

35 Matrixschreibweise für lineare Abbildungen

35 Matrixschreibweise für lineare Abbildungen 35 Matrixschreibweise für lineare Abbildungen 35 Motivation Wir haben gesehen, dass lineare Abbildungen sich durch ihre Wirkung auf die Basisvektoren ausdrücken lassen Mithilfe von Matrizen können wir

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Universität Basel Wirtschaftswissenschaftliches Zentrum Vektoren und Matrizen Dr. Thomas Zehrt Inhalt: 1. Vektoren (a) Einführung (b) Linearkombinationen (c) Länge eines Vektors (d) Skalarprodukt (e) Geraden

Mehr

Exkurs: Klassifikation orthogonaler 2 2-Matrizen.

Exkurs: Klassifikation orthogonaler 2 2-Matrizen. Exkurs: Klassifikation orthogonaler 2 2-Matrizen. Aussage: Es gilt: (a) Jede orthogonale 2 2 Matrix A mit det(a) = 1 hat das Aussehen cos(α) sin(α) D(α) = sin(α) cos(α), wobei α [0,2π[. Ist sin(α) 0, so

Mehr

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau 312 LinAlg II Version 0 20. Juni 2006 c Rudolf Scharlau 4.3 Bilinearformen Bilinearformen wurden bereits im Abschnitt 2.8 eingeführt; siehe die Definition 2.8.1. Die dort behandelten Skalarprodukte sind

Mehr

Tutorium: Diskrete Mathematik. Matrizen

Tutorium: Diskrete Mathematik. Matrizen Tutorium: Diskrete Mathematik Matrizen Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de Definition I Eine Matrix ist eine rechteckige Anordnung (Tabelle) von Elementen, mit denen man in bestimmter

Mehr

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w =

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w = 1 v Die Länge Def. Sei (V,, ) ein Euklidscher Vektorraum. Für jeden Vektor v V heißt die Zahl v,v die Länge von v und wird v bezeichnet. Bemerkung. Die Länge des Vektors ist wohldefiniert, da nach Definition

Mehr

Mathematik I. Vorlesung 14. Rang von Matrizen

Mathematik I. Vorlesung 14. Rang von Matrizen Prof Dr H Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 14 Rang von Matrizen Definition 141 Es sei K ein Körper und sei M eine m n-matrix über K Dann nennt man die Dimension des von den Spalten

Mehr

Lineare Algebra. Gymnasium Immensee SPF PAM. Bettina Bieri

Lineare Algebra. Gymnasium Immensee SPF PAM. Bettina Bieri Lineare Algebra Gymnasium Immensee SPF PAM Bettina Bieri 6. Oktober 2011 Inhaltsverzeichnis 1 Matrizen 1 1.1 Einleitung............................. 1 1.2 Der Begriff Matrix........................ 1 1.2.1

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

4.3 Reelle Skalarprodukte, Hermitesche Formen, Orthonormalbasen

4.3 Reelle Skalarprodukte, Hermitesche Formen, Orthonormalbasen 196 KAPITEL 4. VEKTORRÄUME MIT SKALARPRODUKT 4. Reelle Skalarprodukte, Hermitesche Formen, Orthonormalbasen In diesem Abschnitt betrachten wir Vektorräume über IR und über C. Ziel ist es, in solchen Vektorräumen

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2.

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2. Definition Die rechteckige Anordnung von m n Elementen a ij in m Zeilen und n Spalten heißt m n- Matrix. Gewöhnlich handelt es sich bei den Elementen a ij der Matrix um reelle Zahlen. Man nennt das Paar

Mehr

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Klausur: voraussichtlich Mittwoch,

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Klausur: voraussichtlich Mittwoch, Lineare Algebra I - 2. Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Klausur: voraussichtlich Mittwoch, 4.2. 4:3 Uhr, A3 A 2 Mat(n, n; K) Dann ist 7 A : Mat(n, ; K)! Mat(n, ; K) b! A b ein Endomorphismus.

