Mechanik der Kontinua Guido Schmitz,

Größe: px
Ab Seite anzeigen:

Download "Mechanik der Kontinua Guido Schmitz,"

Transkript

1 Mechank der Kontnua Gudo Schmtz, Glechgewchtsbedngung für enen elastschen Körper En Körper befndet sch m mechanschen Glechgewcht (d.h. de Deformaton st stabl n der Zet), falls de resulterenden Kräfte auf edes Volumenelement verschwnden. De elastschen Kräfte, de über de Oberflächen auf en Volumenelement wrken, werden we berets dskutert durch den Spannungstensor dargestellt. Zusätzlch müssen wr noch Kräfte berückschtgen, de drekt auf das Volumen wrken, we etwa das Gravtatonfeld, das an de schwere Masse koppelt, oder en elektrsches Feld, das Kräfte ausübt, falls das Volumen ene absolute Ladung enthält oder enen Ladungsdpol darstellt. Wr fordern also für das Glechgewcht (als Bespel her Gravtatonskräfte mt Beschleungung g ): F elast k V + F k grav ds k + V ; { x, y, z} ρ g dv (4.3) Das Oberflächenntegral m ersten Term transformeren wr n en Volumenntegral (Satz von Gauss) x k dv + V k k V ρ g dv k + ρ g ; x V (4.33) xk Gl muß überall m Volumen des Körpers erfüllt sen. De Spannungen an den Außenflächen werden durch äußere Spannungen p aufgebracht. Also muss auf der Oberfläche gelten: ds p ds ; x V (4.33a ) k k Anmerkung zur Verwendung des Satz von Gauss: Se haben bsher desen Satz nur be Vektoren angewandt, her st aber en Tensor. Stufe. Jedoch stellt n Glechung 4.3 be festem enen enfachen Vektor dar, dessen Komponenten mt k ndzert werden. Der Satz von Gauss wrd also für ede Kraftrchtung getrennt angewendet. Für alle Fälle noch de anschaulche Deutung: Z.B Kraft n x-rchtung auf Volumenwürfel aufgrund ener mt x zunehmenden Normalspannung ergbt sch aus Dfferenz der Kraft an der lnken und rechten Fläche. Also F x ( xx ( x + x) xx ( x)) y z xx ( x) x y z ( Taylorentwcklung!) x Genauso de Überlegung für alle anderen Flächen des Volumens und Komponenten des Spannungstensors und der Satz von Gauss st bewesen (zumndest für enen Physker).

2 4.5.6 Verallgemenertes Hooksches Gesetz Nach der Defnton des Verzerrungs- und Spannungstensors, snd wr nun n der Lage de Egenschaften des Tensors der elastschen Modulen n Gl. 4.3 zu bestmmen. Da und von. Stufe, muss de lneare Abbldung kl von 4. Stufe sen. D.h. kl hätte m Extremfall 8 unabhängge Komponenten. Glücklcherwese läßt sch de große Zahl der Parameter auf Grund von Symmetreüberlegungen wetgehend reduzeren. Das werden wr m weteren studeren. Zunächst untersuchen wr allgemene Symmetren, de unabhängg vom betrachteten Materal gelten. Dazu ene energetsche Betrachtung (Wr hatten a schon bem Tensor der Polarserbarket gesehen, dass solche Betrachtungen geegnet snd um Symmetreegenschaften aufzudecken Abschntt 4.4.3): Thermodynamk der Deformaton Wr denken uns de Verzerrung enes Körpers kontnuerlch durch en zunehmendes Verschebungsfeld aufgebaut und ermtteln, de dabe aufzubrngende mechansche Arbet. Energeänderung mt klener Verschebung δu (Kraft auf das Volumenelement x Verschebung): δw, f δ u dv δ u dv x sehe Gl.(4.33) An deser Stelle benutzen wr den Gausschen Satz, um ene Art mehrdmensonale partelle Integraton auszuführen, nämlch Gauss u δuds ( δu ) dv u dv dv x δ + x V V V V x Brngen wr den letzten Term rechts auf de lnke Sete, so erhalten wr de Formel für partelle Integraton und damt: δu δw δuds dv x V, Für enen sehr großen Körper werden de elastschen Energen an der Oberfläche nur ene untergeordnete Rolle spelen. Wr vernachlässgen deshalb den ersten Term auf der rechten Sete. Im zweten Term ordnen wr de Summengleder so um, dass wr den Tensor n der Glechung erhalten: δ W,, δ δ u x dv dv Betrachten wr, we n der Elastztätstheore üblch, de Energe pro Volumen so fnden wr schleßlch enen sehr überschtlchen Ausdruck δw, w δ δw, δ u + x (4.35)

3 De elastsche Deformatonsarbet geht n de Free Energe n ähnlcher Wese en, we de allgemene mechansche Arbet pdv. Also für de Free Energe pro Volumen: f sdt + Genauso we der Druck auf en System berechnet werden kann durch p-df/dv T fnden wr für den Spannungstensor Da kl glt für den Tensor der elastschen Modulen f kl d f kl (4.36) D.h. der Tensor st symmetrsch gegen de Vertauschung von mt kl. Ausserdem wssen wr a schon, dass Verzerrungs- und Spannungstensor symmetrsch snd, so dass für wetere Glechungen gelten: kl kl kl Das snd nsgesamt 6 unabhängge Glechungen, folglch bleben unabhängge Parameter zur Beschrebung des allgemensten elastschen Materals Vogt-Notaton Um den Tensor 4. Stufe formal darzustellen, schrebt man gewöhnlch den Spannungs- und Verzerrungstensor als enen 9-komponentgen Vektor, so dass kl als ene 9x9 Matrx geschreben werden kann: T lk (4.37 ) (4.38) Ene Redukton deser 9x9 Matrx wrd errecht, wenn man de Redundanz der Informaton n den ncht-dagonalen Elementen von und berückschtgt. Da symmetrsch, snd de letzen dre Vektorzelen von Gl obsolet. De Matrx der elastschen Moduln wrd also formal als ene 6x6 Matrx geschreben. Zur Vermedung von zuvel Schrebarbet st es ferner üblch, de Indzees be n Paaren zusammenzufassen und dese n der folgenden Wese durch Enfachndzees zu ersetzen:

