Übungen Grundlagen der Schwingungslehre

Größe: px
Ab Seite anzeigen:

Download "Übungen Grundlagen der Schwingungslehre"

Transkript

1 Übungen Grundlagen der Schwingungslehre Aufg. 1: Fundamentale Begriffe der Systemtheorie und Schwingungslehre (Linearität und Zeitinvarianz) In der Systemtheorie geht es um den Zusammenhang zwischen Signal-System-Signal unter Anwendung der Black-Box-Methode im weiteren Sinne. Die systemtheoretische Betrachtung schließt eine vertiefte Darstellung der Signal- und Systembegriffe mit ein. Im Fall linearer zeitinvarianter Systeme herrscht völlige Gleichberechtigung zwischen Zeit- und Spektralsignalen bzw. -begriffen. Es existieren Querverbindungen verschiedener Beschreibungsformen (Abtasttheoreme, Faltung, Korrelation). Ingenieurmäßiges oder zweckmäßiges Arbeiten gestattet die eduzierung auf die wesentlichen Zusammenhänge. Auf eine Wahrung des Abbildes der tatsächlichen Verhältnisse auf die Modellbildung kann verzichtet werden, da es in der egel um das Erkennen der wesentlichen Zusammenhänge geht. Dies rechtfertigt das System näherungsweise zu beschreiben. In diesem Sinne stellen die linearen zeitinvarianten Systeme eine wichtige Klasse von Modellen dar. Für eine große Zahl von Anwendungsfällen können die Nichtlinearitäten und Zeitabhängigkeiten vernachlässigt werden oder aber die Betriebsbedingungen sind so zu gestalten, dass diese vernachlässigbar sind. a) Definieren Sie die analytischen Eigenschaften einer linearen zeitinvarianten Abbildung (Linearität und Homogenität) b) Bei der dynamischen Untersuchung Ihrer Konstruktion in Abb. 1 Abb.: 1: Mechanischer Schwinger (ad auf Fahrbahn) erhalten Sie eine gewöhnliche Differentialgleichung vom Typ: Dr.-Ing. habil. Jörg Wollnack

2 d f df a () t + b () t + c f() t = e() t. dt dt Handelt es sich bei Ihrer Konstruktion um ein lineares zeitinvariantes System? Beweisen Sie Ihre Aussagen. c) Bei einer anderen Aufgabenstellung erhalten Sie die Differentialgleichung d f ( x ) + x f ( x ) + sin( f ( x )) = 0. dx Es stellt sich die Frage, ob hier ein lineares zeitinvariantes System vorliegt? Beweisen Sie Ihre Aussage. d) Für eine Kraftmessung bei einem mechanischen schwingungsfähigen Gebilde verwenden Sie eine DMS-Messbrücke mit integrierter Elektronik. Die Sensorgleichung folgt im Arbeitsbereich D F = [-10N,10N] dem Gesetz: uf = mf F + cf. Stellt dieses Messsystem ein lineares zeitinvariantes System dar? Aufgrund von aumtemperaturschwankungen verändern sich die Eigenschaften der elektrischen und mechanischen Komponenten des Messsystems. Nehmen wir an, der wesentliche Effekt artikuliert sich in den elektronischen Komponenten des Kraftaufnehmers, indem die Offsetspannung c F und der Sensorparameter m F sich in Abhängigkeit von der Temperatur ändert. Die typischen Werte der linearen Terme der Temperaturfunktionen liegen hierbei in der Größenordnung von: dcf dm ( τ F A) 1mV/ C und ( τ A) 100 µv / C. dτ dτ Definieren Sie die allgemeine temperaturabhängige Sensorgleichung und untersuchen Sie, ob ein lineares zeitinvariantes System vorliegt oder nicht. Aufg. : Die Idee des komplexen Ansatzes Das Ausgangssignal eines physikalischen Systems berechnet sich über den das System charakterisierenden Operator zu at () = L rt (), mit L: r( t) a( t) und r: t r( t) Führt man nun nach Garbor eine komplexe Erweiterung i(t) i: t i( t) zum physikalischen Signal r(t) ein, so erhält man das komplexe Signal φ () t = r() t + ji(), t j = 1. Wobei zu bemerken ist, dass offen gelassen wurde, wie die komplexe Ergänzung i(t) auszusehen hat. An sie wird nur die Forderung gestellt, ein physikalisches Signal zu sein. - - Dr.-Ing. habil. Jörg Wollnack

