Kapitel 5. Differenzialrechnung für Funktionen einer Variablen

Größe: px
Ab Seite anzeigen:

Download "Kapitel 5. Differenzialrechnung für Funktionen einer Variablen"

Transkript

1 Kapitel 5. Differenzialrechnung für Funktionen einer Variablen Ist f eine ökonomische Funktion, so ist oft wichtig zu wissen, wie sich die Funktion bei kleinen Änderungen verhält. Beschreibt etwa f einen Wachstumsprozess, so ist die Wachstumsgeschwindigkeit von Interesse oder auch die relative Wachstumsrate. Ist f eine Steuerfunktion, so ist die Frage bedeutend, welcher Steuerprozentsatz auf einen kleinen Zuverdienst zu zahlen ist. Für ein Unternehmen ist interessant, wie sich die (relative) Nachfrage nach einem Produkt bei (relativ) kleinen Preisänderungen ändert. Wichtig ist auch die Bestimmung von Extremwerten ökonomischer Größen, etwa der Minimierung von Kosten oder der Maximierung von Gewinnen. Bei der Beantwortung dieser Fragen ist die Differenzialrechnung nützlich. Alle Funktionen in diesem Kapitel sind stets von der Form f : D R wobei D R der Definitionsbereich ist. Beispiel 5. Angenommen, die Kostenfunktion eines Unternehmens für die Produktion von x Stücken eines Gutes sei gegeben durch K(x) = 20 x Mathematik I WiSe 2003/

2 Nun ist das Unternehmen daran interessiert, wie sich die Kosten bei kleiner Änderung der Produktionsmenge verändern. Eine standardisierte Information ist hierbei zum Beispiel, wie sich K(x) ändert, wenn man x um eine Einheit erhöht. Die Änderung ist dann K(x+) K(x). Es sollte klar sein, dass eine solche Änderung bereits von der Ausgangszahl x abhängt. Etwa ist K(0) K(00) = 20( 0 00) 0, 998, K(00) K(000) = 20( ) 0, 36. Zieht man (anstelle von x + ) auch andere Änderungen von x in Betracht, so ist es sinnvoll, die relative Änderung der Kosten im Verhältnis zur Änderung von x zu berechnen. Das ist also der Quotient K(x + h) K(x) x + h x = K(x + h) K(x) h (etwa für die Werte h =, 0., 0.0) und gibt die durchschnittliche Kostenänderung pro zusätzlicher Mengeneinheit an. In der folgenden Tabelle sind diese relativen Änderungen für einige Werte von x angegeben. Mathematik I WiSe 2003/

3 K(x+) K(x) K(x+0,) K(x) 0, K(x+0,0) K(x) 0,0 x 0 3,087 3,54 3,6 00 0,998 0, 0, 000 0,36 0,36 0,36 Man sieht, dass sich für kleine Werte von x die Größe der Änderung von x stärker auf die relative Änderung der Kosten auswirkt als für große Werte. Das kann man auch am Graphen sehen, denn die Funktionswerte unterscheiden sich in der Nähe von x = 0 stärker voneinander als etwa bei x = 00 oder x = x Man sieht, dass die obige Situation durch die Höhenänderung (oder Steigung) des Graphen erklärt wird. Mathematik I WiSe 2003/

4 5. Differenziation Bevor wir eine formale Definition der Ableitung einer Funktion angeben, soll zunächst beschrieben werden, wie man die Steigung einer (krummlinigen) Funktion in einem Punkt festlegen und bestimmen kann. Steigung einer Funktion in einem Punkt. Ist f : R R eine Gerade, so ist die Steigung des zugehörigen Graphen an jeder Stelle gleich und lässt sich durch ein Steigungsdreieck ermitteln x0=2, h=2 x=5,h = f(x+h )-f(x) h h f(x0+h)-f(x0) x Die Steigung ist definiert als Höhe durch Breite des Steigungsdreiecks, also f(x 0 + h) f(x 0 ) = f(x 0 + h) f(x 0 ). x 0 + h x 0 h Mathematik I WiSe 2003/

5 Hierbei spielt es offensichtlich keine Rolle, wo das Dreieck eingezeichnet wird und wie weit die beiden Stellen x 0 und x 0 + h auseinanderliegen. Sie ist also unabhängig von x 0 und h. Ist f(x) = cx + d, so ist f(x 0 +h) f(x 0 ) h = ch h = c. 2. Ist nun f : D R eine Funktion mit einem krummlinigen Graphen, so lassen sich immer noch Steigungsdreiecke zu gegebenen Stellen x 0 und x 0 +h zeichnen; die daraus resultierende Größe f(x 0 + h) f(x 0 ) h (5.) hängt nun aber im allgemeinen sowohl von x 0 als auch von h ab (siehe Beispiel 5.). Sie gibt die (relative) Veränderung der Funktionswerte im Verhältnis zu den x-werten an. Außerdem lässt sie sich als durchschnittliche Steigung von f auf dem Abschnitt [x 0, x 0 + h] auffassen. Das ist die Steigung der Geraden, die durch die Punkte (x 0, f(x 0 )) und (x 0 + h, f(x 0 + h)) geht. In diesem Zusammenhang heißen diese Geraden auch Sekanten. Man benutzt nun diese Steigungsdreiecke für einen Grenzprozess: wählt man h immer kleiner, so rückt der Punkt x 0 + h immer näher an x 0, das Steigungsdreieck wird immer kleiner und die Größe (5.) liefert die Mathematik I WiSe 2003/

6 durchschnittliche Steigung auf einem sehr kleinen Abschnitt in der Nähe von x 0. Falls dieser Grenzprozess einen Grenzwert hat, etwa f(x 0 + h) f(x 0 ) h 0 h = a, so nennt man a die Ableitung von f an der Stelle x 0. Als Grenzwert der Sekanten erhält man dann gerade die Tangente an den Graphen von f an der Stelle x 0. Deren Steigung ist a. Mathematik I WiSe 2003/