4 (4.39 ) (Vogt-Notaton). (Beachte den Faktor zwe vor den Komponenten des Verzerrungstensors n den letzten dre Vektorzelen von Gl Deser wrd sofort enschtg, wenn man auf Gl. 4.3 zurückgeht. 9 Summanden n eder Zele!) In der Lteratur werden de elastschen Konstanten ener Substanz n der Regel mt desen zwe Indzees angegeben. Dese müssen dann für Rechnungen n das 4er Schema übersetzt werden. Aus der Vogt-Notaton st de maxmale Zahl unabhängger Parameter offenschtlch. De 6x6 Matrx der st symmetrsch. Also 6 + (36-6)/ unabhängge Komponenten Kubsche Symmetre Wr zegen etzt am Bespel der kubschen Symmetre de wetere Redukton der Zahl unabhängger Parameter für den Tensor 4. Stufe, falls de Substanz weterer Punktsymmetren gehorcht. De kubsche Symmetre drücken wr aus durch ) 3 Spegelebenen, de senkrecht auf den Koordnatenachsen stehen und durch ) 4 verzählge Drehachsen parallel zu den Koordnatenachsen. Ene Spegelung überführt etwa de Vektorkomponenten x -x, y y, z z. Folglch muss gelten xyyz f xy yz Führt man de gleche Überlegung für alle anderen Spegelebenen und möglchen Kombnaton der Indzees aus, so stellt man fest, das alle Modulen mt ungerader Anzahl glecher Indzees verschwnden müssen. In der Matrx n Vogt-Notaton blebt also nur noch der obere lnke Quadrant und de Hauptdagonale unglech null. Ene Drehung von 9 um de z-achse z. B. drückt sch durch de Koordnatentransformaton x y, y -x, z z aus. Entsprechend für Drehungen um de beden anderen Achsen. Also xxxx yyyy zzzz, d.h. de Elemente auf der Hauptdagonalen m oberen lnken Quadranten snd alle unterenander glech. Analog xzxz yzyz xyxy 44, d.h. de Elemente auf der Hauptdagonalen m unteren rechten Quadranten snd alle unterenander glech und schleßlch xxzz yyzz xxyy, d.h. de Nchtdagonalelemente des oberen lnken Quadranten snd alle unterenander glech. Be enem kubschen Krstall reduzert sch also en Tensor 4. Stufe auf dre unabhängge Komponenten. De elastschen Egenschaften enes solchen Festkörpers werden defnert durch, und 44 xy f yz f xy yz kub ( 4.39 ) (Sehe auch de Zusammenstellung für andere Krstallsymmetren n der folgenden Abbldung.) 4

5 4.5. Isotrope Berechnen wr zum Verglech de Matrx der elastschen Modulen für en sotropes Materal. Wr wssen, dass de Free Energe kl,, k, l enen Skalar darstellt. Es gbt genau zwe Möglchketen aus dem symmetrschen Tensor Skalare (also Grössen, de be ener Koordnatentransformaton unverändert bleben) zu konstrueren, nämlch und, Also muss de Free Energe sch ausdrücken lassen durch f λ f f + + µ (4.4, mt zwe zunächst wllkürlchen Konstanten λ und µ. Dese können wr edoch lecht dentfzeren durch kl ( ) ( ) ) 5

6 f λ ( + + ) f µ so dass sch de Matrx der elastschen Modulen für en sotropes System schrebt 33 + µ sotrop λ + µ λ λ λ λ + µ λ λ λ λ + µ µ µ µ (4.4) (Damt bewest sch auch unsere Behauptung zu Begnn der Ausführungen zur Elastztätstheore (Abschntt 4..3), dass zwe Parameter, etwa das Elastztätsmodul und de Querkontrakton ausrechen, um en sotropes Materal allgemen zu beschreben.) Der Verglech mt Gl lefert uns schleßlch de Isotropebedngung für en kubsches Materal. Falls zwschen den dre elastschen Konstanten enes solchen Materals de Bezehung 44 (4.4 ) erfüllt st, so st das Materal hnschtlch sener elastschen Egenschaften sotrop. Es treten dann kene Rchtungsabhänggketen be Stauchung und Dehnung oder be der Ausbretung von Schall mehr auf. (Tabelle: Al st en praktsch sotropes Materal, während Fe deutlch ansotrop st.) 4.5. Gesamtenerge enes elastschen Systems In unseren Betrachtungen zu den elastschen Egenschaften hatten wr sehr oft Gebrauch gemacht von der Gültgket des Superpostonsprnzps zufolge dessen sch de Verschebungsfelder zweer Kraftzentren (etwa zu große Ausschedungen n ener Matrx) enfach addtv überlagern zu enem Gesamt Verschebungsfeld. Da der Spannungstensor lnear mt dem Verzerrungstensor zusammenhängt glt deses Superpostonsprnzp auch für de Spannungen n enem elastschen System: ( x ) ( x ) ( ) ( ) ( x ) + ( x ) + ( ) ( x ) ( ) ( x ) 6