Mehr

Lineare Gleichungssysteme und Matrizen

Lineare Gleichungssysteme und Matrizen Kapitel 11 Lineare Gleichungssysteme und Matrizen Ein lineares Gleichungssystem (lgs) mit m linearen Gleichungen in den n Unbekannten x 1, x 2,..., x n hat die Gestalt: Mit a 11 x 1 + a 12 x 2 + a 13 x

Mehr

3.8. Lineare Abbildungen.

3.8. Lineare Abbildungen. 38 Lineare Abbildungen 38 Lineare Abbildungen 38 Definition Es seien V und W Vektorräume über K Eine Abbildung α : V W heißt linear, wenn für alle Vektoren u, v V und alle Skalare k K gilt: α(u + v α(u

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 1 (SS 2011) Abgabetermin: Donnerstag, 21. April.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 1 (SS 2011) Abgabetermin: Donnerstag, 21. April. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 1 (SS 2011) Abgabetermin: Donnerstag, 21. April http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Symmetrische

Mehr

Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra)

Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra) Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra) Matrix: (Plural: Matrizen) Vielfältige Anwendungen in der Physik: - Lösung von linearen Gleichungsystemen - Beschreibung von Drehungen

Mehr

LINEARE ALGEBRA I (LEHRAMT GYMNASIUM) WINTERSEMESTER 2015/16

LINEARE ALGEBRA I (LEHRAMT GYMNASIUM) WINTERSEMESTER 2015/16 LINEARE ALGEBRA I (LEHRAMT GYMNASIUM) WINTERSEMESTER 2015/16 CAROLINE LASSER Inhaltsverzeichnis 1. Vektorräume 2 1.1. Vektorräume und Unterräume (13.10.) 2 1.2. Lineare Unabhängigkeit (20.10.) 3 1.3. Basen

Mehr

Mathematische Erfrischungen III - Vektoren und Matrizen

Mathematische Erfrischungen III - Vektoren und Matrizen Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNSCHE UNVERSTÄT MÜNCHEN Zentrum Mathematik PROF DRDR JÜRGEN RCHTER-GEBERT, VANESSA KRUMMECK, MCHAEL PRÄHOFER Höhere Mathematik für nformatiker Wintersemester 23/24 Aufgabenblatt 2 23 Januar 24 Präsenzaufgaben

Mehr

Matrizen. Spezialfälle. Eine m nmatrix ist ein rechteckiges Zahlenschema mit. m Zeilen und n Spalten der Form. A = (a ij ) =

Matrizen. Spezialfälle. Eine m nmatrix ist ein rechteckiges Zahlenschema mit. m Zeilen und n Spalten der Form. A = (a ij ) = Matrizen Eine m nmatrix ist ein rechteckiges Zahlenschema mit m Zeilen und n Spalten der Form a 11 a 12 a 1n A = a ij = a 21 a 22 a 2n a m1 a m2 a mn Dabei sind m und n natürliche und die Koezienten a

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12 Die Lösungshinweise dienen

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof Dr Erich Walter Farkas Kapitel 7: Lineare Algebra 71 Reelle Matrizen Prof Dr Erich Walter Farkas Mathematik I+II, 71 Reelle Matrizen 1 / 31 1 2 3 4 Prof Dr Erich

Mehr

Lineare Abbildungen. Heinrich Voss. Hamburg University of Technology Department of Mathematics. Lineare Abbildungen p.

Lineare Abbildungen. Heinrich Voss. Hamburg University of Technology Department of Mathematics. Lineare Abbildungen p. Lineare Abbildungen Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Department of Mathematics Lineare Abbildungen p. /95 Basiswechsel Es seien V, W endlichdimensionale Vektorräume und

Mehr

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 81 Reelle Matrizen Prof Dr Erich Walter Farkas http://wwwmathethzch/ farkas 1 / 31 1 2 3 4 2 / 31 Transponierte einer Matrix 1 Transponierte

Mehr

[Nächste Frage: wie wissen wir, ob Spaltenvektoren eine Basis bilden? Siehe L6.1] , enthält eine Basis v. V, nämlich und somit das ganze V.

[Nächste Frage: wie wissen wir, ob Spaltenvektoren eine Basis bilden? Siehe L6.1] , enthält eine Basis v. V, nämlich und somit das ganze V. Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung falls und nur falls ist bijektiv, d.h. ihre Matrix ist invertierbar, (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr