Versicherungstechnik

Größe: px
Ab Seite anzeigen:

Download "Versicherungstechnik"

Transkript

1 Operaions Research und Wirschafsinformaik Prof. Dr. P. Rech // Marius Radermacher, M.Sc. DOOR Aufgabe 33 Versicherungsechnik Übungsbla 10 Abgabe bis um Diensag, dem um 10 Uhr im Kasen 19 Der 23-jährige, engagiere Chemiesuden Lars Leichsinn beschließe, mi Beginn seines gerade gesareen praisorienieren Chemiesudiums eine Risikoversicherung mi vierjähriger Versicherungdauer abuschließen. Die verraglich vereinbare Todesfallsumme berage im k-en Versicherungsjahr (in Euro) T k = ,02 k 1, 1 k 4. Besimmen Sie bie die für diesen Verrag u ahlende Neo-Einmalprämie. Lösungsvorschlag: Neoeinmalprämie gemäß Äquivalenprinip besimmen. d.h. 4 P einmal = BB 0 = LB 0 = p q + L (1) v +1 v () =0 =L, mi L (1) 4 =0 3 = p q + T +1 v +1 = =0 3 p q + 1,02 v +1 =0 (1 Punk) Aufgabe 34 Gegeben sei ein Lebensversicherungsarif u dessen Abschluss ein -Jähriger bei einer Laufei von n Jahren die über die gesame Laufei gleichbleibende Neoprämie P u enrichen ha. Der Leisungsbarwer um Verragsabschluss werde mi A, n beeichne und für die Versicherungssumme gele V S = 1. a) Geben Sie bie eine Gleichung ur Besimmung der Neoprämie P an. b) Dem Versicherungsunernehmen ensehen bei Abschluss des Versicherungsverrages Kosen, die je berücksichig werden sollen. Erläuern Sie in diesem Zusammenhang gan allgemein den Begriff Zillmerung. Warum werden Abschlusskosen in der Regel geillmer? c) Die bei Abschluss des Verrages anfallenden absoluen Kosen Z sollen in der Kalkulaion der Prämie berücksichig und in vollem Umfang geillmer werden. Geben Sie bie eine Gleichung für die sog. geillmere Neoprämie P auf Grundlage der reinen Neoprämie. Wie kann diese Gleichung inerpreier werden? d) Sellen Sie bie eine Gleichung für die sog. Zillmerreserve oder geillmere Deckungsrücksellung V auf und eigen Sie: Sofern keine weieren Kosen ensehen gil V V für alle 0 n 1. (2 Punke)

2 Lösungsvorschlag: -Jähriger, Laufei n Jahre, gleichbleibende Neoprämie P, Leisungsbarwer A, n, V S = 1 a) Neoprämie: Wegen Äquivalenprinip gil: LB 0 = BB 0 A, n = P ä, n P = A, n ä, n b) Zillmerung: speielle Inrechnungsellung von Abschlusskosen u Beginn des Versicherungsjahres, die für das Zusandekommen des Verrages relevan sind. Warum werden Kosen geillmer? VN i.d.r. nich berei, die Kosen direk u beahlen VU belase das Deckungskapial mi diesen Kosen! DK wird negaiv, d.h. 0 V < 0. Durch Beiragsahlung des VN seig DK schließlich auf fesgelege Endsumme geh nur, indem VN höhere Beiräge ahl als ohne Zillmerung ungeillmer α Z S geillmer Beispiel: gemische Versicherung c) Gesuch: geillmere Neoprämie Z P Z BB 0 = Z LB 0 Z P ä, n = A, n + Z mi A, n = P ä, n folg Z P ä, n = P ä, n + Z : ä, n Z P = P + Z ä, n die Zillmerkosen werden also verrene und auf normale Neoprämie aufgeschlagen.

3 d) Zillmerreserve V Zu eigen: V V für 0 n 1 V = A +, n Z P ä +, n ( ) = A +, n P + Z ä, n ä +, n Z = A +, n P ä +, n ä, n = V V = V Z ä +, ä n, n 0 ä +, n Wegen Z 0, ä, n 0, ä +, n 0 folg V V 0 n 1 Aufgabe 35 Ein 20-jähriger Mann schließe über einen Lebensversicherungsverrag eine gemische Lebensversicherung bei idenischer Todes- und Erlebensfallleisung mi einer Versicherungsdauer von n = Jahren ab. Die Zahlung der laufenden Beiräge erfolg dabei jährlich vorschüssig über die gesame Versicherungsdauer. Der Versicherung werden die folgenden Kosenuschläge u Grunde geleg: α γ = 1,0 der Beiragssumme (ensprich der Summe der ausreichenden Jahresprämien), vorschüssig ahlbar für jedes Jahr der Versicherungsdauer, β = 3% der ausreichenden Jahresprämie, vorschüssig ahlbar für jedes Jahr der Versicherungsdauer und γ = 2,0 der Beiragssumme, vorschüssig ahlbar für jedes Jahr der Versicherungsdauer. Die Abschlusskosen werden als α der Beiragssumme einmalig u Versicherungsbeginn geillmer. Die Versicherung sell sich nun die Frage, wie hoch der Abschlusskosensa α als Promillesa maimal sein darf, dami das ausreichende Deckungskapial nach wei Jahren bereis posiiv is. a) Besimmen Sie unächs das Neo-Deckungskapial 2 V 20. b) Wie läss sich die ausreichende Prämie P20 a für den u Grunde liegenden Versicherungsverrag bei gegebenem Abschlusskosensa berechnen? c) Geben Sie ur Besimmung von α eine Gleichung für das geillmere Deckungskapial 2 V 20 an! Wie groß darf α hier maimal gewähl werden? (3 Punke)