7 Deses Superpostonsprnzp glt edoch für de elastsche Energe enes Gesamtsystems, das sch aus zwe von enander getrennten Verzerrungen zusammensetze, ncht. Das sehen wr lecht en: W () () () () ( + ) kl( kl + kl ) kl kl () () kl + kl () () kl + kl () () kl (4.43) De beden ersten Summanden auf der rechten Sete entsprechen tatsächlch der Energe der beden Teldeformatonen () und (). Allerdngs trtt zur Gesamtenerge noch en drtter Term hnzu, der de Wechselwrkung zwchen () und () beschrebt. (Bespele n der Vorlesung: Druckabhänggket der Wasserstoffspecherung n metallscher Matrx, Selbstorgansaton der räumlchen Anordnung von Ausschedungen ener zweten Phase n sogenannten Superalloys) 4.6. Mkroskopsche Deutung der elastschen Konstanten Demonstratonsversuch n der Vorlesung: Änderung der Schwngfrequenz ener metallschen Stmmgabel. Be Erwärmung nmmt Frequenz ab. Da Masse unverändert, verrngert sch offenschtlch de Stefgket mt stegender Temperatur. Gegenversuch mt Stckstoffkühlung bestätgt dese Temperaturabhänggket. Ganz anders verhalten sch Elastomere (Gumms). Her nmmt de elastsche Spannung mt der Temperatur zu. Demonstraton: )drekte Messung der Länge enes Gumms unter Last, Gumm wrd be Erwärmung kürzer, ) Funktonstüchtger Gumm-Motor. De Gründe für das elastsche Verhalten schenen be Metall und Elastomer von verschedener Natur zu sen. Auch her weder zu Begnn enge thermodynamsche Überlegungen. De Innere Energe ändert sch we (. Hauptsatz) du d U d du T + TdS TdS ds d ( 4.45 ) De Interpretaton der letzten Glechung st de folgende: Offenschtlch gbt es zwe Enflüsse, de de rücktrebende Kraft be ener Deformaton hervorrufen. De Zunahme der Inneren Energe oder de Abnahme der Entrope mt der Deformaton. Entsprechend sprcht man be Metallen von domnerenden Energeelastztät, de mt stegender Temperatur abnmmt (de Bndungen zwschen den Atomen werden wecher, z.b. nehmen a auch de Abstände der Atome zu, Wärmeausdehnung) und be den Elastomeren von domnerender Entropeelastztät. Letztere sollte ene 7

8 drekte Temperaturabhänggket zegen aufgrund des mt der Temperatur zunehmenden Enflusses der Entrope. De Energeelastztät kann man größtentels mt Hlfe enes Federmodells verstehen we n der nebenstehenden Abbldung für enen Ionenkrstall angedeutet. (Allerdngs müssen für ene exakte Beschrebung oft rchtungsabhängge Kräfte engeführt werden, während en enfaches Federmodell nur Zentralkräfte zwschen Atompaaren ergbt.) Im Folgenden betrachten wr etzt als en lehrreches Bespel de Entropeelastztät etwas genauer. Das gbt uns auch enen ersten Enblck n den strukturellen Aufbau der wchtgen Stoffklasse der Polymere und hre physkalsche Beschrebung Entropeelastztät Es gbt ene große Zahl polymerer Werkstoffe, de sch durch de Beschaffenhet der Monomere und der Länge der Polymerkette unterscheden. Angeschts des oft sehr komplzerten Aufbaus des enzelnen Polymer-Kette und der Velfalt verschedener Kettenstrukturen st es erstaunlch, dass Physker mt hren Methoden das Verhalten solcher Systeme verstehen können. De Extrakton der wesentlchen Egenschaften solcher Systeme und der Aufbau der daraus resulterenden Polymerphysk war ene der großen Lestungen der Physk n der zweten Hälfte des letzten Jahrhunderts. Polymere Festkörper lassen sch am ehesten verstehen als ene ungeordnete Verschlngung der Polymer-Ketten unterenander (Spaghett-Modell). De Wechselwrkung zwschen den Ketten st n der Regel sehr schwach, so dass de Ketten anenander abgleten können (Reptatonsmodelle). Deshalb krechen Polymere (etwa de bekannten Thermoplaste) sehr stark. Se zegen vskoelastsche Egenschaften, d.h. se stellen so etwas we en Mtteldng zwschen Festkörper und Flüssgketen dar. Um enen echten Festkörper zu erhalten, sogenannte Elastomere, werden de enzelnen Ketten chemsch mtenander verhakt (etwa durch Schwefelbrücken be der Vulkansaton. Wr dskuteren etzt das elastsche Verhalten enes Elastomers, das wr uns vorstellen we n der Skzze angedeutet als verhakten Polymerhaufen. De Länge der Kettenabschntte zwschen den Verhakungspunkten se überall glech (etwas künstlch, aber sonst müssten wr zusätzlch mtteln), d.h. wr haben N Monomerenheten der Länge a zwschen e zwe Verhakungen. Zwschen zwe Verhakungspunkten kann de Kette sehr vele verschedene Lagen (Konfguratonen) ennehmen. De Zahl der möglchen Konfguratonen hängt edoch vom räumlchen Abstand der bedenverhakungen ab. Das seht man durch ene Randomwalk- 8

9 Theore en. De zufällge Lage der Kette denken wr uns durch N zufällge Sprünge der Länge a entwckelt. Aus unseren Überlegungen zur Dffuson wssen wr, dass das mttlere Abstandsquadrat nach N Sprüngen gerade < R > Na beträgt und dass wr deses mt der Dffusonslänge Dt (R. Krchhem, Gl. 38) dentfzeren können. De Wahrschenlchket, das Ende enes Kettenabschntts m Volumenelement dvdxdydz zu fnden, wenn sen Anfang m Ursprung des Koordnatensystems legt (sehe Skzze), st also gegeben durch das Dffusonsprofl ener Punktquelle am Ursprung ( Gaussglocke ): 3 3r p( x, y, z) dv c( x, y, z) dv exp dv (4.46 ) 4πDt 4Dt De Wahrschenlchket st aber gerade proportonal zur Zahl der zufällg vertelten Konfguratonen, also st de Konfguratonsentrope enes Kettenabschntts S const + k ln p 3kr (4.47) 4Na (statstsche Intepretaton der Entrope nach Boltzmann, sehe auch Abletung der Mschungsentrope, R. Krchhem) De Gesamtentrope (Entrope st extensv) ergbt sch durch Summaton über alle Kettenabschntte m Enhetsvolumen 3k 3k s (4.48) r x + y + z 4Na 4Na Durch ene enachsge Dehnung werden etzt alle Abstände affn gedehnt. Dabe nehmen wr Volumenerhaltung an (gute Näherung für Gumm). De Deformaton der Abstände st so: x ' ( + ) x ; y ' y + Ensetzen n Gl lefert de Konfguratonsentrope n Abhänggket von der Dehnung 3k s( ) 4Na ( + ) x 3 / ; z ' + ( y + + 3k r ( ) + + 4Na + 3 nk ( + ) + (4.49) 4 + mt n Anzahl der freen Kettenabschntte m Enhetsvolumen. Damt berechnen wr de zur Deformaton benötgte Zugspannung z + z ) 9

10 s T nkt + ) + ( + ) 3nkT : E ( (4.5) (4.5) Wr sehen (Gl. 4.5), dass das Elastztätsmodul m Falle der Entropeelastztät proportonal zu T st, allerdngs st das elastsche Verhalten keneswegs mehr lnear, we de vollständge Glechung 4.5 zegt (sehe auch nebenstehende Abbldung).

Werkstoffmechanik SS11 Baither/Schmitz. 5. Vorlesung

Werkstoffmechanik SS11 Baither/Schmitz. 5. Vorlesung Werkstoffmechank SS11 Bather/Schmtz 5. Vorlesung 0.05.011 4. Mkroskopsche Ursachen der Elastztät 4.1 Energeelastztät wrd bestmmt durch de Wechselwrkungspotentale zwschen den Atomen, oft schon auf der Bass

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

Dynamik starrer Körper

Dynamik starrer Körper Dynamk starrer Körper Bewegungen starrer Körper können n Translaton und Rotaton zerlegt werden. De Rotaton stellt enen nneren Frehetsgrad des Körpers dar, der be Punktmassen ncht exstert. Der Schwerpunkt

Mehr

18. Vorlesung Sommersemester

18. Vorlesung Sommersemester 8. Vorlesung Sommersemester Der Drehmpuls des starren Körpers Der Drehmpuls des starren Körpers st etwas komplzerter. Wenn weder de Wnkelgeschwndgket um de feste Rotatonsachse st, so wrd mt Hlfe des doppelten

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

1 Mehrdimensionale Analysis

1 Mehrdimensionale Analysis 1 Mehrdmensonale Analyss Bespel: De Gesamtmasse der Erde st ene Funton der Erddchte ρ Erde und des Erdradus r Erde De Gesamtmasse der Erde st dann m Erde = V Erde ρ Erde Das Volumen ener Kugel mt Radus

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

Ionenselektive Elektroden (Potentiometrie)

Ionenselektive Elektroden (Potentiometrie) III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell)

Mehr

Nernstscher Verteilungssatz

Nernstscher Verteilungssatz Insttut für Physkalsche Cheme Grundpraktkum 7. NERNSTSCHER VERTEILUNGSSATZ Stand 03/11/2006 Nernstscher Vertelungssatz 1. Versuchsplatz Komponenten: - Schedetrchter - Büretten - Rührer - Bechergläser 2.

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6 Praktkum Physkalsche Cheme I (C-2) Versuch Nr. 6 Konduktometrsche Ttratonen von Säuren und Basen sowe Fällungsttratonen Praktkumsaufgaben 1. Ttreren Se konduktometrsch Schwefelsäure mt Natronlauge und

Mehr

Kreisel. koerperfestes KS. z y. raumfestes KS. Starrer Körper: System von Massepunkten m i, deren Abstände r i r j untereinander konstant sind.

Kreisel. koerperfestes KS. z y. raumfestes KS. Starrer Körper: System von Massepunkten m i, deren Abstände r i r j untereinander konstant sind. Kresel z y koerperfestes KS z y x raumfestes KS x Starrer Körper: System von Massepunkten m, deren Abstände r r j unterenander konstant snd. Der Zustand läßt sch beschreben durch: Poston des Schwerpunktes,

Mehr

Physik A VL11 ( )

Physik A VL11 ( ) Physk A VL11 (0.11.01) Dynamk der Rotatonsbewegung I Kresbewegung und Kräfte Drehmoment und räghetsmoment Kresbewegung und Kräfte en Massepunkt (Schwerpunkt) führt nur ene ranslatonsbewegung aus ausgedehnte

Mehr

Boost-Schaltwandler für Blitzgeräte

Boost-Schaltwandler für Blitzgeräte jean-claude.feltes@educaton.lu 1 Boost-Schaltwandler für Bltzgeräte In Bltzgeräten wrd en Schaltwandler benutzt um den Bltzkondensator auf ene Spannung von engen 100V zu laden. Oft werden dazu Sperrwandler

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt -

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt - Flußnetzwerke - Strukturbldung n der natürlchen Umwelt - Volkhard Nordmeer, Claus Zeger und Hans Joachm Schlchtng Unverstät - Gesamthochschule Essen Das wohl bekannteste und größte exsterende natürlche

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

Ko- und kontravariante Darstellung

Ko- und kontravariante Darstellung Ko- und kontravarante Darstellung Physkalsche Sachverhalte snd vom verwendeten Koordnatensystem unabhängg. Sehr oft st es snnvoll, se n verschedenen Koordnatensystemen darzustellen. Berets erwähnt wurden

Mehr

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt Kaptel 3 Zwe Personen Spele 3.1 Matrxspele 3.2 Matrxspele n gemschten Strategen 3.3 B Matrxspele und quadratsche Programme 3.4 B Matrxspele und lneare Komplementartätsprobleme 3.1 Matrxspele Wr betrachten

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

3.3 Lineare Abbildungen und Matrizen

3.3 Lineare Abbildungen und Matrizen 33 LINEARE ABBILDUNGEN UND MATRIZEN 87 33 Lneare Abbldungen und Matrzen Wr wollen jetzt de numersche Behandlung lnearer Abbldungen zwschen Vektorräumen beschreben be der vorgegebene Basen de Hauptrolle

Mehr

3.6 Molekulare Dynamik

3.6 Molekulare Dynamik 3.6 Molekulare Dynamk In den letzten 5 Jahrzehnten wurden drekte numersche Smulatonen zur statstschen Auswertung von Veltelchensystemen mmer wchtger. So lassen sch Phasenübergänge, aber auch makroskopsche

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

Hydrosystemanalyse: Finite-Elemente-Methode (FEM)

Hydrosystemanalyse: Finite-Elemente-Methode (FEM) Hydrosystemanalyse: Prof. Dr.-Ing. habl. Olaf Koldtz 1 Helmholtz Centre for Envronmental Research UFZ, Lepzg 2 Technsche Unverstät Dresden TUD, Dresden Dresden, 03. Jul 2015 1/31 Prof. Dr.-Ing. habl. Olaf

Mehr

11 Chemisches Gleichgewicht

11 Chemisches Gleichgewicht 11 Chemsches Glechgewcht 11.1 Chemsche Reaktonen und Enstellung des Glechgewchts Untersucht man den Mechansmus chemscher Reaktonen, so wrd man dese enersets mt enem mkroskopschen oder knetschen Blck auf

Mehr

Übung zur Vorlesung. Informationstheorie und Codierung

Übung zur Vorlesung. Informationstheorie und Codierung Übung zur Vorlesung Informatonstheore und Coderung Prof. Dr. Lla Lajm März 25 Ostfala Hochschule für angewandte Wssenschaften Hochschule Braunschweg/Wolfenbüttel Postanschrft: Salzdahlumer Str. 46/48 3832

Mehr

4. Energie, Arbeit, Leistung, Impuls

4. Energie, Arbeit, Leistung, Impuls 34 35 4. Energe, Arbet, Lestung, Ipuls Zentrale Größen der Physk: Energe E, Enhet Joule ( [J] [N] [kg /s ] Es gbt zwe grundsätzlche Foren on Energe: knetsche Energe: entelle Energe: Arbet, Enhet Joule

Mehr

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften Bassmodul Makroökonomk /W 2010 Grundlagen der makroökonomschen Analyse klener offener Volkswrtschaften Terms of Trade und Wechselkurs Es se en sogenannter Fall des klenen Landes zu betrachten; d.h., de

Mehr

Beschreibende Statistik Mittelwert

Beschreibende Statistik Mittelwert Beschrebende Statstk Mttelwert Unter dem arthmetschen Mttel (Mttelwert) x von n Zahlen verstehen wr: x = n = x = n (x +x +...+x n ) Desen Mttelwert untersuchen wr etwas genauer.. Zege für n = 3: (x x )

Mehr

SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT

SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT Smulaton von Hybrdfahrzeugantreben mt optmerter Synchronmaschne 1 SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT OPTIMIERTER SYNCHRONMASCHINE H. Wöhl-Bruhn 1 EINLEITUNG Ene Velzahl von Untersuchungen hat sch

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression Beschrebung des Zusammenhangs zweer metrscher Merkmale Streudagramme Korrelatonskoeffzenten Regresson Alter und Gewcht be Kndern bs 36 Monaten Knd Monate Gewcht 9 9 5 8 3 4 7.5 4 3 6 5 3 6 4 3.5 7 35 5

Mehr

Debye-Hückel-Theorie. Version 7.6.06

Debye-Hückel-Theorie. Version 7.6.06 Debye-Hück-Theore erson 7.6.6 Debye-Hück-Theore 1. Enletung Löst man z. B. Chlorwasserstoff HCl n Wasser, dann bestzt de wässrge HCl- Lösung ene ratv hohe ektrsche Letfähgket. Des west berets daraufhn,

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

ω 0 = Protokoll zu Versuch E6: Elektrische Resonanz

ω 0 = Protokoll zu Versuch E6: Elektrische Resonanz Protokoll zu Versuch E6: Elektrsche esonanz. Enletung En Schwngkres st ene elektrsche Schaltung, de aus Kapaztät, Induktvtät und ohmschen Wderstand besteht. Stmmt de Frequenz der anregenden Wechselspannung

Mehr

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt: Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,

Mehr

Die Zahl i phantastisch, praktisch, anschaulich

Die Zahl i phantastisch, praktisch, anschaulich Unverstät Würzburg 977 Würzburg Telefon: (91 888 5598 De Zahl phantastsch, praktsch, anschaulch De Geschchte der Zahl war dre Jahrhunderte lang dadurch geprägt, dass se und damt de kompleen Zahlen n Mathematkerkresen