7 (Differenzenquotient, Differenzialquotient, Ableitung) Sei D ein offenes Intervall, f : D R eine Funktion und x 0 D eine Stelle.. Für h R\{0} heißt Differenzenquotient von f. f(x 0 +h) f(x 0 ) h ein 2. Die Funktion f heißt an der Stelle x 0 differenzierbar, falls der Grenzwert h 0 f(x 0 + h) f(x 0 ) h existiert. In diesem Fall wird die Notation f (x 0 ) := h 0 f(x 0 + h) f(x 0 ) h benutzt. Der Grenzwert f (x 0 ) heißt Ableitung von f an der Stelle x 0 oder auch Differenzialquotient von f in x Ist f an jeder Stelle x D differenzierbar, dann heißt f differenzierbar, und die Funktion f : D R heißt Ableitung von f. Mathematik I WiSe 2003/

8 Beachte, das Symbol h 0 steht für den beidseitigen Grenzwert. Man muss also sowohl positive als auch negative Werte für h betrachten! Die Größe h wird in der Literatur oft als x geschrieben. Sie steht für eine (kleine) Änderung der Argumente x. Für die zugehörige Änderung der Funktionswerte f(x + h) f(x) wird dann f geschrieben. Bemerkung: Oft werden statt der Bezeichnungen x 0 und x 0 + h für die zwei Stellen auch x 0 und x gewählt. Setzt man h := x x 0, also x = x 0 + h, so lautet dann der Differenzenquotient f(x) f(x 0 ) x x 0 und die Ableitung, falls sie existiert, ist der Grenzwert f(x) f(x 0 ). x x 0 x x 0 Für kleine Werte von h (oder für x nahe bei x 0 ) ist der Differenzenquotient eine Annäherung an die Ableitung: f (x 0 ) f(x 0 + h) f(x 0 ) h = f(x) f(x 0) x x 0. Mathematik I WiSe 2003/

9 Geometrisch bedeutet diese Approximation, dass die Funktion in der Nähe von x 0 durch die Tangente an der Stelle x 0 angenähert wird. Denn f(x) f(x 0 ) + f (x 0 ) (x x 0 ) und der Ausdruck auf der rechten Seite ist die Gleichung der Geraden mit Steigung f (x 0 ) durch den Punkt (x 0, f(x 0 )). Beispiel 5.2. Lineare Funktion: Eine Funktion der Form f : R R, f(x) = c x + d ist eine lineare Funktion. Der Funktionsgraph ist die Gerade {(x, c x + d) x R} mit Steigung c. Sei nun x 0 R, dann ist für alle h R \ {0} der Differenzenquotient gegeben durch c(x 0 + h) + d (cx 0 + d) h = ch h = c. Der Differenzenquotient hängt weder von x 0 noch von h ab. Insbesondere ist f (x 0 ) = c für alle x 0 R. Die Funktion hat überall die gleiche Steigung. Die Ableitung f : R R ist somit die konstante Funktion f (x) = c für alle x R. Mathematik I WiSe 2003/

10 2. f(x) = x 3 : Mithilfe des binomischen Lehrsatzes erhält man für den Differenzenquotienten an der Stelle x f(x + h) f(x) h = (x + h)3 x 3 h = x3 + 3x 2 h + 3xh 2 + h 3 x 3 h = h(3x2 + 3xh + h 2 ) h = 3x 2 + 3xh + h 2 Damit ist der Grenzwert h 0 f(x + h) f(x) h = 3x 2 = f (x). Ähnlich lässt sich zeigen: f(x) = x n, dann ist f (x) = nx n. 3. f(x) = x : Die Betragsfunktion f : R R mit f(x) = x ist an der Stelle x 0 = 0 nicht differenzierbar. Mathematik I WiSe 2003/

11 x Offensichtlich lässt sich an der Stelle x 0 = 0 keine eindeutige Tangente einzeichnen. Die Steigung springt hier abrupt von auf. Genauer gesagt: Steigungsdreiecke, die links von x 0 = 0 liegen, liefern alle die Steigung, die, die rechts liegen, die Steigung. Daher existiert der beidseitige Grenzwert des Differenzenquotienten an der Stelle x 0 = 0 nicht und die Funktion ist dort nicht differenzierbar. Hat eine Funktion eine Sprungstelle an der Stelle x 0, so hat sie dort sicherlich keine Tangente. Genauer: Ist die Funktion f : D R in x 0 D differenzierbar, dann ist f auch stetig im Punkt x 0. Aber nicht jede stetige Funktion ist auch differenzierbar, wie die Betragsfunktion in Beispiel zeigt. Mathematik I WiSe 2003/

12 Beispiel 5.3 (Ableitung einiger Grundfunktionen) Die Definitionsbereiche der unten stehenden Funktionen haben wir bereits in Kapitel 2 untersucht. f(x) c x n (n N) x α (α R) e x f (x) 0 n x n α x α e x f(x) a x (a > 0) ln(x) log a (x) (a > 0, a ) f (x) ln(a) a x x x ln(a) f(x) sin(x) cos(x) tan(x) cot(x) f (x) cos(x) sin(x) cos 2 (x) sin 2 (x) Speziell ist für f(x) = x = x die Ableitung f (x) = x 2 = x 2 und allgemein f(x) = x n = x n, dann f (x) = nx n = n x n+. Mit den obigen Grundfunktionen und folgenden Rechenregeln lassen sich leicht die Ableitungen vieler Funktionen berechnen. Mathematik I WiSe 2003/

13 Differenziationsregeln:. Seien f, g : D R in einem Punkt x D differenzierbar. Dann sind auch die Funktionen f + g, f g : D R in x differenzierbar, und es gilt: Summenregel: (f + g) (x) = f (x) + g (x), Produktregel: (fg) (x) = f (x) g(x) + f(x) g (x) Ist g(x) 0, dann ist die Funktion f g : D R in x differenzierbar mit Quotientenregel: ( ) f (x) = f (x) g(x) f(x) g (x) g g(x) 2 2. Seien f : D R und g : E R Funktionen mit f(d) E. Sei f in x D differenzierbar, und sei g in f(x) E differenzierbar. Dann ist auch g f an der Stelle x differenzierbar und es gilt Kettenregel: (g f) (x) = g (f(x)) f (x). Mathematik I WiSe 2003/