4 Lösungsvorschlag: Gegeben sei: = 20, n =, VS=idenisch für Todes- und Erlebensfall. Sei o.b.d.a. VS = 1 Gesuch: α (in Promille) a) Neo-Deckungskapial 2 V 20 2V 20 = LB 2 BB 2 = A 22, 43 P 20 ä 22, 43 = A 22, 43 A 20, ä 22, 43 = 1 d ä 22, 43 (1 d ) ä22, 43 = 1 d ä 22, 43 ä22, 43 + d ä20, ä 22, 43 = 1 ä22, 43 = 1 (N 22 N 65 ) D 20 (N 20 N 65 ) D 22 = 1 0, = 0, b) Ausreichende Prämie P a 20 Wegen des Äquivalenprinips gil: P (a) = A, n ä, n + Z(a) ä, n = P + α n = P + P (a) = ä, n P (a) + γ S (a) + β P (a) + α γ S (a) + P (a) (γ n + β + α γ n) ( α n + γ n + β + α γ n) ä, n P (1 α n ä, n γ n β α γ n) A, n = (1 γ n β α γ n) ä, n α n P (a) A 20, = 0,835 α c) Geillmeres Deckungskapial 2 V 20 Allgemein ( > 0): V (a) = A +, n + α γ S (a) ä +, n + γ S (a) ä +, n + β P (a) ä +, n

5 D. h. hier P (a) ä +, n P (a) = A +, n (1 γ n β α γ n) ä +, n = A +, n (1 γ n β α γ n α n α n ä, n = A +, n P ä +, n Z (a) = V Z (a) P (a) ä +, n ä+, n ä, n ä+, n ä, n 2 V (a) 20 = 2 V 20 α P (a) 20 ä22, 43! > 0 2 V 20 > α P (a) 20 ä22, 43 b) 2 V 20 > α A 20, ä, n (1 γ β α γ ) =0,835 ) P (a) ä +, n α ä22, 43 ( ) 2 V 20 (0,835 α ) > α A 20, ä22, 43 2 V 20 0,835 2 V 20 0,835 2V 20 0,835 ( 2 V 20 + A 20, ä22, 43 ) 2 V 20 α > α A 20, ä22, 43 > α ( 2 V 20 + A 20, ä22, 43 ) > α (*) Es gil α 0,025 und in aller Regel > 1, Aufgabe 36 Speialisieren Sie die versicherungsmahemaische Bilangleichung für folgende Versicherungen: a) n-jährige Risikolebensversicherung, b) Erlebensfallversicherung, c) Kapialbildende Lebensversicherung d) Aufgeschobene lebenslange Leibrenenversicherung mi abgekürer Beiragsahlungsdauer. Berücksichigen Sie dabei die Ihnen bekannen Kosenaren und beachen Sie die daraus resulierenden Fallunerscheidungen. (5 Punke)

6 Lösungsvorschlag: Zunächs sind in der folgenden Tabelle die unerschiedlichen Kosenaren, ihre Beugsgrößen sowie ihre Fälligkeisermine dargesell. Mi S = n 1 =0 B(a) wird hierbei die Summe der ausreichenden Beiräge beeichne. Kosenar Beugsgröße Fälligkei Abschlusskosen α Z S einmalig in = 0 α γ S während Verragslaufei gemäß Armoisaionsprofil k = (k 0, k 1,..., k n 1 ) Verwalungskosen β laufend während der Beiragsahlungsdauer γ S laufend während der Versicherungsdauer σ laufend während der Versicherungsdauer B (a) a) Für die n-jährige Risikolebensversicherung ergeben sich die folgenden Bilangleichungen für 0 n 1: V (a) V (a) mi 0 V (a) = L + k α γ S + β B (a) + γ S + σ + p + +1 V (a) v +1 = q + L (1) v +1 + (k α γ + γ ) S + β B (a) + σ + p + +1 V (a) v +1 = α Z S und n V (a) = 0. b) Für die n-jährige Erlebensfallversicherung ergeben sich die folgenden Bilangleichungen für 0 n 1: mi 0 V (a) V (a) = (k α γ + γ ) S + β B (a) = α Z S und n V (a) = L n. + σ + p + +1 V (a) v +1 c) Für die Kapialbildende Lebensversicherung ergeben sich die folgenden Bilangleichungen für 0 n 1: V (a) mi 0 V (a) = q + L (1) v +1 + (k α γ + γ ) S + β B (a) + σ + p + +1 V (a) v +1 = α Z S und n V (a) = L n. d) Für die Leibrenenversicherung wei Fälle unerschieden, wobei mi m die Beiragsahlungsdauer und mi n der Reneneinriseipunk beeichne wird. (i) m n Für 0 m 1 (nur Beiräge, keine Leisungen): V (a) = (k α γ + γ ) S + β B (a) Für m n 1 (weder Beiräge noch Leisungen): V (a) Für n ω (nur Leisungen): mi 0 V (a) + σ + p + +1 V (a) v +1 (1) = (k α γ + γ ) S + σ + p + +1 V (a) v +1 (2) V (a) = L (0) + (k α γ + γ ) S + σ + p + +1 V (a) v +1 (3) = α Z S und ω +1 V (a) = 0

7 (ii) m > n Für 0 n 1 (nur Beiräge, keine Leisungen): V (a) = (k α γ + γ ) S + β B (a) Für n m 1 (Beiräge und Leisungen): V (a) + σ + p + +1 V (a) v +1 (1) = L (0) + (k α γ + γ ) S + β B (a) + σ + p + +1 V (a) v +1 (4) Für m ω (nur Leisungen): mi 0 V (a) V (a) = L (0) + (k α γ + γ ) S + σ + p + +1 V (a) v +1 (3) = α Z S und ω +1 V (a) = 0

Versicherungstechnik

Versicherungstechnik Operaions Research und Wirschafsinformaik Prof. Dr. P. Rech // Marius Radermacher, M.Sc. DOOR Aufgabe 42 Versicherungsechnik Übungsbla 13 Abgabe bis zum Diensag, dem 24.01.2017 um 10 Uhr im Kasen 19 Überschüsse

Mehr

Versicherungstechnik

Versicherungstechnik Operaions Research und Wirschafsinformaik Prof Dr P Rech // Marius Radermacher, MSc DOOR Aufgabe 30 Versicherungsechnik Übungsbla 9 Abgabe bis zum Diensag, dem 13122016 um 10 Uhr im Kasen 19 Berachen Sie

Mehr

Seminar Bewertungsmethoden in der Personenversicherungsmathematik

Seminar Bewertungsmethoden in der Personenversicherungsmathematik Seminar Bewerungsmehoden in der Personenversicherungsmahemaik Akuarielle und finanzmahmaische Bewerung I Xiaoying Xu Mahemaisches Insiu der Universiä zu Köln Sommersemeser 2010 Bereuung: Prof Schmidli,

Mehr

Versicherungstechnik

Versicherungstechnik Operations Research und Wirtschaftsinformatik Prof. Dr. P. Recht // Marius Radermacher, M.Sc. DOOR Aufgabe 20 Versicherungstechnik Übungsblatt 6 Abgabe bis zum Dienstag, dem 29.11.2016 um 10 Uhr im Kasten

Mehr

Versicherungstechnik

Versicherungstechnik Operations Research und Wirtschaftsinformatik Prof. Dr. P. Recht // Marius Radermacher, M.Sc. DOOR Aufgabe 37 Versicherungstechnik Übungsblatt 11 Abgabe bis zum Dienstag, dem 10.01.2017 um 10 Uhr im Kasten

Mehr

Prüfung Grundprinzipien der Versicherungs- und Finanzmathematik 2010

Prüfung Grundprinzipien der Versicherungs- und Finanzmathematik 2010 Prüfung Grunprinzipien er Versicherungs- un Finanzmahemaik Aufgabe : (5 Minuen a Gegeben sei ein einperioiger Sae Space-Mark mi rei Zusänen, er aus rei Werpapieren besehe, einer sicheren Anlage zu % sowie

Mehr

Versicherungstechnik

Versicherungstechnik Operations Research und Wirtschaftsinformatik Prof. Dr. P. Recht // Marius Radermacher, M.Sc. DOOR Aufgabe 16 Versicherungstechnik Übungsblatt 5 Abgabe bis zum Dienstag, dem 22.11.2016 um 10 Uhr im Kasten

Mehr

Ministerium für Schule und Weiterbildung NRW M LK HT 4 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs

Ministerium für Schule und Weiterbildung NRW M LK HT 4 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs Seie von 9 Unerlagen für die Lehrkraf Abiurprüfung 9 Mahemaik, Leisungskurs. Aufgabenar Lineare Algebra/Geomerie ohne Alernaive. Aufgabensellung siehe Prüfungsaufgabe. Maerialgrundlage 4. Bezüge zu den

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 LAGEBEZIEHUNG DREIER EBENEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 LAGEBEZIEHUNG DREIER EBENEN Mahemaik Mag. Schmid Wolfgang Arbeisbla. Semeser ARBEITSBLATT LAGEBEZIEHUNG DREIER EBENEN Nachdem wir die Lage weier Ebenen unersuch haben, wollen wir uns nun mi der Lage von drei Ebenen beschäfigen. Anders

Mehr

Die tatsächliche Entwicklung des Versicherungsvertrages wird jedoch zumindest aus zwei Gründen von den rechnungsmäßigen Größen abweichen:

Die tatsächliche Entwicklung des Versicherungsvertrages wird jedoch zumindest aus zwei Gründen von den rechnungsmäßigen Größen abweichen: Wiederholung: Für einen Lebensversicherungsverrag X gegeben durch b, c ) und Prämien π ) is der Gewinn (Verlus) am Ende eines Jahres eine Zufallsvariable GV v p, π p, + b p, q c und folgenden Eigenschafen

Mehr

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R.

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R. Abiuraufgaben Grundkurs 9 Bayern Analysis I I.). Die Abbildung zeig den Graphen G f einer ganzraionalen Funkion f drien Grades mi dem Definiionsbereich D f R. Die in der Abbildung angegebenen Punke P(

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Prof. Dr. Guido Sweers WS 08/09 Jan Gerdung, M.Sc. Gewöhnliche Differenialgleichungen Übungsbla Die Lösungen müssen in den Übungsbriefkasen Gewöhnliche Differenialgleichungen (Raum 0 im MI) geworfen werden.

Mehr

Karlsruher Institut für Technologie (KIT) Institut für Analysis Dr. A. Müller-Rettkowski Dipl.-Math. M. Uhl. Sommersemester 2011

Karlsruher Institut für Technologie (KIT) Institut für Analysis Dr. A. Müller-Rettkowski Dipl.-Math. M. Uhl. Sommersemester 2011 Karlsruher Insiu für Technologie KIT) Insiu für Analysis Dr. A. Müller-Rekowski Dipl.-Mah. M. Uhl Sommersemeser Höhere Mahemaik II für die Fachrichungen Elekroingenieurwesen und Physik inklusive Komplee

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 6 5. Semester ARBEITSBLATT 6 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 6 5. Semester ARBEITSBLATT 6 PARAMETERDARSTELLUNG EINER GERADEN ARBEITSBLATT PARAMETERDARSTELLUNG EINER GERADEN Eine Gerade sell man im R ensprechend zum R auf, nur daß eine z-koordinae hinzukomm: Definiion: Parameerdarsellung einer Gerade durch die Punke A und B:

Mehr

Institut für Allgemeine Mechanik der RWTH Aachen

Institut für Allgemeine Mechanik der RWTH Aachen Insiu für Allgemeine Mecanik der RWTH Aacen Prof. Dr.-Ing. D. Weicer 7.Übung Mecanik II SS 7 4.6.7 Abgabeermin 7.Übung:.6.7 4: Ur. Aufgabe Zwei fläcengleice Querscnie a) und b) werden wie dargesell belase.

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sysemheorie eil A - Zeikoninuierliche Signale und Syseme - Muserlösungen Manfred Srohrmann Urban Brunner Inhal 3 Muserlösungen - Zeikoninuierliche Syseme im Zeibereich 3 3. Nachweis der ineariä... 3 3.

Mehr

7. Vorlesung Wintersemester

7. Vorlesung Wintersemester 7. Vorlesung Winersemeser Der ungedämpfe Oszillaor mi komplexem Lösungsansaz Wie gezeig, wird die DGL des ungedämpfen Oszillaors mẍ() + kx() = 0 () im Komplexen von den Funkionen x () = e iω und x 2 ()

Mehr

Übungen zur Experimentalphysik II Aufgabenblatt 3 - Lösung

Übungen zur Experimentalphysik II Aufgabenblatt 3 - Lösung KW /15 Prof. Dr. R. Reifarh, Dr. J. Glorius Übungen zur Experimenalphysik II Aufgabenbla 3 - Lösung Aufgabe 1: a) Die Laung q im Volumen V beräg: q = ρ(r) V = ρ(r)4πr r = 4πAr 3 r Für ie Laung Q erhalen

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

Bestandsführung leicht gemacht

Bestandsführung leicht gemacht Besandsführung leich gemach qx-club Köln Köln, 12. April 2016 Frank Richer 21.04.2016 Agenda Eigenschafen einer Besandsführung Konzepe effiziener Produkmodellierung Srukurieres Klassenmodell und sparenübergreifende

Mehr

Analysis: Exponentialfunktionen Analysis

Analysis: Exponentialfunktionen Analysis www.mahe-aufgaben.com Analysis: Eponenialfunkionen Analysis Übungsaufgaben u Eponenialfunkionen Pflich- und Wahleil gesames Soffgebie (insbesondere Funkionsscharen) ohne Wachsum Gymnasium ab J Aleander

Mehr

Ganzrationale Funktionenscharen. 4. Grades. Umfangreiche Aufgaben. Lösungen ohne CAS und GTR. Alle Methoden ganz ausführlich. Datei Nr.

Ganzrationale Funktionenscharen. 4. Grades. Umfangreiche Aufgaben. Lösungen ohne CAS und GTR. Alle Methoden ganz ausführlich. Datei Nr. Ganzraionale Funkionenscharen. Grades Umfangreiche Aufgaben Lösungen ohne CAS und GTR Alle Mehoden ganz ausführlich Daei Nr. 7 Sand 3. Sepember 06 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Prüfung Grundprinzipien der Versicherungs- und Finanzmathematik 2014

Prüfung Grundprinzipien der Versicherungs- und Finanzmathematik 2014 Prüfung Grundprinzipien der ersicherungs- und Finanzmahemaik 04 Aufgabe : (0 Minuen) a) Gegeben sei ein einperiodiger Sae Space-Mark mi drei usänden, der aus drei Werpapieren besehe, einer sicheren Anlage

Mehr

ZUU AUUFFGGAABBEE :: Die Wann läuft zunächst voll. Nach einiger Zeit wird etwas Wasser abgelassen und dann wird etwas zugeführt.

ZUU AUUFFGGAABBEE :: Die Wann läuft zunächst voll. Nach einiger Zeit wird etwas Wasser abgelassen und dann wird etwas zugeführt. Lineare Funkionen. Lösungen Lö LÖÖSSUUNNGGEENN ZZUUM.. KPPI IITTEELL ZZUU UUFFGGEE..: : a) as Pfeildiagramm zeig keine Funkion, da von h kein Pfeil ausgeh und von a zwei Pfeile. b) Is eine Funkion, denn

Mehr

Leistungselektronik Grundlagen und Standardanwendungen. Übung 3: Kommutierung

Leistungselektronik Grundlagen und Standardanwendungen. Übung 3: Kommutierung Lehrsuhl für Elekrische Anriebssyseme und Leisungselekronik Technische Universiä München Arcissraße 1 D 8333 München Email: eal@ei.um.de Inerne: hp://www.eal.ei.um.de Prof. Dr.-Ing. Ralph Kennel Tel.:

Mehr

Ferienkurs Analysis I für Physiker WS 15/16 Aufgaben Tag 3. Aufgaben Tag 3

Ferienkurs Analysis I für Physiker WS 15/16 Aufgaben Tag 3. Aufgaben Tag 3 für Physier WS 5/6 Reihen Zeigen Sie, dass die folgenden Reihen onvergieren und die angegebenen Summen haben. Dabei is f die -e Fibonacci-Zahl a + = 4 Wir fassen die gegebene Reihe als Grenzwer der Folge

Mehr

Zeitreihenökonometrie

Zeitreihenökonometrie Zeireihenökonomerie Kapiel 4 Schäzung univariaer Zeireihenmodelle Y = c+ α Y + + α Y + ε + βε + + β ε p p q q Problem: Direke Schäzung der Parameer α,, αp und β,, βq über OLS nich möglich, da die Residuen

Mehr

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit WS 2007/08

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit WS 2007/08 Phillips Kurve (Blanchard Ch.8) 310 Einleiung Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 In der beracheen Periode war in den USA eine niedrige Arbeislosigkei ypischerweise von hoher

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Insiu für Technologie Insiu für Analysis Dr. Chrisoph Schmoeger Michael Ho, M. Sc. M. Sc. SS 6 9.7.6 Höhere Mahemaik II für die Fachrichung Physik Lösungsvorschläge zur Übungsklausur Aufgabe

Mehr

Exponential- und Logarithmusfunktionen

Exponential- und Logarithmusfunktionen . ) Personen, Personen bzw. Personen ) Ewas weniger als Minuen. (Nach,... Minuen sind genau Personen informier.) ) Ja. Bereis um : Uhr sind (heoreisch) Personen informier. ) Informiere Miarbeierinnen und

Mehr

Prüfung Finanzmathematik und Investmentmanagement 2011

Prüfung Finanzmathematik und Investmentmanagement 2011 Prüfung Finanzmahemaik und Invesmenmanagemen 0 Aufgabe : (0 Minuen) a) Auf der Grundlage einer Lagrange-Opimierung ergib sich die folgende funkionale Form für die (, ) -Koordinaen der (rein riskanen) Randporfolios

Mehr

Testklausur ET 1 - ETechnik Aufgabe Summe Note erreichbar Punkte

Testklausur ET 1 - ETechnik Aufgabe Summe Note erreichbar Punkte Tesklausur ET - ETechnik Name: Aufgabe 5 Summe Noe erreichbar 8 7 6 5 9 Punke Tragen Sie die Ergebnisse wie geforder, als bzw. Zahlenwer, in die Ergebnisfelder ein. Zahlen sind als Dezimalbrüche oder gekürze

Mehr

Übungsaufgaben zu Kapitel 1: Offene Güter- und Finanzmärkte

Übungsaufgaben zu Kapitel 1: Offene Güter- und Finanzmärkte Kapiel 1 Übungsaufgaben zu Kapiel 1: Offene Güer- und Finanzmärke Übungsaufgabe 1-1 1-1 Berachen Sie zwei Werpapiere, das eine wird in Deuschland in Euro emiier, das andere in den USA in Dollar! Nehmen

Mehr

ervoanriebsechnik.de Weiere Unerlagen, die im Zusammenhang mi diesem Dokumen sehen: Applicaion Guide: Ideale Geriebeunersezung /5 Regel für Posiionier

ervoanriebsechnik.de Weiere Unerlagen, die im Zusammenhang mi diesem Dokumen sehen: Applicaion Guide: Ideale Geriebeunersezung /5 Regel für Posiionier ervoanriebsechnik.de / Regel für Direkanriebe Posiionierung mi Rampen 5 Winkelgeschwindigkei [rad/s] ω(, 0 5 0 0 0. 0. 0. 0.4 0.5 0.6 0.7 0.8 0.9 Zei [s] APPLICAION GUIDE Handbuch yp: Applicaion Guide

Mehr

5. Übungsblatt zur Linearen Algebra II

5. Übungsblatt zur Linearen Algebra II Fachbereich Mahemaik Prof. J. Bokowski Dennis Frisch, Nicole Nowak Sommersemeser 27 5., 8. und 2. Mai 5. Übungsbla zur Linearen Algebra II Gruppenübung Aufgabe G (Hüllen) In dieser Aufgabe soll es darum

Mehr

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff Die Bioverfügbarkei is eine Messgröße dafür, wie schnell und in welchem Umfang ein Arzneimiel resorbier wird und am Wirkor zur Verfügung seh. Zur Messung der Bioverfügbarkei wird die Wirksoffkonzenraion

Mehr

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion)

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion) R. Brinkmann hp://brinkmann-du.de Seie.. Tangene und Normale Tangenenseigung Die Seigung eines Funkionsgraphen in einem Punk P ( f ( ) ) is gleichbedeuend mi der Seigung der Tangene in diesem Punk. Nachfolgend

Mehr

1 Lokale Änderungsrate und Gesamtänderung

1 Lokale Änderungsrate und Gesamtänderung Schülerbuchseie Lösungen vorläufig I Inegralrechnung Lokale Änderungsrae und Gesamänderung S. S. b h = m s ( s) + m s s + m s ( s) = 7 m Fläche = 7 FE a) s =, h km h +, h km h +, h km h +, h km h +,, h

Mehr

5.2 Logische Schaltungen und bistabile Kippstufen (FF)

5.2 Logische Schaltungen und bistabile Kippstufen (FF) Dipl.-Ing. G.Lebel Logische Schalungen und bisabile Kippsufen (FF) logik+ff- 5.2 Logische Schalungen und bisabile Kippsufen (FF) Sachwore: Logische Schalungen, Äquivalenz-Gaer, EXOR-Gaer, UND-Gaer, ODER-Gaer,

Mehr

4. Quadratische Funktionen.

4. Quadratische Funktionen. 4-1 Funkionen 4 Quadraische Funkionen 41 Skalierung, Nullsellen Eine quadraische Funkion is von der Form f() = c 2 + b + a mi reellen Zahlen a, b, c; is c 0, so sprechen wir von einer echen quadraischen

Mehr

Lehrstuhl für Statistik und emp. Wirtschaftsforschung, Prof. Regina T. Riphahn, Ph.D. Musterlösung zur Baseler Zwischenklausur im WS 02/03

Lehrstuhl für Statistik und emp. Wirtschaftsforschung, Prof. Regina T. Riphahn, Ph.D. Musterlösung zur Baseler Zwischenklausur im WS 02/03 Lehrsuhl für Saisik und emp. irschafsforschung, Prof. Regina T. Riphahn, Ph.D. Muserlösung zur Baseler Zwischenklausur im S 0/0 Aufgabe 1: [1] Mi den Daen von 177 Miewohnungen einer Schweizer Sad wurde

Mehr

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat Fachag Mahemaik: Kurvenscharen Ablauf: 1. Sunde Gemeinsame Einsiegsaufgabe. Sunde Sammgruppenaufgaben Sammgruppen (a bis 6 Schüler) Jedes Gruppenmiglied erhäl eine unerschiedliche Aufgabe A, B, C, D in

Mehr

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und

Mehr

ANALYTISCHE BERECHNUNGEN AM

ANALYTISCHE BERECHNUNGEN AM Schule Bundesgymnasiu um für Berufsäige Salzburg Modul Thema Mahemai 8 Arbeisbla A 8-6 Kreis ANALYTISCHE BERECHNUNGEN AM KREIS Bisher onnen wir lediglich die Fläche, den Umfang oder den Radius eines Kreises

Mehr

1. Schularbeit (6R) 24. Okt. 1997

1. Schularbeit (6R) 24. Okt. 1997 . Schularbei (6R). Ok. 997. Vereinfache und selle das Ergebnis mi posiiven Hochzahlen dar. Es sind dabei alle Rechenschrie anzugeben: 7 x x y 8 : x x y. Löse die folgende Wurzelgleichung ohne Verwendung

Mehr

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor)

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor) Technische Universiä München Lehrsuhl für Regelungsechnik Prof. Dr.-Ing. B. Lohmann Prüfung zum Fach Regelungsechnik 7.9. für Sudierende Lehram an beruflichen Schulen (Diplom/Bachelor) Name: Vorname: Mar.-Nr.

Mehr

1. Mathematische Grundlagen und Grundkenntnisse

1. Mathematische Grundlagen und Grundkenntnisse 8 1. Mahemaische Grundlagen und Grundkennnisse Aufgabe 7: Gegeben sind: K = 1; = 18; p = 1 (p.a.). Berechnen Sie die Zinsen z. 18 1 Lösung: z = 1 = 5 36 Man beache, dass die kaufmännische Zinsformel als

Mehr

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 Abiurprüfung Mahemaik 0 (Baden-Würemberg) Berufliche Gymnasien Analysis, Aufgabe. (8 Punke) Die Abbildung zeig das Schaubild einer Funkion h mi der Definiionsmenge [-7 ; 4]. Die Funkion H is eine Sammfunkion

Mehr

Versicherungs-und Risikomanagement. Versicherungstechnik

Versicherungs-und Risikomanagement. Versicherungstechnik Operaions Research und Wirschafsinformaik Prof Dr P Rech // Marius Radermacher, MSc DOOR Versicherungs-und Risikomanagemen Versicherungsechnik Vx pro S m n Skripum zur Veransalung Winersemeser 2016/2017

Mehr

Abiurprüfung Mahemaik 007 Baden-Würemberg (ohne CAS) Pflicheil - Aufgaben Aufgabe : ( VP) Bilden Sie die erse Ableiung der Funkion f mi f () + = ( sin ). Aufgabe : ( VP) ln Berechnen Sie das Inegral e

Mehr

Aufgabe 1: Kontinuierliche und diskrete Signale

Aufgabe 1: Kontinuierliche und diskrete Signale Aufgabe (5 Punke) Aufgabe : Koninuierliche und diskree Signale. a) Zeichnen Sie jeweils den geraden Aneil v g ( ) und den ungeraden Aneil v u ( ) des in Abb.. dargesellen Signals v (). b) Es gelen folgende

Mehr

Fit für die Q-Phase? Mathematiktraining für die Schüler und Schülerinnen des Beruflichen Gymnasiums Gelnhausen

Fit für die Q-Phase? Mathematiktraining für die Schüler und Schülerinnen des Beruflichen Gymnasiums Gelnhausen Fi für die Q-Phase? Mahemaikraining für die Schüler und Schülerinnen des. Gleichungen (mi und ohne Parameer) Löse folgende Gleichungen:. 4 7.6 e ( e )..7 4 4 k k. 6.8 6 0.4 4 4 4 49.9 cos..0 4.6. e e.7

Mehr

Versicherungstechnik

Versicherungstechnik Operations Research und Wirtschaftsinformatik Prof. Dr. P. Recht // Marius Radermacher, M.Sc. DOOR Aufgabe 9 Versicherungstechnik Übungsblatt 3 Abgabe bis Dienstag, dem 08.11.2016 um 10 Uhr im Kasten 19

Mehr

Kapitel : Exponentiell-beschränktes Wachstum

Kapitel : Exponentiell-beschränktes Wachstum Wachsumsprozesse Kapiel : Exponeniell-beschränkes Wachsum Die Grundbegriffe aus wachsum.xmcd werden auch hier verwende! Wir verwenden nun eine Angabe aus der Biologie und in einem weieren Beispiel eines