Mehr

1.1 Das Prinzip von No Arbitrage

1.1 Das Prinzip von No Arbitrage Fnanzmärkte H 2006 Tr V Dang Unverstät Mannhem. Das Prnzp von No Arbtrage..A..B..C..D..E..F..G..H Das Framework Bespele Das Fundamental Theorem of Fnance Interpretaton des Theorems und Zustandsprese No

Mehr

5. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013

5. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013 O. Alaya, S. Demrel M. Fetzer, B. Krnn M. Wed 5. Gruppenübung zur Vorlesung Höhere Mathematk Wntersemester /3 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungshnwese zu den Hausaufgaben: Aufgabe H 6. Darstellungen

Mehr

Bestimmung des Aktivitätskoeffizienten mittels Dampfdruckerniedrigung

Bestimmung des Aktivitätskoeffizienten mittels Dampfdruckerniedrigung Grundraktkum Physkalsche Cheme Versuch 22 Bestmmung des Aktvtätskoeffzenten mttels Damfdruckernedrgung Überarbetetes Versuchsskrt, 27..204 Grundraktkum Physkalsche Cheme, Versuch 22: Aktvtätskoeffzent

Mehr

Thermodynamik der Verbrennung

Thermodynamik der Verbrennung hermodynamk der Verbrennung Chemsche Reakton 1.0 Verbrennung Exotherme Reakton Endotherme Reakton Reversble Reakton: A+B C+D Z.B. Säure Base Glechgewchte Irreversble Reakton A+B C+D Z.B. Verbrennungsreaktonen

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

p : Impuls in Ns v : Geschwindigkeit in m/s

p : Impuls in Ns v : Geschwindigkeit in m/s -I.C9-4 Impuls 4. Impuls und Kraftstoß 4.. Impuls De Bewegung enes Körpers wrd bespelswese durch de Geschwndgket beschreben. Um de Bewegung enes Körpers zu ändern braucht man ene Kraft (Abb.). Dese führt

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Protokoll zum Grundversuch Mechanik

Protokoll zum Grundversuch Mechanik Protokoll zum Grundversuch Mechank 3.6. In desem Grundversuch zur Mechank werden dre verschedene Arten von Pendeln untersucht. Das Reversonspendel, das Torsonspendel und gekoppelte Pendel. A. Das Reversonspendel

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

MOD-01 LAGRANGE FORMALISMUS -- TEIL 1

MOD-01 LAGRANGE FORMALISMUS -- TEIL 1 MOD- LAGRAGE FORMALISMUS -- EIL. Zustandsfunktonen Defnton -: Zustandsfunkton Ene Zustandsfunkton W( () t, t) = W(, t) bzw. W ( ) st jede belebge skalare Funkton der Zustandsgrößen () t und der Zet t,

Mehr

4. Rechnen mit Wahrscheinlichkeiten

4. Rechnen mit Wahrscheinlichkeiten 4. Rechnen mt Wahrschenlchketen 4.1 Axome der Wahrschenlchketsrechnung De Wahrschenlchketsrechnung st en Telgebet der Mathematk. Es st üblch, an den Anfang ener mathematschen Theore enge Axome zu setzen,

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

2 Vektoren. 2.1 Vektorraum 2 VEKTOREN 1

2 Vektoren. 2.1 Vektorraum 2 VEKTOREN 1 2 VEKTOREN 1 2 Vektoren 2.1 Vektorraum In der Physk unterscheden wr skalare Grössen von vektorellen. En Skalar st ene reelle Messgrösse, mathematsch enfach ene Zahl, phykalsch ene dmensonsbehaftete Zahl.

Mehr

Der stöchiometrische Luftbedarf einer Reaktion kann aus dem Sauerstoffbedarf der Reaktion und der Zusammensetzung der Luft berechnet werden.

Der stöchiometrische Luftbedarf einer Reaktion kann aus dem Sauerstoffbedarf der Reaktion und der Zusammensetzung der Luft berechnet werden. Stoffwerte De Stoffwerte für de enzelnen omponenten raftstoff, Luft und Abgas snd den verschedenen Stellen aus den Lteraturhnwesen zu entnehmen, für enge Stoffe sollen jedoch de grundlegenden Zusammenhänge

Mehr

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny eseproben aus dem Buch "n mt en zur Elektrotechnk" Franzs Verlag, 85586 Pong ISBN 978--77-4046-8 Autor des Buches: eonhard Stny Autor deser eseprobe: eonhard Stny 005/08, alle echte vorbehalten. De Formaterung

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

12 UMPU Tests ( UMP unbiased )

12 UMPU Tests ( UMP unbiased ) 89 1 UMPU Tests ( UMP unbased ) Nach Bemerkung 11.8(b) exstert m Allgemenen ken zwesetger UMP- Test zu enem Nveau α. Deshalb Enschränkung auf unverfälschte Tests: ϕ Φ α heßt unverfälscht (unbased) zum

Mehr

6.1 Definition der freien Energie und der freien Enthalpie

6.1 Definition der freien Energie und der freien Enthalpie -- 6 FREIE ENERGIE UND FREIE ENHALIE 6. Defnton der freen Energe und der freen Enthalpe Nachdem der Energeerhaltungssatz gefunden war, hat man versucht, chemsche Affntäten mt Hlfe der Energe zu erklären.

Mehr

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07 Auswertung von Umfragen und Expermenten Umgang mt Statstken n Maturaarbeten Realserung der Auswertung mt Excel 07 3.Auflage Dese Broschüre hlft bem Verfassen und Betreuen von Maturaarbeten. De 3.Auflage

Mehr

Die Kugel Lösungen. 1. Von einer Kugel ist der Radius bekannt. Berechne Volumen und Oberfläche der

Die Kugel Lösungen. 1. Von einer Kugel ist der Radius bekannt. Berechne Volumen und Oberfläche der De Kugel Lösungen 1. Von ener Kugel st der Radus bekannt. Berechne Volumen und Oberfläche der Kugel. r,8 cm 5, cm 18,6 cm 4, cm 5,6 cm 4,8 cm V 0 cm³ 64 cm³ 6 954 cm³ cm³ 76 cm³ 46 cm³ O 181 cm² 5 cm²

Mehr

Lösungen zum 3. Aufgabenblock

Lösungen zum 3. Aufgabenblock Lösungen zum 3. Aufgabenblock 3. Aufgabenblock ewerber haben n enem Test zur sozalen Kompetenz folgende ntervallskalerte Werte erhalten: 96 131 11 1 85 113 91 73 7 a) Zegen Se für desen Datensatz, dass

Mehr

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. .

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. . Neuronale Netze M. Gruber 7.11.015 Begnnen wr mt enem Bespel. Bespel 1 Wr konstrueren enen Klasskator auf der Menge X = [ 1; 1], dessen Wrkung man n Abb.1 rechts sehen kann. Auf der blauen Telmenge soll

Mehr

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden.

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden. Kombnator. Problemstellung Ausgangspunt be ombnatorschen Fragestellungen st mmer ene endlche Menge M, aus deren Elementen man endlche Zusammenstellungen von Elementen aus M bldet. Formal gesprochen bedeutet

Mehr

Vermessungskunde für Bauingenieure und Geodäten

Vermessungskunde für Bauingenieure und Geodäten Vermessungskunde für Baungeneure und Geodäten Übung 4: Free Statonerung (Koordnatentransformaton) und Flächenberechnung nach Gauß Mlo Hrsch Hendrk Hellmers Floran Schll Insttut für Geodäse Fachberech 13

Mehr

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i Itemanalyse und Itemkennwerte De Methoden der Analyse der Itemegenschaften st ncht m engeren Snne Bestandtel der Klassschen Testtheore Im Rahmen ener auf der KTT baserenden Testkonstrukton und -revson

Mehr

Physikalisches Anfängerpraktikum Teil 2 Versuch PII 33: Spezifische Wärmekapazität fester Körper Auswertung

Physikalisches Anfängerpraktikum Teil 2 Versuch PII 33: Spezifische Wärmekapazität fester Körper Auswertung Physkalsches Anfängerpraktkum Tel 2 Versuch PII 33: Spezfsche Wärmekapaztät fester Körper Auswertung Gruppe M-4: Marc A. Donges , 060028 Tanja Pfster, 204846 2005 07 spezfsche Wärmekapaztäten.

Mehr

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t + " I ) = 0 $ " I

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t +  I ) = 0 $  I Wechselstrom Dr. F. Raemy Wechselspannung und Wechselstrom können stets we folgt dargestellt werden : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Wderstand m Wechselstromkres Phasenverschebung:!"

Mehr

1. Klausur in "Technischer Thermodynamik I" (WiSe2013/14, ) - VERSION 1 -

1. Klausur in Technischer Thermodynamik I (WiSe2013/14, ) - VERSION 1 - UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Apl. Professor Dr.-Ing. K. Spndler 1. Klausur n "Technscher Thermodynamk I" (WSe2013/14, 12.12.2013) - VERSION 1 - Name: Fachr.: Matr.-Nr.:

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

Standardnormalverteilung / z-transformation

Standardnormalverteilung / z-transformation Standardnormalvertelung / -Transformaton Unter den unendlch velen Normalvertelungen gbt es ene Normalvertelung, de sch dadurch ausgeechnet st, dass se enen Erwartungswert von µ 0 und ene Streuung von σ

Mehr

6 Wandtafeln. 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln. 6.3.1 Allgemeines

6 Wandtafeln. 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln. 6.3.1 Allgemeines 6 Wandtafeln 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln 6.3.1 Allgemenes Be der Berechnung der auf de enzelnen Wandtafeln entfallenden Horzontalkräfte wrd ene starre Deckenschebe angenommen.

Mehr

Anwendungsmöglichkeiten von Lernverfahren

Anwendungsmöglichkeiten von Lernverfahren Künstlche Neuronale Netze Lernen n neuronalen Netzen 2 / 30 Anwendungsmöglcheten von Lernverfahren Prnzpelle Möglcheten Verbndungsorentert 1 Hnzufügen neuer Verbndungen 2 Löschen bestehender Verbndungen

Mehr

6. Hilbertraum und lineare Operatoren (mathematische Grundlagen QM)

6. Hilbertraum und lineare Operatoren (mathematische Grundlagen QM) 6. Hlbertraum und lneare Operatoren (mathematsche Grundlagen QM) 6.1 Hlbertraum Raum = mathematsches Konstrukt: Vektorraum a) Der lneare komplexe Raum st de Menge von mathematschen Objekten mt folgenden

Mehr

Online Algorithmen. k-server randomisiert Teil II

Online Algorithmen. k-server randomisiert Teil II Onlne Algorthmen k-server randomsert Tel II Ausarbetung für das Semnar Onlne Algorthmen Prof. Dr. Ro. Klen Anette Ebbers-Baumann Ansgar Grüne Insttut für Informatk Theorethsche Informatk und formale Methoden