3 Wendet man den Systemoperator L auf das komplexe Signal an, so erhält man formal at () = L rt () + jit () Bei einem linearen Operator oder System gilt der Superpositionssatz, so dass man ferner at () = L rt () + L jit () notieren kann. Zur Erinnerung sei bemerkt, dass die komplexen Zahlen auf einer Erweiterung der reellen Zahlen beruhen. Ihre Entstehung verdanken die komplexen Zahlen historisch im wesentlichen den Bemühungen, die Probleme der Auflösung algebraischer Gleichungen in einer abgerundeten Form darstellen zu können. In der Systemtheorie und Schwingungslehre erlaubt die komplexe Erweiterung in der egel eine transparente Darstellung der Operationen, die das System charakterisieren. Aufgrund der Einbettung der komplexen Zahlen in die Arithmetik der reellen Zahlen, kann man die imaginäre Einheit als Faktor deuten, so dass der Homogenität der linearen Abbildung zur Folge, ferner auch at () = L rt () + jl it () notiert werden kann. Wir definieren hierbei letztlich nur formal die Benutzung der komplexen Einheit im Zusammenhang mit dem Systemoperator. Da i(t) ein physikalisches Signal repräsentiert, kann formal eine Systemantwort L{i(t)} berechnet werden. Bildet man den ealteil des komplexen Ausgangssignals, so erhält man e { L{ φ ( t) }} = L{ r( t) }. Da ferner rt () = e { φ() t} ist, gilt e { L{ φ( t) }} L e { φ( t) } =. a) Interpretieren Sie das Ergebnis. b) Verwenden Sie die Garborsche Idee der komplexen Ergänzung bei dem System mit dem Operator 1 L{ r() t } = r () t. Berechnen Sie die Systemantwort über den komplexen Ansatz und vergleichen Sie das Ergebnis mit der klassischen Berechnungsmethode. Welche Schlussfolgerung lässt sich ziehen? Was hätten Sie erwartet? c) Welche komplexe Ergänzung halten Sie bei den Signalen r(t) für sinnvoll r(t) ( ω ) x cos k t k 0 ( ω + ϕ ) x cos k t k 0 0 i(t) 1 Leistungsbegriffe in der Mechanik und Elektrotechnik sind proportional zu Signalquadraten Dr.-Ing. habil. Jörg Wollnack

4 Begründen Sie Ihre Entscheidung und geben Sie ein Beispiel für die Vorteile der Garborschen Idee an (z. B. Differential des Zeitsignals berechnen). d) Lässt sich das komplexe Signal messtechnisch erfassen? Begründen Sie Ihre Antwort und geben Sie einen Messaufbau an. Aufg. 3: Faltungssatz und Anwendungen (Fourier-, Laplace-Transformation und Fremderregung harmonischer Schwinger) Für lineare zeitinvariante Systeme gilt der Faltungssatz: + at ( ) = L{ e( τ )}( t) = gt ( τ) e( τ)dτ. a) Zeigen Sie, dass die Linearität und Zeitinvarianz eine hinreichende Bedingung für die Gültigkeit des Faltungssatzes ist. Die Linearität und Zeitinvarianz ist zugleich auch eine notwendige Bedingung. b) Mit Hilfe der Fourier- oder Laplace-Transformation lässt sich die Faltung in ein Produkt der Fourieroder Laplace-Transformierten der Gewichts- und Eingangsfunktion g(t) und e(t) überführen: e(t) L{} Le { ()}() τ t + L e( τ) ( t) = g( t τ) e( τ)dτ ( ω) = ( ω) ( ω),mit ( ω) =I{ ()}( ω) A j G j E j F j f t j Sie stehen vor der Aufgabe, das unbekannte Übertragungsverhalten G ( jω ) zu bestimmen. Welche Möglichkeiten stehen Ihnen zur Verfügung? Geben Sie einige typische Erregungsfunktionen und deren Spektren an und diskutieren Sie die praktischen Gesichtspunkte bei der Auswahl und Erzeugung von Erregersignalen. c) In einem Sensorsystem wird der Betrag eines physikalischen Signals bestimmt. Das Messsystem hat folgende Struktur: x I x S x SB Sensor y = x Abb. : Blockschaltbild eines betragsbildenden Sensorsystems Sie stehen vor der Aufgabe das Gesamtübertragungsverhalten des Sensorsystems zu bestimmen. Wenn möglich, geben Sie die Übertragungsfunktion G ( jω ) an. Diskutieren Sie Ihr Ergebnis. Wie wäre die Gesamtübertragungsfunktion prinzipiell zu bestimmen? d) Es liege ein fremderregtes Feder-Masse-System mit geschwindigkeitsproportionaler Dämpfung vor (siehe Abbildung Abb. 5). Die Masse des Systems sei in der punktförmigen Masseverteilung m vereinigt. Die Feder und das Dämpfungssystem seien masselos. Stellen Sie die Bewegungsgleichung auf. Zur Standardisierung gehen Sie anschließend von der DGL Dr.-Ing. habil. Jörg Wollnack

5 a d d () () () () d a t + b d a t + t t ca t = e t aus. Mit Hilfe der Laplace-Transformation und unter Annahme verschwindender Anfangsbedingungen bestimmen Sie die Laplace-Transformierte G(s) der Gewichtsfunktion. Für die anschließende Diskussion können Sie von einer weiteren Standardisierung Gebrauch machen. Gegen Sie hierzu von der Laplace-Transformierten As () k Gs () = = Es () T0 s + DT0 + 1 aus. Diese Form der Darstellung hat, wie Sie sehen werden, gewisse Vorteile. Bestimmen Sie Eigenresonanzfrequenz f 0 = 1 T 0 und das Lehrsche Dämpfungsmaß D aus den Koeffizienten der standardisierten DGL. Wählen Sie als Sprungfunktion den Einheitssprung und geben Sie die Systemantwort im Laplace- und Zeitbereich an. Unterscheiden Sie hierbei zwei Fälle: a) Fall 1 für 0 D < 1 und b) Fall für 1 < D Charakterisieren Sie diese beiden Fälle bzw. geben Sie eine physikalische Interpretation an. Vergleichen Sie die Operatorenschreibweise der DGL mit der Laplace-Transformierten. Welche formale Analogie fällt Ihnen auf? Bemerkung: Die Laplace-Transformation führt die Lösung von linearen zeitinvarianten Differentialgleichungen auf die Lösung von algebraischen Gleichungen zurück. Nutzen Sie diese Tatsache bei der Bestimmung der Sprungantwort und greifen Sie ferner auf Korrespondenztabellen zurück Dr.-Ing. habil. Jörg Wollnack

3. Beschreibung dynamischer Systeme im Frequenzbereich

3. Beschreibung dynamischer Systeme im Frequenzbereich 3. Laplace-Transformation 3. Frequenzgang 3.3 Übertragungsfunktion Quelle: K.-D. Tieste, O.Romberg: Keine Panik vor Regelungstechnik!.Auflage, Vieweg&Teubner, Campus Friedrichshafen --- Regelungstechnik

Mehr

5. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

5. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 5. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: e jωt -Funktionen sind sinusförmige, komplexe Funktionen. Sie sind

Mehr

Zusatzmaterial zu Kapitel 4

Zusatzmaterial zu Kapitel 4 1 ERMITTLUNG DER TRANSITIONSMATRIX MIT DER SYLVESTER-FORMEL 1 Zusatzmaterial zu Kapitel 4 1 Ermittlung der Transitionsmatrix mit der Sylvester- Formel Wir nehmen an, dass das Zustandsmodell eines linearen

Mehr

Zusammenfassung der 6. Vorlesung

Zusammenfassung der 6. Vorlesung Zusammenfassung der 6. Vorlesung Dynamische Systeme 2-ter Ordnung (PT 2 -System) Schwingungsfähige Systeme 2-ter Ordnung. - Systeme mit Speicher für potentielle und kinetische Energie - Beispiel: Feder-Masse-Dämpfer

Mehr

2. Fourier-Transformation

2. Fourier-Transformation 2. Fourier-Transformation Die Fourier-Transformation ist ein wichtiges Hilfsmittel für die dynamische Analyse linearer Systeme: Die Fourier-Transformierte der Antwort ist gleich dem Produkt der Fourier-Transformierten

Mehr

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge Heavisidefunktion σ (t), Diracimpuls δ (t),faltung Definition Heavisidefunktion, t > 0 σ ( t) = 0, t < 0 Anwendungen ) Rechteckimpuls, t < T r( t) = = σ ( t + T ) σ ( t T ) 0, t > T 2) Sprungfunktionen,

Mehr

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3.

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 4. Dämpfungsmodelle 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische

Mehr

A. Die Laplace-Transformation

A. Die Laplace-Transformation A. Die Laplace-Transformation Die Laplace-Transformation ist eine im Wesentlichen eineindeutige Zuordnung von Funktionen der Zeit t zu Funktionen einer komplexen Variablen s. Im Rahmen der einseitigen)

Mehr

Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 2005 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 3 Zeitkontinuierliche

Mehr

Übungen zu Signal- und Systemtheorie

Übungen zu Signal- und Systemtheorie Fachhochschule Dortmund University of Applied Sciences and Arts Übungen zu Signal- und Systemtheorie (Anteil: Prof. Felderhoff) Version 1.3 für das Wintersemester 016/017 Stand: 05.1.016 von: Prof. Dr.-Ing.

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Quantisiertes Signal Zeitdiskretes Signal Digitales Signal Auflösung der A/D- Umsetzer der MicroAutoBox

Mehr

Transformationen Übungen 1. 1 Signale und Systeme. 1.1 Gegeben ist die Funktion f(t). Skizzieren Sie folgende Funktionen: a) f(t - 3) b) f(2 t) f(t)

Transformationen Übungen 1. 1 Signale und Systeme. 1.1 Gegeben ist die Funktion f(t). Skizzieren Sie folgende Funktionen: a) f(t - 3) b) f(2 t) f(t) Transformationen Übungen 1 1 Signale und Systeme 1.1 Gegeben ist die Funktion f(t). Skizzieren Sie folgende Funktionen: a) f(t - 3) b) f(2 t) f(t) 1 c) f(-t) d) f(t + 3) 1 t e) f(t / 4) f) f(t) + 2 g)

Mehr

Laplacetransformation

Laplacetransformation Laplacetransformation Fakultät Grundlagen Februar 206 Fakultät Grundlagen Laplacetransformation Übersicht Transformationen Transformationen Bezugssysteme Definition der Laplacetransformation Beispiele

Mehr

Hamilton-Systeme. J. Struckmeier

Hamilton-Systeme. J. Struckmeier Invarianten für zeitabhängige Hamilton-Systeme J. Struckmeier Vortrag im Rahmen des Winterseminars des Instituts für Angewandte Physik der Johann-Wolfgang-Goethe-Universität Frankfurt a.m. Hirschegg, 04.

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3.

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3. 4. Dämpfungsmodelle 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Dabei

Mehr

FESTSTELLUNGSPRÜFUNG in HM2

FESTSTELLUNGSPRÜFUNG in HM2 FESTSTELLUNGSPRÜFUNG in HM2 FDIBA - TU, WS 27/8 INFORMATIK Name: Immatrikulationsnummer: Aufgabe : Zu lösen sei, durch Anwendung der Transformation von Laplace, das Anfangswertproblem 9P. u () (t) u(t)

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Systemtheorie Teil A - Zeitkontinuierliche Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 6 Musterlösungen Spektrum von Signalen 6. Approximation eines periodischen Signals

Mehr

HTW. Probe-Klausur (und klausurvorbereitende Übungsaufgaben) Angewandte Mathematik MST

HTW. Probe-Klausur (und klausurvorbereitende Übungsaufgaben) Angewandte Mathematik MST HTW Probe-Klausur (und klausurvorbereitende Übungsaufgaben) Angewandte Mathematik MST Dauer : 100 Minuten Prof. Dr. B. Grabowski Name: Matr.Nr.: Erreichte Punktzahl: Hinweise zur Bearbeitung der Aufgaben:

Mehr

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand:

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand: Fachhochschule Dortmund University of Applied Sciences and Arts Institut für Informationstechnik Software-Engineering Signalverarbeitung Regelungstechnik IfIT Übungen zu Transformationen im Bachelor ET

Mehr

Theorie digitaler Systeme

Theorie digitaler Systeme Theorie digitaler Systeme Vorlesung 6: Impulsantwort und Faltung Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Grundlegende Systemeigenschaften Beispiele führten zu linearen Differenzengleichungen

Mehr

5. Fourier-Transformation

5. Fourier-Transformation 5. Fourier-Transformation 5.1 Definition 5.2 Eigenschaften 5.3 Transformation reeller Funktionen 5.4 Frequenzbereich und Zeitbereich 2.5-1 5.1 Definition Definition: Die Fourier-Transformation einer Funktion

Mehr

2 Periodische, nicht harmonische Signale

2 Periodische, nicht harmonische Signale Hochfrequenztechnik I Signaldarstellung im Zeit- und Frequenzbereich S/ Harmonische Signale Zeitabhängige Gröÿen, wie z. B. Spannung, Strom oder Feld, sind häug harmonische Gröÿen. Solche sinus- oder kosinusförmigen

Mehr

Systemtheorie. Vorlesung 20: Eigenschaften der Fourier-Transformation. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 20: Eigenschaften der Fourier-Transformation. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 2: Eigenschaften der Fourier-Transformation Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Fourier-Transformation Eigenschaften der Fourier-Transformation Definitionsgleichungen

Mehr

Das wissen Sie: 6. Welche Möglichkeiten zur Darstellung periodischer Funktionen (Signalen) kennen Sie?

Das wissen Sie: 6. Welche Möglichkeiten zur Darstellung periodischer Funktionen (Signalen) kennen Sie? Das wissen Sie: 1. Wann ist eine Funktion (Signal) gerade, ungerade, harmonisch, periodisch (Kombinationsbeispiele)? 2. Wie lassen sich harmonische Schwingungen mathematisch beschreiben und welche Beziehungen

Mehr

Aufgabe 1: Laplace-Transformation

Aufgabe 1: Laplace-Transformation Aufgabe 1: Laplace-Transformation (25 Punkte) a) Teilaufgabe: 15 Punkte Gegeben sei die folgende Differenzialgleichung dritter Ordnung: mit den Anfangswerten: y (3) (t) + 4 ÿ(t) + ẏ(t) 6 y(t) = 12 u(t)

Mehr

Lange Nacht der Systemtheorie. - Einschaltverhalten eines Lautsprechers - Manfred Strohrmann

Lange Nacht der Systemtheorie. - Einschaltverhalten eines Lautsprechers - Manfred Strohrmann Lange Nacht der Systemtheorie - Einschaltverhalten eines Lautsprechers - Manfred Strohrmann Änderungsindex Version Datum Verfasser Änderungen 2.0 19.02.2014 1.0 17.10.2007 M. Strohrmann, C. Hadamek M.

Mehr

Abt. Maschinenbau, Lehrstuhl Steuerung, Regelung und Systemdynamik

Abt. Maschinenbau, Lehrstuhl Steuerung, Regelung und Systemdynamik Regelungstechnik (Bachelor Wirtschaftsingenieurwesen) 120 Minuten Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Beschreiben Sie den Unterschied zwischen der Behandlung eines Signales im

Mehr

Signale und Systeme I

Signale und Systeme I FACULTY OF ENGNEERING CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITAL SIGNAL PROCESSING AND SYSTEM THEORY DSS Signale und Systeme I Musterlösung zur Modulklausur WS 010/011 Prüfer: Prof. Dr.-Ing. Gerhard

Mehr

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS Dämpfung. Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung 5. Dämpfung 5-1 1. Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische Energie

Mehr

LTI-Systeme in Frequenzbereich und Zeitbereich

LTI-Systeme in Frequenzbereich und Zeitbereich LTI-Systeme in Frequenzbereich und Zeitbereich LTI-Systeme Frequenzgang, Filter Impulsfunktion und Impulsantwort, Faltung, Fourier-Transformation Spektrum, Zeitdauer-Bandbreite-Produkt Übungen Literatur

Mehr

MusterModulprüfung. Anteil Transformationen

MusterModulprüfung. Anteil Transformationen MusterModulprüfung Anteil Transformationen Studiengang: Elektrotechnik oder Energiewirtschaft Datum: Prüfer: heute Prof. Dr. Felderhoff Version:.0 (vom 30.1.014) Name: Vorname: Matr.-Nr.: 1 Aufgabe 1 Fourier-Transformation

Mehr

Name: Vorname(n): Matrikelnummer: Aufgabe erreichbare Punkte erreichte Punkte Punkte aus Übungsmitarbeit Gesamtpunktanzahl

Name: Vorname(n): Matrikelnummer: Aufgabe erreichbare Punkte erreichte Punkte Punkte aus Übungsmitarbeit Gesamtpunktanzahl Universität des Saarlandes, Lehrstuhl für Systemtheorie und Regelungstechnik SCHRIFTLICHE PRÜFUNG aus SYSTEMTHEORIE UND REGELUNGSTECHNIK I am 28.7.26 Name: Vorname(n): Matrikelnummer: Note: Aufgabe 2 3

Mehr

Blatt 11.1: Fourier-Integrale, Differentialgleichungen

Blatt 11.1: Fourier-Integrale, Differentialgleichungen Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 204/5 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Katharina Stadler http://homepages.physik.uni-muenchen.de/~vondelft/lehre/4t0/ Blatt.:

Mehr

15.5 Beschreibung von linearen Systemen

15.5 Beschreibung von linearen Systemen 5.5 Beschreibung von linearen Systemen 965 5.5 Beschreibung von linearen Systemen Um das Übertragungsverhalten von Systemen zu bestimmen, untersucht man in der Regelungs- und Systemtechnik den Zusammenhang

Mehr

Fundamentale Lösungen von linearen homogenen Differentialgleichungen. 1-E Ma 2 Lubov Vassilevskaya

Fundamentale Lösungen von linearen homogenen Differentialgleichungen. 1-E Ma 2 Lubov Vassilevskaya Fundamentale Lösungen von linearen homogenen Differentialgleichungen 1-E Eigenschaften einer linearen DGL 2. Ordnung Eine homogene lineare Differenzialgleichung 2. Ordnung mit konstanten Koeffizienten

Mehr

Laplace-Transformation

Laplace-Transformation Laplace-Transformation Gegeben: Funktion mit beschränktem Wachstum: x(t) Ke ct t [, ) Definition: Laplace-Transformation: X(s) = e st x(t) dt = L{x(t)} s C Re(s) >c Definition: Inverse Laplace-Transformation:

Mehr

Fourierreihen periodischer Funktionen

Fourierreihen periodischer Funktionen Fourierreihen periodischer Funktionen periodische Funktion: (3.1) Fourierkoeffizienten und (3.2) (3.3) Fourier-Reihenentwicklungen Cosinus-Reihe: (3.4) (3.5) Exponentialreihe: (3.6) (3.7-3.8) Bestimmung

Mehr

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 2 Zeitkontinuierliche

Mehr

Aufgabe 1 (Klassifizierung von Systemen)

Aufgabe 1 (Klassifizierung von Systemen) Prof. L. Guzzella Prof. R. D Andrea 151-0591-00 Regelungstechnik I (HS 07) Musterlösung Übung 3 Systemklassifizierung, Systeme 1. Ordnung im Zeitbereich, Stabilitätsanalyse moritz.oetiker@imrt.mavt.ethz.ch,

Mehr

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie Institut für Elektrotechnik und Informationstechnik Aufgabensammlung zur Systemtheorie Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Balewski Dipl.-Ing. R. Besrat 05.04.2013 Übungsaufgaben zur Systemtheorie

Mehr

Gewöhnliche Differentialgleichungen. Teil II: Lineare DGLs mit konstanten Koeffizienten

Gewöhnliche Differentialgleichungen. Teil II: Lineare DGLs mit konstanten Koeffizienten - 1 - Gewöhnliche Differentialgleichungen Teil II: Lineare DGLs mit konstanten Koeffizienten Wir wenden uns jetzt einer speziellen, einfachen Klasse von DGLs zu, die allerdings in der Physik durchaus beträchtliche

Mehr

9. Die Laplace Transformation

9. Die Laplace Transformation H.J. Oberle Differentialgleichungen I WiSe 212/13 9. Die Laplace Transformation Die Laplace Transformation gehört zur Klasse der so genannten Integraltransformationen. Diese ordnen einer vorgegebenen Funktion

Mehr

Systemtheorie. Vorlesung 6: Lösung linearer Differentialgleichungen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 6: Lösung linearer Differentialgleichungen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 6: Lösung linearer Differentialgleichungen Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Einführung Viele technischen Anwendungen lassen sich zumindest näherungsweise

Mehr

Formelsammlung zum Skriptum

Formelsammlung zum Skriptum Systemtheorie und Regelungstechnik I - WS08/09 Formelsammlung zum Skriptum Kapitel 2 Satz 23 (Lokale Existenz und Eindeutigkeit) Es sei f (x, t) stückweise stetig in t und genüge der Abschätzung (Lipschitz-Bedingung)

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretische Physik 2 (Theoretische Mechanik Prof. Dr. Th. Feldmann 21. Januar 2014 Kurzzusammenfassung Vorlesung 23 vom 21.1.2014 Satz von Liouville Der Fluß eines Hamilton schen Systems im Phasenraum

Mehr

Differentialgleichungen 2. Ordnung

Differentialgleichungen 2. Ordnung Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei

Mehr

Das Integral T e (x+iω)t := 1

Das Integral T e (x+iω)t := 1 1 Das Integral T e (+i)t := 1 t t e τ t e (+i)τ dτ. 1) I. Es sei die Funktion ei : IR IR definiert durch ei(z) := z e y dy. (1) Dann gilt für IR und t > Satz 1: F () : = e cos d = e, () G() : = e sin d

Mehr

PRÜFUNG AUS MATHEMATIK 3

PRÜFUNG AUS MATHEMATIK 3 (8 P.) Berechnen Sie das Integral tan(ln x) dx. x (8 P.) Bestimmen Sie die allgemeine Lösung der Differentialgleichung y 2y + 2y = x 2 + 5 cos x. (8 P.) Entwickeln Sie f(x) = sin(x) für x [ π/2, π/2] mit

Mehr

UNIVERSITÄT DUISBURG - ESSEN Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau, Professur für Steuerung, Regelung und Systemdynamik

UNIVERSITÄT DUISBURG - ESSEN Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau, Professur für Steuerung, Regelung und Systemdynamik Regelungstechnik I (PO95), Regelungstechnik (PO02 Schiffstechnik), Regelungstechnik (Bachelor Wi.-Ing.) (180 Minuten) Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Erläutern Sie anhand eines

Mehr

2. Übung: Lineare dynamische Systeme

2. Übung: Lineare dynamische Systeme 2. Übung: Lineare dynamische Systeme Aufgabe 2.. Gegeben sind die beiden autonomen Systeme und x (2.) {{ A 2 2 x. (2.2) {{ A 2 Berechnen Sie die regulären Zustandstransformationen x = V z und x = V 2 z,

Mehr

6. Lineare DGL-Systeme erster Ordnung

6. Lineare DGL-Systeme erster Ordnung HJ Oberle Differentialgleichungen I WiSe 22/3 6 Lineare DGL-Systeme erster Ordnung A Allgemeines Wir betrachten ein lineares DGL System erster Ordnung y (t = A(t y(t + b(t (6 und setzen voraus, dass die

Mehr

Übung 5 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN

Übung 5 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Übung 5 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Übungsleiter: Dr.-Ing. H.-D. Ribbecke

Mehr

Schriftliche Prüfung aus Control Systems 1 am

Schriftliche Prüfung aus Control Systems 1 am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Control Systems 1 am 24.11.2014 Name / Vorname(n): Kennzahl / Matrikel-Nummer: Prüfungsmodus: O VO+UE (TM) O VO (BM)

Mehr

Systemtheorie. Vorlesung 17: Berechnung von Ein- und Umschaltvorgängen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 17: Berechnung von Ein- und Umschaltvorgängen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 7: Berechnung von Ein- und Umschaltvorgängen Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Ein- und Umschaltvorgänge Einführung Grundlagen der Elektrotechnik

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

Praktikum. Modellbildung und Simulation. Stichworte: Modellbildung Analoge Simulation Digitale Simulation

Praktikum. Modellbildung und Simulation. Stichworte: Modellbildung Analoge Simulation Digitale Simulation Praktikum Stichworte: Modellbildung Analoge Simulation Digitale Simulation Aufgabenstellung und Lösungsidee - Kennenlernen verschiedener Methoden zur Modellbildung eines mechanisches Schwingers - Abbildung

Mehr

4.3 Anwendungen auf Differentialgleichungen

4.3 Anwendungen auf Differentialgleichungen 7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,

Mehr

Umsetzung des neuen EL-Lehrplans

Umsetzung des neuen EL-Lehrplans Umsetzung des neuen EL-Lehrplans... für Maschinenbauer... Dipl.-Ing. Dr.techn. Michael Schwarzbart scb@htlwrn.ac.at Salzburg 09.Dezember 2015 Der Weg zu dynamischen Systemen Festigkeitslehre Statik Hydromechanik

Mehr

Signale und Systeme. Martin Werner

Signale und Systeme. Martin Werner Martin Werner Signale und Systeme Lehr- und Arbeitsbuch mit MATLAB -Übungen und Lösungen 3., vollständig überarbeitete und erweiterte Auflage Mit 256 Abbildungen, 48 Tabellen und zahlreichen Beispielen,

Mehr

Grundlagen der Elektrotechnik 3. Übungsaufgaben

Grundlagen der Elektrotechnik 3. Übungsaufgaben Campus Duisburg Grundlagen der Elektrotechnik 3 Nachrichtentechnische Systeme Prof. Dr.-Ing. Ingolf Willms Version Juli 08 Aufgabe 1: Man bestimme die Fourier-Reihenentwicklung für die folgende periodische

Mehr

Musterlösung Übung 4

Musterlösung Übung 4 Musterlösung Übung 4 Aufgabe : Laplace-Transformation und Schaltkreise: Bandpass a) Verwenden von Gl. 5.4, 5.5 und 5.8 aus dem Skript liefern: u in t) u L t) + u C t) + u R t).) C it ) dt + u) + L dit)

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d + c d + c uk d + + yk d + c d + c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 8 Musterlösung Frequengang eitdiskreter Systeme...

Mehr

Zeitfunktionen. Kapitel Elementarfunktionen

Zeitfunktionen. Kapitel Elementarfunktionen Kapitel Zeitfunktionen Systeme werden durch Eingangsgrößen (Ursache, Eingangssignal, Erregung) angeregt und man interessiert sich für die Ausgangsgrößen (Wirkung, Ausgangssignal, Antwort). Die praktisch

Mehr

Anwendung: Gedämpfter, getriebener harmonischer Oszillator Unendlich viele Anwendungen in der Physik, auch außerhalb der Mechanik!

Anwendung: Gedämpfter, getriebener harmonischer Oszillator Unendlich viele Anwendungen in der Physik, auch außerhalb der Mechanik! Anwendung: Gedämpfter, getriebener harmonischer Oszillator Unendlich viele Anwendungen in der Physik, auch außerhalb der Mechanik! Bewegungsgleichung: Dämpfungsrate: Einheit: Kreisfrequenz des Oszillators:

Mehr

) ein lokales Minimum, oder ein lokales Maximum, oder kein Extremum? Begründen Sie das mit den ersten und zweiten Ableitungen.

) ein lokales Minimum, oder ein lokales Maximum, oder kein Extremum? Begründen Sie das mit den ersten und zweiten Ableitungen. Mathematik 2 Klausur vom 22. November 23 Zoltán Zomotor Versionsstand: 2. Dezember 23, 9:2 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3. Germany License. To view

Mehr

Kybernetik LTI-Systeme

Kybernetik LTI-Systeme Kybernetik LTI-Systeme Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 26. 04. 2012 Was ist Kybernetik? environment agent Kybernetik ermöglicht, die Rückkopplung

Mehr

Systemtheorie für Informatiker

Systemtheorie für Informatiker Systemtheorie für Informatiker Dr. Ch. Grimm Professur Technische Informatik, Univ. Frankfurt/Main Vorlesung Systemtheorie Vorlesung: Übung: Veranstalter: Dr. Christoph Grimm Professur Technische Informatik

Mehr

Gekoppelte Schwingung

Gekoppelte Schwingung Versuch: GS Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: C. Blockwitz am 01. 07. 000 Bearbeitet: E. Hieckmann J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Aktualisiert: am 16. 09. 009

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 07 Allgemeine Informationen: Der deutschsprachige Eingangstest

Mehr

2. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

2. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 2. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: EA-System Eingabe: Ausgabe: u y t E/A-System 2. Vorlesung Systemtheorie

Mehr

Einführung in die Laplace Transformation

Einführung in die Laplace Transformation Einführung in die aplace Transformation Peter Riegler 17. Oktober 2 Zusammenfassung Dieser Text gibt Ihnen eine kurze Einführung in das Werkzeug der aplace Transformation. Es zeigt Ihnen, wo und warum

Mehr

System- und Signaltheorie

System- und Signaltheorie Otto Mildenberger System- und Signaltheorie Grundlagen für das informationstechnische Studium 3., überarbeitete und erweiterte Auflage Mit 166 Bildern vieweg 1 Einleitung 1 1.1 Aufgaben der Systemtheorie

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens WS 2012/13 Inhalt Fourier reihen Fourier Transformation Laplace Transforamation

Mehr

Kapitel 3. Lineare Differentialgleichungen

Kapitel 3. Lineare Differentialgleichungen Kapitel 3. Lineare Differentialgleichungen 3.4 Die Laplace Transformation Sei F : R C eine reell oder komplexwertige Funktion auf R. Die Laplace Transformierten von F ist gegeben durch die Integraltransformation

Mehr

4. Beschreibung von LTI-Systemen mit der Fourier-Transformation

4. Beschreibung von LTI-Systemen mit der Fourier-Transformation Die Fourier-Transformation 1. Anwendungsbeispiele der Fourier-Transformation 2. Die kontinuierliche Fourier-Transformation 3. Die Fourier-Reihe 4. Beschreibung von LTI-Systemen mit der Fourier-Transformation

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d 0 d c d c uk d 0 yk d c d c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 9 Musterlösungen Zeitdiskrete pproximation zeitkontinuierlicher

Mehr

Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen)

Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen) Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen) TU Bergakademie Freiberg Institut für Automatisierungstechnik Prof. Dr.-Ing. Andreas Rehkopf 27. Januar 2014 Übung 1 - Vorbereitung zum Praktikum

Mehr

Übung 6 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-,SW-CODESIGN

Übung 6 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-,SW-CODESIGN Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Übung 6 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-,SW-CODESIGN Übungsleiter: Dr.-Ing. Heinz-Dieter

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 008 Theoretische Mechanik 4. Übung Lösungen 4. Spezielle Kraftgesetze Lösen Sie die

Mehr

VII Komplexe Zahlen. Propädeutikum Holger Wuschke. 24. September 2018

VII Komplexe Zahlen. Propädeutikum Holger Wuschke. 24. September 2018 Propädeutikum 2018 24. September 2018 Darstellung Rechengesetze Erweiterung der reellen Zahlen um eine imaginäre Einheit. Ursprung: Lösung der Gleichung x 2 + 1 = 0 Komplexe Zahlen C := {a + i b a, b R}

Mehr

4. Standardübertragungsglieder

4. Standardübertragungsglieder 4. PT-Glied : Verzögerungsglied. Ordnung 4. P-Glied : Proportionalglied 4.3 I-Glied: Integrator 4.4 D-Glied: Differenzierer (ideal/real) 4.5 PT-Glied: Verzögerungsglied. Ordnung 4.6 Totzeitglied Campus

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 Komplexe Zahlen Das Auffinden aller Nullstellen von algebraischen Gleichungen ist ein Grundproblem, das in der Physik

Mehr

Spezieller Ansatz bei spezieller Inhomogenität.

Spezieller Ansatz bei spezieller Inhomogenität. Spezieller Ansatz bei spezieller Inhomogenität. Bei Inhomogenitäten der Form h(t) = e µt kann man spezielle Ansätze zur Bestimmung von y p (t) verwenden: Ist µ keine Nullstelle der charakteristischen Gleichung

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung 1 Lineare autonome Differentialgleichungen 2 Bestimmung des Fundamentalsystems 3 Jordansche Normalform 4 Reelle Fundamentalsysteme Ausblick auf die heutige Vorlesung

Mehr

y (t) Wie berechnet sich die Ableitung von F aus den Ableitungen von x (t) und y (t)? Die Antwort gibt die erste Kettenregel

y (t) Wie berechnet sich die Ableitung von F aus den Ableitungen von x (t) und y (t)? Die Antwort gibt die erste Kettenregel 103 Differenzialrechnung 553 1035 Kettenregeln Die Kettenregel bei Funktionen einer Variablen erlaubt die Berechnung der Ableitung von verketteten Funktionen Je nach Verkettung gibt es bei Funktionen von

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 1. Teilprüfung 389.055 A Signale und Systeme 2 Institute of Telecommunications

Mehr

X.4 Elektromagnetische Wellen im Vakuum

X.4 Elektromagnetische Wellen im Vakuum X.4 Elektromagnetische Wellen im Vakuum 173 X.4 Elektromagnetische Wellen im Vakuum In Abwesenheit von Quellen, ρ el. = 0 j el. = 0, nehmen die Bewegungsgleichungen (X.9) (X.11) für die elektromagnetischen

Mehr

Klausur: Höhere Mathematik IV

Klausur: Höhere Mathematik IV Prof. Dr. Josef Bemelmans Templergraben 55 52062 Aachen Raum 00 (Hauptgebäude) Klausur: Höhere Mathematik IV Tel.: +49 24 80 94889 Sekr.: +49 24 80 9492 Fax: +49 24 80 92323 bemelmans@instmath.rwth-aachen.de

Mehr

Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik

Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik Brandenburgische Technische Universität Cottbus-Senftenberg Fakultät 1 Professur Systemtheorie Prof. Dr.-Ing. D. Döring Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik

Mehr

Vordiplomprüfung Grundlagen der Elektrotechnik III

Vordiplomprüfung Grundlagen der Elektrotechnik III Vordiplomprüfung Grundlagen der Elektrotechnik III 16. Februar 2007 Name:... Vorname:... Mat.Nr.:... Studienfach:... Abgegebene Arbeitsblätter:... Bitte unterschreiben Sie, wenn Sie mit der Veröffentlichung

Mehr

L [u(at)] (s) = 1 ( s a. u(at)e st dt r=at = u(r)e s a r dr = 1 ( s a. u(t) = ah(t) sin(kω 0 t)

L [u(at)] (s) = 1 ( s a. u(at)e st dt r=at = u(r)e s a r dr = 1 ( s a. u(t) = ah(t) sin(kω 0 t) Übung 9 /Grundgebiete der Elektrotechnik 3 WS7/8 Laplace-Transformation Dr. Alexander Schaum, Lehrstuhl für vernetzte elektronische Systeme Christian-Albrechts-Universität zu Kiel Im Folgenden wird die

Mehr

Seite 1 NAME VORNAME MATRIKEL-NR. Achtung: Schreiben Sie Ihre Antworten für die Aufgaben 1 bis 2 direkt unter den Fragen in den Fragebogen.

Seite 1 NAME VORNAME MATRIKEL-NR. Achtung: Schreiben Sie Ihre Antworten für die Aufgaben 1 bis 2 direkt unter den Fragen in den Fragebogen. 144 Minuten Seite 1 NAME VORNAME MATRIKEL-NR. Achtung: Schreiben Sie Ihre Antworten für die Aufgaben 1 bis 2 direkt unter den Fragen in den Fragebogen. Aufgabe 1 (je 2 Punkte) a) Definieren Sie die Begriffe

Mehr

6.6 Lineare Dierentialgleichungen n-ter Ordnung mit konstanten Koezienten

6.6 Lineare Dierentialgleichungen n-ter Ordnung mit konstanten Koezienten 6.6 Lineare Dierentialgleichungen n-ter Ordnung mit konstanten Koezienten Dieser Abschnitt ist ein Einschub. Gewöhnliche DGL werden im nächsten Semester behandelt. Unter einer linearen gewöhnlichen DGL

Mehr

Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h.

Definition: Variablentransformation d. Form (2) heisst kanonisch, wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h. Zusammenfassung: kanonische Transformationen Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h., wenn ein existiert,

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 8.7.211 Arbeitszeit: 12 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Klausur zur T1 (Klassische Mechanik)

Klausur zur T1 (Klassische Mechanik) Klausur zur T1 (Klassische Mechanik) WS 2006/07 Bearbeitungsdauer: 120 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

6 Gewöhnliche Differentialgleichungen

6 Gewöhnliche Differentialgleichungen 6 Gewöhnliche Differentialgleichungen Differentialgleichungen sind Gleichungen in denen nicht nur eine Funktion selbst sondern auch ihre Ableitungen vorkommen. Im einfachsten Fall gibt es eine unabhängige

Mehr