14 Als Spezialfall der Produktregel ergibt sich (λ f) (x) = λ f (x) für jede differenzierbare Funktion f und jede Zahl λ R. Beispiel 5.4. Für f(x) = 3x 5 0x 4 + 2x 3 7x ist f (x) = 5x 4 40x 3 + 6x 2 4x. 2. Sei f(x) = 3x2 2x +. Dann ist 7x 5 f (x) = (6x 2)(7x 5) 7(3x2 2x + ) (7x 5) 2 = 2x2 30x + 3 (7x 5) 2 3. Für S(x) = sin 2 (x) können wir schreiben S = g f mit f(x) = sin(x) und g(x) = x 2. Daher ist S (x) = 2 sin(x) cos(x) Mathematik I WiSe 2003/

15 Allgemein ist für eine Funktion f(x) = g(x) n f (x) = ng(x) n g (x). 4. Für f(x) = e (ax2 +bx+c) 2 ist mit der Kettenregel f (x) = e (ax2 +bx+c) 2 2 (ax 2 + bx + c) (2ax + b) Als letzte Differenziationsregel betrachten wir Ableitung der Umkehrfunktion: Sei f : D R eine injektive stetige Abbildung, und sei f : f(d) R die Umkehrfunktion von f. Ist f in einem Punkt x D differenzierbar mit f (x) 0, dann ist f im Punkt y = f(x) differenzierbar, und es gilt (f ) (y) = f (f (y)) = f (x). Beispiel 5.5 Sei f(x) = e x. Die Funktion ist injektiv. Die Umkehrfunktion ist gegeben durch g(x) = f (x) = ln(x). Nach Beispiel 5.3 ist f (x) = e x und daher f (x) 0 für alle x R. Die obige Rechenregel liefert g (y) = f (g(y)) = e = ln(y) y Mathematik I WiSe 2003/

16 wie es auch schon in Beipiel 5.3 angegeben ist. Als neue Ableitungen erhält man die der trigonometrischen Umkehrfunktionen. Beispiel 5.6 (Ableitung der Arcusfunktionen) f sin(x) cos(x) tan(x) cot(x) D(f) [ π 2, ] π 2 [0, π] ( π 2, ) π 2 (0, π) W (f) [, ] [, ] R R f arcsin(x) arccos(x) arctan(x) arccot(x) (f ) x 2 x 2 +x 2 +x 2 Man kann den Differenziationsprozess unter Umständen auch auf die Ableitung anwenden. Mathematik I WiSe 2003/

17 Ableitungen höherer Ordnung: Sei f : D R eine differenzierbare Funktion. Ist die Ableitung f : D R ihrerseits in jedem Punkt x D differenzierbar, dann heißt f (x) = (f ) (x) die zweite Ableitung von f im Punkt x und die Funktion f : D R heißt zweite Ableitung von f. Allgemein heißt eine Funktion f : D R n-mal differenzierbar, n N, wenn die (n )-te Ableitung differenzierbar ist. Die n-te Ableitung wird auch mit f (n) : D R bezeichnet. Insbesondere wird f (0) = f gesetzt und es ist f () = f und f (2) = f. Die Funktion f heißt oft differenzierbar, wenn alle Ableitungen f (n), n N, existieren. Die geometrische Bedeutung der zweiten Ableitung wird im nächsten Abschnitt erklärt. Beispiel 5.7 Mithilfe von Beispiel 5.3 und den üblichen Rechenregeln lassen sich folgende Ableitungen berechnen. Mathematik I WiSe 2003/

18 . f(x) = ln(x): f (x) = x, f (x) = x 2, f (3) (x) = 2 x 3 = 2x 3, f (n) (x) = ( ) n 2. f(x) = x 5 2x 3 + x 2 0: f (4) (x) = 6 x 4,... (n )! x n f (x) = 5x 4 6x 2 + 2x, f (x) = 20x 3 2x + 2, f (3) (x) = 60x 2 2, f (4) (x) = 20x, f (5) (x) = 20, f (6) (x) = 0 = f (n) (x), für n 6 3. f(x) = 3e x : f (x) = 3e x, f (x) = 3e x,..., f (n) (x) = 3e x. Polynome, rationale Funktionen, die Exponentialfunktion und die trigonometrischen Funktionen sind auf ihrem Definitionsbereich unendlich oft differenzierbar. Mathematik I WiSe 2003/

19 Es folgt nun noch ein Nachtrag zum Thema Grenzwerte von Funktionen. Wir hatten in Abschnitt 2.6 Beispiele von Funktionen gesehen, bei denen die Grenzwertregeln von Seite 7 nicht weiterhelfen, etwa bei Quotienten von Funktionen, wo Zähler und Nenner für x x 0 beide gegen Null (oder beide gegen unendlich) konvergieren. Mithilfe der Differentiation ist es nun möglich, weitere Grenzwertregeln aufzustellen, mit denen sich etwa x 0 bestimmen lassen. sin(x) x oder x 3 e x Zunächst soll aber auch noch die Konvergenz von Funktionen für x eingeführt werden. Mathematik I WiSe 2003/

20 Sei f : D R eine Funktion. f heißt für x (bzw. x ) konvergent gegen a R, falls es für alle ε R + ein t(ε) R + gibt, so dass gilt ist x > t(ε), dann folgt f(x) a < ε bzw. ist x < t(ε), dann folgt f(x) a < ε. Wir schreiben dann = a bzw. x = a. f heißt für x konvergent gegen (bzw. ), falls es für alle M R + ein t(ε) R + gibt, so dass gilt ist x > t(ε), dann folgt f(x) > M bzw. ist x > t(ε), dann folgt f(x) < M. Man schreibt dann = bzw. =. Analog läßt sich Konvergenz gegen ± für x definieren. Ist f nicht konvergent in einem der obigen Sinne, so heißt f auch divergent. Es gelten die analogen Rechenregeln wie für Grenzwerte bei Konvergenz für x x 0. Mathematik I WiSe 2003/

21 Die Situation lässt sich genau wie bei Grenzwerten für x x 0 mit waagerechten Streifen der Breite 2ε um den Wert a veranschaulichen. Für f(x) = a muss der Funktionsgraph innerhalb des gesamten senkrechten Streifens rechts von t(ε) auch innerhalb des waagerechten Streifens liegen. Beispiel 5.8. f(x) = 3x2 2x + 5 x x Der Graph zeigt f(x) = 3 = f(x). x Beweisen lässt sich dies genauso wie bei Folgen durch Umformung zu 3 2 x + 5 x 2 + 6, x 2 und Benutzen von x ± = 0 für alle n N. xn Mathematik I WiSe 2003/

22 2. f(x) = 2x 3 + 7x 2 + 0x x Der Graph zeigt f(x) = und f(x) = x und dies lässt sich mit den gleichen Methoden wie in. (Nenner=) zeigen. 3. ex = und x ex = f(x) = ex + 2 e 2x. Der Graph x Mathematik I WiSe 2003/

23 zeigt f(x) = 0 und f(x) =. Der x zweite Grenzwert folgt sofort aus den üblichen Rechenregeln zusammen mit dem vorigen Beispiel. Der erste Grenzwert wird in Beispiel nachgewiesen. Regeln von de L Hospital: Seien D = (a, b)\{x 0 } mit a < x 0 < b und f, g : D R differenzierbare Funktion, sowie g (x) 0 auf D. Außerdem gelte oder x x 0 f(x) = x x 0 g(x) = 0 (5.2) x x 0 f(x) = ±, x x 0 g(x) = ±. (5.3) Dann gilt f (x) x x 0 g (x) = a R f(x) x x 0 g(x) = a. (5.4) Die gleichen Aussagen gelten auch für Grenzwerte der f(x) Form x x0 g(x), f(x) x x 0 g(x) und x ± f(x) g(x). Man beachte, dass die Implikation (5.4) auch beinhaltet, Mathematik I WiSe 2003/

24 der Grenz- f (x) dass im Falle der Konvergenz von x x 0 g (x) f(x) wert überhaupt existiert. x x 0 g(x) Es ist ganz wichtig, dass eine der Voraussetzungen (5.2) oder (5.3) erfüllt ist. Andernfalls liefert die Implikation (5.4) ein falsches Ergebnis. Das wird in Beispiel illustriert. Wenn (5.2) und (5.3) beide nicht gelten, lässt sich der Grenzwert sowieso direkt bestimmen. Beispiel Seien f(x) = sin(x), g(x) = x und x 0 = 0. Dann ist (5.2) erfüllt und wegen x 0 f (x) g (x) = x 0 cos x = ist mit (5.4): sin(x) x 0 x = x 0 f(x) g(x) =. 2. Seien f(x) = x 3 und g(x) = e x. Dann ist (5.3) bei x 0 = erfüllt und iterative Anwendung der Regel von de L Hospital liefert: Mathematik I WiSe 2003/

25 x 3 e x = = = f(x) g(x) = f (x) g (x) = f (3) (x) g (3) (x) = f (x) g (x) = 6x e x 6 e x = 0. 3x 2 e x 3. Seien f(x) = e x +2 und g(x) = e 2x 2. Dann ist (5.3) bei x 0 = erfüllt und daher e x + 2 e 2x 2 = e x = 2e2x 2e x = Seien f(x) = ln(x), g(x) = x und x 0 = 0. Es soll ln(x)x bestimmt werden. Dies ist zwar x 0 kein Quotient, aber durch Umformen erhält man ln(x) x = x 0 x 0 = x 0 ln(x) x = x x 2 = x 0 ( x) = 0. Mathematik I WiSe 2003/

26 5. Seien f(x) = + x und g(x) = x. Dann ist ( + x = x) f(x)g(x) = eln(f(x)) g(x) = eln(+ x ) x. Nun ist der Exponent für x vom Typ und daher ist wie in 3. ) ln ln ( ) + x x = = Also ist ( + x x 2 + x x 2 x ( + x = e x) = e. = + x 0 = Seien f(x) = x + und g(x) = 2 ln(x). Dann gilt 2 (x + ) ln(x) = f(x)g(x) = eln(f(x)) g(x) = eln(x+) 2 ln(x). Mathematik I WiSe 2003/

27 Der Exponent ist für x vom Typ. Somit ist Also ist 2 ln(x + ) ln(x) 2 x+ x = 2 (x + ) ln(x) = e 2. = 2 x x + = Für f(x) = x 3 x und g(x) = ln(x) gilt ( ) x3 x ln(x) = f(x) g(x) = e ln(f(x)) g(x) x 0 x 0 x 0 = e ln( x3 x ) 2 ln(x)+x ln(3) ln(x) = e ln(x). x 0 x 0 Der Exponent ist für x 0 vom Typ, also x 0 2 ln(x) + x ln(3) ln(x) = x 0 = x 0 2x + ln(3) x ( 2 + x ln(3) ) = 2. ( Damit ist x3 x ) ln(x) = e. x 0 Mathematik I WiSe 2003/

28 8. Abschließend noch ein Beispiel, das die Notwendigkeit der Voraussetzung (5.2) oder (5.3) zeigt. Betrachte f(x) = e 2x 2 und g(x) = e x + 2. Es soll x f(x) g(x) (5.5) bestimmt werden. Allein die Regel (5.4) würde wegen f (x) x g (x) = 2e 2x x e x = x 2ex = 0 den Grenzwert 0 für (5.5) liefern. Das ist aber falsch, denn wegen x ex = 0 ist f(x) = 2 und x g(x) = 2, folglich x x f(x) g(x) =. Offensichtlich sind weder (5.2) noch (5.3) erfüllt. Mathematik I WiSe 2003/

Tilgungsrechnung. (K n + R n = ln. / ln(q) (nachschüssig) + R. / ln(q) (vorschüssig)

Tilgungsrechnung. (K n + R n = ln. / ln(q) (nachschüssig) + R. / ln(q) (vorschüssig) (K n + R n = ln n = ln q 1 K 0 + R q 1 (K n q + R q 1 K 0 q + R q 1 ) / ln(q) (nachschüssig) ) / ln(q) (vorschüssig) Eine einfache Formel, um q aus R,n,K n und K 0 auszurechnen, gibt es nicht. Tilgungsrechnung

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen Stetigkeit von Funktionen Definition. Es sei D ein Intervall oder D = R, x D, und f : D R eine Funktion. Wir sagen f ist stetig wenn für alle Folgen (x n ) n in D mit Grenzwert x auch die Folge der Funktionswerte

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Summen, Exponentialfunktion, Ableitung Prof. Dr. Achim Klenke http://www.aklenke.de 2. Vorlesung: 04.11.2011 1/46 Inhalt 1 Summen und Produkte Summenzeichen Produktzeichen

Mehr

Kapitel 6 Folgen und Stetigkeit

Kapitel 6 Folgen und Stetigkeit Kapitel 6 Folgen und Stetigkeit Mathematischer Vorkurs TU Dortmund Seite 76 / 226 Definition 6. (Zahlenfolgen) Eine Zahlenfolge (oder kurz: Folge) ist eine Funktion f : 0!. Statt f(n) schreiben wir x n

Mehr

Reihen und Finanzmathematik

Reihen und Finanzmathematik Kapitel 4. Reihen und Finanzmathematik 4. Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige

Mehr

Folgen, Reihen, Grenzwerte u. Stetigkeit

Folgen, Reihen, Grenzwerte u. Stetigkeit Folgen, Reihen, Grenzwerte u. Stetigkeit Josef F. Bürgler Abt. Informatik HTA Luzern, FH Zentralschweiz HTA.MA+INF Josef F. Bürgler (HTA Luzern) Einf. Infinitesimalrechnung HTA.MA+INF 1 / 33 Inhalt 1 Folgen

Mehr

Differenzialrechnung

Differenzialrechnung Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =

Mehr

Mathematik I Herbstsemester 2014

Mathematik I Herbstsemester 2014 Mathematik I Herbstsemester 2014 www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 32 1 Stetigkeit Grenzwert einer

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 12 1. Dezember 2009 Kapitel 3. Differenzialrechnung einer Variablen (Fortsetzung) Satz 19. Es seien M und N zwei nichtleere Teilmengen von R,

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Formelsammlung zum Starterstudium Mathematik

Formelsammlung zum Starterstudium Mathematik Formelsammlung zum Starterstudium Mathematik Universität des Saarlandes ¼ Version.3 Inhaltsverzeichnis. Potenzgesetze. Vollständige Induktion 3. Betragsgleichungen, Betragsungleichungen 4 4. Folgen und

Mehr

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014 Mathematik für Universität Trier Wintersemester 2013 / 2014 Inhalt der Vorlesung 1. Gleichungen und Summen 2. Grundlagen der Funktionslehre 3. Rechnen mit Funktionen 4. Optimierung von Funktionen 5. Funktionen

Mehr

Mathematik für Wirtschaftswissenschaften I Wintersemester 2015/16 Universität Leipzig. Lösungvorschläge Präsenzaufgaben Serien 1-10

Mathematik für Wirtschaftswissenschaften I Wintersemester 2015/16 Universität Leipzig. Lösungvorschläge Präsenzaufgaben Serien 1-10 Mathematik für Wirtschaftswissenschaften I Wintersemester 05/6 Universität Leipzig Lösungvorschläge Präsenzaufgaben Serien -0 Inhaltsverzeichnis Serie Serie 5 3 Serie 8 4 Serie 9 5 Serie 3 6 Serie 6 7

Mehr

Satz von Taylor Taylorreihen

Satz von Taylor Taylorreihen Satz von Taylor Taylorreihen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Tangente als Näherung Weil sich anschaulich die Tangente anschmiegt, ist die Tangentenfunktion

Mehr

5 DIFFERENZIALRECHNUNG EINFÜHRUNG

5 DIFFERENZIALRECHNUNG EINFÜHRUNG M /, Kap V Einführung in die Differenzialrechnung S 5 DIFFERENZIALRECHNUNG EINFÜHRUNG Zielvorgabe für die Kapitel 5 bis 55: Wir wollen folgende Begriffe definieren und deren Bedeutung verstehen: Differenzenquotient,

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Zwischenwertsatz Gegeben: f : [a, b] R stetig Dann gilt: f(a) < f(b) y [f(a), f(b)] x [a, b] mit f(x) = y 9.1. Grundbegriffe

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Aufgabe 98 12.12.2012 Untersuchen Sie die Funktion f W R! R mit f.x/

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Prof. Dr. Rolf Linn

Prof. Dr. Rolf Linn Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden

Mehr

Folgen und Reihen von Funktionen

Folgen und Reihen von Funktionen Folgen und Reihen von Funktionen Sehr häufig treten in der Mathematik Folgen bzw. Reihen von Funktionen auf. Ist etwa (f n ) eine Folge von Funktionen, dann können wir uns für ein festes x fragen, ob die

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

2.6 Stetigkeit und Grenzwerte

2.6 Stetigkeit und Grenzwerte 2.6 Stetigkeit und Grenzwerte Anschaulich gesprochen ist eine Funktion stetig, wenn ihr Graph sich zeichnen lässt, ohne den Stift abzusetzen. Das ist natürlich keine präzise mathematische Definition und

Mehr

LMU MÜNCHEN. Mathematik für Studierende der Biologie Wintersemester 2016/17. GRUNDLAGENTUTORIUM 5 - Lösungen. Anmerkung

LMU MÜNCHEN. Mathematik für Studierende der Biologie Wintersemester 2016/17. GRUNDLAGENTUTORIUM 5 - Lösungen. Anmerkung LMU MÜNCHEN Mathematik für Studierende der Biologie Wintersemester 2016/17 GRUNDLAGENTUTORIUM 5 - Lösungen Anmerkung Es handelt sich hierbei um eine Musterlösung so wie es von Ihnen in einer Klausur erwartet

Mehr

4.1. Grundlegende Definitionen. Elemente der Analysis I Kapitel 4: Funktionen einer Variablen. 4.2 Graphen von Funktionen

4.1. Grundlegende Definitionen. Elemente der Analysis I Kapitel 4: Funktionen einer Variablen. 4.2 Graphen von Funktionen 4.1. Grundlegende Definitionen Elemente der Analysis I Kapitel 4: Funktionen einer Variablen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 22./29. November 2010 http://www.mathematik.uni-trier.de/

Mehr

Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts

Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts 1. Stetigkeit und Grenzwerte: (a) Aus der folgenden grafischen Darstellung von y 1 (x) = x 2/3 /(1 + x 2 ) ist

Mehr

2. Mathematische Grundlagen

2. Mathematische Grundlagen 2. Mathematische Grundlagen Erforderliche mathematische Hilfsmittel: Summen und Produkte Exponential- und Logarithmusfunktionen 21 2.1 Endliche Summen und Produkte Betrachte n reelle Zahlen a 1, a 2,...,

Mehr

Repetitorium Mathe 1

Repetitorium Mathe 1 Übungsaufgaben Skript Repetitorium Mathe 1 WS 2014/15 25./26.01. und 31.01./01.02.2015 Inhaltsverzeichnis 1 Bruchrechnung 2 2 Zahlsysteme 2 3 Arithmetisches und geometrisches Mittel 2 4 Wachstum 2 5 Lineare

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

Einführung in die Mathematischen Methoden

Einführung in die Mathematischen Methoden Einführung in die Mathematischen Methoden für LAK Ulrich Hohenester Institut für Physik, Theoretische Physik Karl Franzens Universität Graz Universitätsplatz 5, 800 Graz, Austria Phone: +43 36 380 57 Fax:

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16)

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) 1 Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) Kapitel 7: Konvergenz und Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

13. Übungsblatt zur Mathematik I für Maschinenbau

13. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 3. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 00/ 07.0.-.0. Aufgabe G Stetigkeit) a) Gegeben

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen Kapitel 7 Funktionentheorie In diesem Kapitel geht es meistens um Funktionen, die auf einem Gebiet G C definiert sind und komplexe Werte annehmen. Nach Lust, Laune und Bedarf wird C mit R identifiziert,

Mehr

Differentialrechnung

Differentialrechnung Kapitel 7 Differentialrechnung Josef Leydold Mathematik für VW WS 205/6 7 Differentialrechnung / 56 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f () f ( 0) 0 heißt

Mehr

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen: Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere

Mehr

1 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 11

1 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 11 Inhalt A Differenzialrechnung 8 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 2 Ableitungsregeln 2 Potenzregel 2 Konstantenregel 3 Summenregel 4 Produktregel 4 Quotientenregel

Mehr

Thema 4 Limiten und Stetigkeit von Funktionen

Thema 4 Limiten und Stetigkeit von Funktionen Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.

Mehr

Mathematische Grundlagen der Ökonomie Übungsblatt 8

Mathematische Grundlagen der Ökonomie Übungsblatt 8 Mathematische Grundlagen der Ökonomie Übungsblatt 8 Abgabe Donnerstag 7. Dezember, 0:5 in H 5+7+8 = 20 Punkte Mit Lösungshinweisen zu einigen Aufgaben 29. Das Bisektionsverfahren sucht eine Nullstelle

Mehr

2. Stetigkeit und Differenzierbarkeit

2. Stetigkeit und Differenzierbarkeit 2. Stetigkeit Differenzierbarkeit 9 2. Stetigkeit Differenzierbarkeit Wir wollen uns nun komplexen Funktionen zuwenden dabei zunächst die ersten in der Analysis betrachteten Eigenschaften untersuchen,

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

Funktionen. Mathematik-Repetitorium

Funktionen. Mathematik-Repetitorium Funktionen 4.1 Funktionen einer reellen Veränderlichen 4.2 Eigenschaften von Funktionen 4.3 Die elementaren Funktionen 4.4 Grenzwerte von Funktionen, Stetigkeit Funktionen 1 4. Funktionen Funktionen 2

Mehr

Linearisierung einer Funktion Tangente, Normale

Linearisierung einer Funktion Tangente, Normale Linearisierung einer Funktion Tangente, Normale 1 E Linearisierung einer Funktion Abb. 1 1: Die Gerade T ist die Tangente der Funktion y = f (x) im Punkt P Eine im Punkt x = a differenzierbare Funktion

Mehr

REIHENENTWICKLUNGEN. [1] Reihen mit konstanten Gliedern. [2] Potenzreihen. [3] Reihenentwicklung von Funktionen. Eine kurze Einführung Herbert Paukert

REIHENENTWICKLUNGEN. [1] Reihen mit konstanten Gliedern. [2] Potenzreihen. [3] Reihenentwicklung von Funktionen. Eine kurze Einführung Herbert Paukert Reihenentwicklungen Herbert Paukert 1 REIHENENTWICKLUNGEN Eine kurze Einführung Herbert Paukert [1] Reihen mit konstanten Gliedern [2] Potenzreihen [3] Reihenentwicklung von Funktionen Reihenentwicklungen

Mehr

13. Funktionen in einer Variablen

13. Funktionen in einer Variablen 13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier

Mehr

Leitfaden a tx t

Leitfaden a tx t Leitfaden -0.7. Potenz-Reihen. Definition: Es sei (a 0, a, a 2,...) eine Folge reeller Zahlen (wir beginnen hier mit dem Index t 0). Ist x R, so kann man die Folge (a 0, a x, a 2 x 2, a 3 x 3,...) und

Mehr

Taylorentwicklung von Funktionen einer Veränderlichen

Taylorentwicklung von Funktionen einer Veränderlichen Taylorentwicklung von Funktionen einer Veränderlichen 17. Januar 2013 KAPITEL 1. MATHEMATISCHE GRUNDLAGEN 1 Kapitel 1 Mathematische Grundlagen 1.1 Stetigkeit, Differenzierbarkeit und C n -Funktionen Der

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufgabe 45. Polynome sind stets stetig. Höhere Mathematik für Informatiker II (Sommersemester

Mehr

1 Reihen von Zahlen. Inhalt:

1 Reihen von Zahlen. Inhalt: 5 Kapitel 3 Reihen Reihen von Zahlen Inhalt: Konvergenz und Divergenz von Reihen reeller oder komplexer Zahlen, geometrische Reihe, harmonische Reihe, alternierende Reihen. Cauchy-Kriterium, absolute Konvergenz,

Mehr

Überblick. Kapitel 7: Anwendungen der Differentialrechnung

Überblick. Kapitel 7: Anwendungen der Differentialrechnung Überblick Kapitel 7: Anwendungen der Differentialrechnung 1 Beispiel 1: Kapitel 7.1: Implizites Differenzieren 1 Beispiel 1: Steigung der Tangente Kapitel 7.1: Implizites Differenzieren 2 Beispiel 1: Steigung

Mehr

IV. Stetige Funktionen. Grenzwerte von Funktionen

IV. Stetige Funktionen. Grenzwerte von Funktionen IV. Stetige Funktionen. Grenzwerte von Funktionen Definition. Seien X und Y metrische Räume und E X sowie f : X Y eine Abbildung und p ein Häufungspunkt von E. Wir schreiben lim f(x) = q, x p falls es

Mehr

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen Kapitel III Stetige Funktionen 14 Stetigkeit und Rechenregeln für stetige Funktionen 15 Hauptsätze über stetige Funktionen 16 Konvergenz von Funktionen 17 Logarithmus und allgemeine Potenz C 1 14 Stetigkeit

Mehr

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J}

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J} 9 Der Satz über implizite Funktionen 41 9 Der Satz über implizite Funktionen Wir haben bisher Funktionen g( von einer reellen Variablen immer durch Formelausdrücke g( dargestellt Der Zusammenhang zwischen

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen Skript zur Analysis 1 Kapitel 3 Stetigkeit / Grenzwerte von Funktionen von Prof. Dr. J. Cleven Fachhochschule Dortmund Fachbereich Informatik Oktober 2003 2 Inhaltsverzeichnis 3 Stetigkeit und Grenzwerte

Mehr

Analytische Geometrie I

Analytische Geometrie I Analytische Geometrie I Rainer Hauser Januar 202 Einleitung. Geometrie und Algebra Geometrie und Algebra sind historisch zwei unabhängige Teilgebiete der Mathematik und werden bis heute von Laien weitgehend

Mehr

Elemente der Analysis I: Zusammenfassung und Formelsammlung

Elemente der Analysis I: Zusammenfassung und Formelsammlung Elemente der Analysis I: Zusammenfassung und Formelsammlung B. Schuster/ L. Frerick 9. Februar 200 Inhaltsverzeichnis Grundlagen 5. Mengen und Zahlen................................ 5.. Mengen...................................

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

lim Der Zwischenwertsatz besagt folgendes:

lim Der Zwischenwertsatz besagt folgendes: 2.3. Grenzwerte von Funktionen und Stetigkeit 35 Wir stellen nun die wichtigsten Sätze über stetige Funktionen auf abgeschlossenen Intervallen zusammen. Wenn man sagt, eine Funktion f:[a,b] R, definiert

Mehr

Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius)

Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius) Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius) 1 Grundregeln des Rechnens 1.1 Zahlbereiche......... Zahlen N {1, 2, 3,...}......... Zahlen Z {..., 2, 1, 0, 1, 2,...}......... Zahlen Q { a b a Z, b N}.........

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 8 10. November 2009 Kapitel 2. Konvergenz von Folgen und Reihen Definition 27. Eine (reelle bzw. komplexe) Zahlenfolge ist eine R- bzw. C-wertige

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr

13 Stetige Funktionen

13 Stetige Funktionen $Id: stetig.tex,v.4 2009/02/06 3:47:42 hk Exp $ 3 Stetige Funktionen 3.2 Stetige Funktionen In anderen Worten bedeutet die Stetigkeit einer Funktion f : I R also f(x n) = f( x n ) n n für jede in I konvergente

Mehr

konvergent falls Sei eine allgemeine ("gutmütige") Funktion. Frage: kann man sie in der Nähe des Punktes darstellen mittels einer Potenzreihe in

konvergent falls Sei eine allgemeine (gutmütige) Funktion. Frage: kann man sie in der Nähe des Punktes darstellen mittels einer Potenzreihe in C5 Funktionen: Reihenentwicklungen C5.1 Taylorreihen Brook Taylor (1685-1731) (Analysis-Vorlesung: Konvergenz von Reihen und Folgen) Grundlegende Frage: Wann / unter welchen Voraussetzungen lässt sich

Mehr

Aufgaben zum Vorkurs Mathematik für Natur- und Ingenieurwissenschaften. 1 Übungsblatt Mengen. Dr. Jörg Horst WS 2014/2015

Aufgaben zum Vorkurs Mathematik für Natur- und Ingenieurwissenschaften. 1 Übungsblatt Mengen. Dr. Jörg Horst WS 2014/2015 Dr. Jörg Horst WS 04/05 Aufgaben zum Vorkurs Mathematik für Natur- und Ingenieurwissenschaften Übungsblatt Mengen Aufgabe : Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: A = {x N 0 0 < x

Mehr

Folgen und Reihen. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Folgen und Reihen. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) Fragen und Antworten Folgen und Reihen (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis 1 Folgen und Reihen 2 1.1 Fragen............................................... 2 1.1.1 Folgen...........................................

Mehr

Vorkurs Mathematik. Vorbereitung auf das Studium der Mathematik. Übungsheft

Vorkurs Mathematik. Vorbereitung auf das Studium der Mathematik. Übungsheft Vorkurs Mathematik Vorbereitung auf das Studium der Mathematik Übungsheft Dr. Johanna Dettweiler Institut für Analysis 0. Oktober 009 Aufgaben zu Kapitel Die Nummerierung der Aufgaben bezieht sich auf

Mehr

Lösungen zu Aufgabenblatt 7P

Lösungen zu Aufgabenblatt 7P Analysis Prof. Dr. Peter Becker Fachbereich Informatik Sommersemester 205 9. Mai 205 Lösungen zu Aufgabenblatt 7P Aufgabe (Stetigkeit) (a) Für welche a, b R sind die folgenden Funktionen stetig in x 0

Mehr

Definition von Sinus und Cosinus

Definition von Sinus und Cosinus Definition von Sinus und Cosinus Definition 3.16 Es sei P(x y) der Punkt auf dem Einheitskreis, für den der Winkel von der positiven reellen Halbachse aus (im Bogenmaß) gerade ϕ beträgt (Winkel math. positiv,

Mehr

17 Logarithmus und allgemeine Potenz

17 Logarithmus und allgemeine Potenz 7 Logarithmus und allgemeine Potenz 7. Der natürliche Logarithmus 7.3 Die allgemeine Potenz 7.4 Die Exponentialfunktion zur Basis a 7.5 Die Potenzfunktion zum Exponenten b 7.6 Die Logarithmusfunktion zur

Mehr

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0!

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 25.02.2004 Aufgabe 5 Gegeben ist die Funktion f(x) = 2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 06.08.2003 Aufgabe 5 Gegeben ist

Mehr

1.3 Funktionen einer reellen Veränderlichen und ihre Darstellung im x, y - Koordinatensystem

1.3 Funktionen einer reellen Veränderlichen und ihre Darstellung im x, y - Koordinatensystem .0.0. Funktionen einer reellen Veränderlichen und ihre Darstellung im, - Koordinatensstem Vereinbarungen Wir betrachten vorerst nur noch Funktionen f, deren Definitionsund Wertebereich jeweils R oder ein

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

(Unvollständige) Zusammenfassung Analysis Grundkurs

(Unvollständige) Zusammenfassung Analysis Grundkurs (Unvollständige) Zusammenfassung Analysis Grundkurs. Ableitungs und Integrationsregeln (Folgende 0 Funktionen sind alles Funktionen aus dem Zentralabitur Grundkurs.) a) f(t) = 0,0t e 0,t b) f(t) = t 3

Mehr

Kapitel 6. Exponentialfunktion

Kapitel 6. Exponentialfunktion Kapitel 6. Exponentialfunktion 6.1. Potenzreihen In Kap. 4 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

Mathematik für Biologen mathematische Ergänzungen und Beispiele Teil I

Mathematik für Biologen mathematische Ergänzungen und Beispiele Teil I Mathematik für Biologen mathematische Ergänzungen und Beispiele Teil I 1. Mengen und Abbildungen In der Mathematik beschäftigt man sich immer -direkt oder indirekt- mit Mengen. Wir benötigen den Mengenbegriff

Mehr

Stetigkeit. Definitionen. Beispiele

Stetigkeit. Definitionen. Beispiele Stetigkeit Definitionen Stetigkeit Sei f : D mit D eine Funktion. f heißt stetig in a D, falls für jede Folge x n in D (d.h. x n D für alle n ) mit lim x n a gilt: lim f x n f a. Die Funktion f : D heißt

Mehr

Integralrechnung. Petra Grell, WS 2004/05

Integralrechnung. Petra Grell, WS 2004/05 Integralrechnung Petra Grell, WS 2004/05 1 Einführung Bei den Rechenoperationen, die wir im Laufe der Zeit kennengelernt haben, kann man feststellen, dass es immer eine Umkehrung gibt: + : log a aˆ So

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

2. Symmetrische Gruppen

2. Symmetrische Gruppen 14 Andreas Gathmann 2 Symmetrische Gruppen Im letzten Kapitel haben wir Gruppen eingeführt und ihre elementaren Eigenschaften untersucht Wir wollen nun eine neue wichtige Klasse von Beispielen von Gruppen

Mehr

Dezimalzahlen. Analysis 1

Dezimalzahlen. Analysis 1 Dezimalzahlen Definition. Eine endliche Dezimalzahl besteht aus - einem Vorzeichen +,, oder 0 - einer natürlichen Zahl d 0 - einer endlichen Folge von Ziffern d 1,...,d l von 0 bis 9. Die Länge l kann

Mehr

27 Taylor-Formel und Taylor-Entwicklungen

27 Taylor-Formel und Taylor-Entwicklungen 136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr

cos(kx) sin(nx)dx =?

cos(kx) sin(nx)dx =? 3.5 Fourierreihen 3.5.1 Vorbemerkungen cos(kx) sin(nx)dx =? cos gerade Funktion x cos(kx) gerade Funktion sin ungerade Funktion x sin(nx) ungerade Funktion x cos(kx) sin(nx) ungerade Funktion Weil [, π]

Mehr

6 Differentialgleichungen

6 Differentialgleichungen 88 6 Differentialgleichungen Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion y = y(x) und Ableitungen (die erste oder auch höhere) von y vorkommen. Lösungen einer Differentialgleichung

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

Differenzenquotient. f(x) Differenzialrechnung. Gegeben sei eine Funktion f(x). 197 Wegener Math/5_Differenzial Mittwoch 04.04.

Differenzenquotient. f(x) Differenzialrechnung. Gegeben sei eine Funktion f(x). 197 Wegener Math/5_Differenzial Mittwoch 04.04. Gegeben sei eine Funktion f(). Differenzialrechnung Differenzenquotient f() 197 Wegener Math/5_Differenzial Mittwoch 04.04.2007 18:38:45 1 Differenzenquotient Gesucht ist die Tangente an der Stelle, wobei

Mehr

GFS im Fach Mathematik. Florian Rieger Kl.12

GFS im Fach Mathematik. Florian Rieger Kl.12 file:///d /Refs/_To%20Do/12_09_04/NewtonVerfahren(1).html 27.02.2003 GFS im Fach Mathematik Florian Rieger Kl.12 1. Problemstellung NewtonApproximation Schon bei Polynomen dritter Ordnung versagen alle

Mehr

19 Folgen. Grenzwerte. Stetigkeit

19 Folgen. Grenzwerte. Stetigkeit 19 Folgen. Grenzwerte. Stetigkeit Jörn Loviscach Versionsstand: 27. Dezember 2014, 16:35 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html

Mehr

Abb lokales Maximum und Minimum

Abb lokales Maximum und Minimum .13 Lokale Extrema, Monotonie und Konvexität Wir kommen nun zu den ersten Anwendungen der Dierentialrechnung. Zwischen den Eigenschaten einer Funktion, dem Verlau des zugehörigen Graphen und den Ableitungen

Mehr