Mehr

B. Das nebenstehende Blockdiagramm zeigt einen Energieumwandler. Gegeben sind die STROMSTÄRKEN der jeweiligen Energieträger

B. Das nebenstehende Blockdiagramm zeigt einen Energieumwandler. Gegeben sind die STROMSTÄRKEN der jeweiligen Energieträger PHYSIK Bespel für ene schrftlche Prüfung Allgemene Aufgaben A. Geben Se de allgemenen Zusammenhänge zwschen der Energe, der Energestromstärke, der Energestromdchte und der vom Energestrom durchströmten

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

Prof. Dr.- Ing. Herzig Vorlesung "Grundlagen der Elektrotechnik 1" 1etv3-4

Prof. Dr.- Ing. Herzig Vorlesung Grundlagen der Elektrotechnik 1 1etv3-4 Prof. Dr.- ng. Herzg.6 Spezelle erechnungsverfahren lnearer Netzwerke.6. Überlagerungsverfahren Der Lernende kann - den Überlagerungssatz und das darauf beruhende erechnungsprnzp lnearer Netzwerke erklären

Mehr

B.8 Gleichgewichtsfunktionen für materiell geschlossene Systeme

B.8 Gleichgewichtsfunktionen für materiell geschlossene Systeme Prof. Dr. H.-H. Kohler, WS 2004/05 PC1 Kaptel B.8 - Glechgewchtsfunktonen B.8-1 Alle Wasser laufen ns Meer B.8 Glechgewchtsfunktonen für materell geschlossene Systeme m Folgenden wrd das (Gesamt-)System

Mehr

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten Versuch r. 1: achwes des Hook schen Gesetzes und Bestmmung der Federkonstanten achwes des Hookeschen Gesetzes und Bestmmung der Federkonstanten Klasse : ame1 : ame 2 : Versuchszel: In der Technk erfüllen

Mehr

Hefte zur Logistik Prof. Dr. Siegfried Jetzke. Heft 1 Begriffsdefinitionen

Hefte zur Logistik Prof. Dr. Siegfried Jetzke. Heft 1 Begriffsdefinitionen Hefte zur Logstk Prof. Dr. Segfred Jetzke Heft 1 Begrffsdefntonen Jun 2010 Deses Heft st urheberrechtlch geschützt. Wenn Se de Quelle angeben, können Se gerne deses Heft wetergeben, Tele koperen oder aus

Mehr

Kapitel 5. Symmetrien und Erhaltungsgrößen. 5.1 Symmetrietransformationen

Kapitel 5. Symmetrien und Erhaltungsgrößen. 5.1 Symmetrietransformationen Kaptel 5 Symmetren un Erhaltungsgrößen 5.1 Symmetretransformatonen Betrachte en mechansches System mt en Koornaten q 1,... q f un er Lagrangefunkton L(q 1,... q f, q 1,... q f, t). Nun soll ene Transformaton

Mehr

9 Phasengleichgewicht in heterogenen Mehrkomponentensystemen

9 Phasengleichgewicht in heterogenen Mehrkomponentensystemen 9 Phasenglechgewcht n heterogenen Mehrkomonentensystemen 9. Gbbs sche Phasenregel α =... ν Phasen =... k Komonenten Y n (α) -Molzahl der Komonente Y n der Phase α. Für jede Phase glt ene Gbbs-Duhem-Margules

Mehr

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von

Mehr

1.6 Energie 1.6.1 Arbeit und Leistung Wird ein Körper unter Wirkung der Kraft F längs eines Weges s verschoben, so wird dabei die Arbeit

1.6 Energie 1.6.1 Arbeit und Leistung Wird ein Körper unter Wirkung der Kraft F längs eines Weges s verschoben, so wird dabei die Arbeit 3.6 Energe.6. Arbe und Lesung Wrd en Körper uner Wrkung der Kraf F längs enes Weges s verschoben, so wrd dabe de Arbe W = F s Arbe = Kraf Weg verrche. In deser enfachen Form gülg, wenn folgende Voraussezungen

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

5 Integralsätze am Beispiel der Gravitation

5 Integralsätze am Beispiel der Gravitation 5 INTEGRALSÄTZE AM BEISPIEL DER GRAVITATION 1 5 Integralsätze am Bespel der Gravtaton 5.1 Integralsatz von Stokes Im letzten Kaptel haben wr de Rotaton enes Vektorfeldes engeführt und Lnenntegrale betrachtet.

Mehr

Dr. Florian Englmaier 1 Übung Wettbewerbstheorie und -politik. Handout zu Übungsblatt 1: Einführung

Dr. Florian Englmaier 1 Übung Wettbewerbstheorie und -politik. Handout zu Übungsblatt 1: Einführung Dr. Floran Englmaer 1 Handout zu Übungsblatt 1: Enführung De Industreökonomk beschäftgt sch mt dem Marktverhalten und der nternen Organsaton von Unternehmen. (Preswettbewerb, Marktzutrttsverhalten, Produktdff.

Mehr

4 Die geometrische Darstellung der komplexen

4 Die geometrische Darstellung der komplexen 4 De geometrsche Darstellung der komplexen Zahlen Mt komplexen Zahlen kann man rechnen we mt gewöhnlchen Zahlen. Man kann mt hnen alle quadratschen Glechungen lösen. Aber das st be wetem ncht alles: Komplexe

Mehr

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik Quant der das Verwelken der Wertpapere. De Geburt der Fnanzkrse aus dem Gest der angewandten Mathematk Dmensnen - de Welt der Wssenschaft Gestaltung: Armn Stadler Sendedatum: 7. Ma 2012 Länge: 24 Mnuten

Mehr