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Insiu für Technologie Insiu für Analysis Dr. Chrisoph Schmoeger Dipl.-Mah. Sebasian Schwarz SS 015 17.05.015 Höhere Mahemaik II für die Fachrichung Physik Lösungsvorschläge zum 6. Übungsbla

Mehr

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =

Mehr

Die Lösungen der Übungsaufgaben werden durch folgendes Lemma etwas vereinfacht:

Die Lösungen der Übungsaufgaben werden durch folgendes Lemma etwas vereinfacht: Prof. Dr. D. Kuske, M.Sc. M. Huschenbe Fachgebie Theoreische Informaik, TU Ilmenau Muserlösung zum 2. Übungsbla Auomaenheorie Die Lösungen der Übungsaufgaben werden durch folgendes Lemma ewas vereinfach:

Mehr

Analysis II Musterlösung 12. für t [ 0, 2π). y

Analysis II Musterlösung 12. für t [ 0, 2π). y .. Saz von Green Die Randkurve des, in unensehender Figur dargesellen, umerangs kann paramerisier werden durch 4 cos ( + cos( sin( für, π..75.5.5 -.5 3 4 5 6 -.5 -.75 - Zur erechnung des Flächeninhales

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppiz, Dr. I. Rbak 8. Gruppenübung zur Vorlesung Höhere Mahemaik Sommersemeser 9 Prof. Dr. M. Sroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe H. Konvergenzverhalen

Mehr

Lösung - Serie 8. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Was für eine Kurve stellt die Parametrisierung

Lösung - Serie 8. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Was für eine Kurve stellt die Parametrisierung D-MAVT/D-MATL Analysis I HS 018 Dr. Andreas Seiger Lösung - Serie 8 MC-Aufgaben Online-Abgabe 1. Was für eine Kurve sell die Paramerisierung sin1 r = cos1, R dar? a Ein Kreis. Es gil x + y = sin 1 + cos

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 9: Radioakiver Zerfall Beim radioakiven Zerfall einer Subsanz S 1 beschreib m 1 () die Masse der noch nich zerfallenen Subsanz zum Zeipunk mi

Mehr

Wiederholung Exponentialfunktion

Wiederholung Exponentialfunktion SEITE 1 VON 9 Wiederholung Eponenialfunkion VON HEINZ BÖER 1. Regeln und Beispiele Der Funkionserm Eponenialfunkionen haben die Form f() = b a. Die y-achse wird bei b geschnien, denn f(0) = 0 b a = b 1

Mehr

Übungen zur Klausur 11M1 21/05/2008 Seite 1 von 5

Übungen zur Klausur 11M1 21/05/2008 Seite 1 von 5 Seie von 5 Aufgabe : Eine ganzraionale Funkion. Grades habe die Nullsellen ; ;. Ihr Schaubild gehe durch P( 6). Besimme die Exremsellen. Skizziere den Graphen der Funkion. allgemeine Form einer Funkion.

Mehr

Übungsaufgaben zu Kapitel 5: Erwartungen Die Grundlagen

Übungsaufgaben zu Kapitel 5: Erwartungen Die Grundlagen Kapiel 5 Übungsaufgaben zu Kapiel 5: Erwarungen Die Grundlagen Übungsaufgabe 5-1a 5-1a) Beschreiben Sie die heoreischen Überlegungen zum Realzins. Wie unerscheide sich der Realzins vom Nominalzins? Folie

Mehr

Das lineare H-unendlich Problem

Das lineare H-unendlich Problem Das lineare H-unendlich Problem Salah-Eddine Sessou Seminarvorrag vom. Juli 6. Problemsellung Bild z P x u K Der Regler (Konroller)K ha zei Eingänge, x und den exogenen Eingang. Das H-unendlich Problem

Mehr

Investitionsrechnung in der öffentlichen Verwaltung

Investitionsrechnung in der öffentlichen Verwaltung GablerPLUS Zusazinformaionen zu Medien des Gabler Verlags Invesiionsrechnung in der öffenlichen Verwalung Rechenmehoden zur prakischen Bewerung von Invesiionsvorhaben 2011 1. Auflage Kapiel 3 Saische und

Mehr

Hauptprüfung 2010 Aufgabe 4

Hauptprüfung 2010 Aufgabe 4 Haupprüfung Aufgabe Gegeben ind die Punke A(5//), B(//), C(//) und S(//5).. Zeigen Sie, da da Dreieck ABC rechwinklig und gleichchenklig i. Berechnen Sie die Koordinaen de Punke D o, da da Viereck ABCD

Mehr

Diese 3 Signale haben als Anregungssignale am Eingang eines Systems besondere Bedeutung für die lineare Systemtheorie erlangt.

Diese 3 Signale haben als Anregungssignale am Eingang eines Systems besondere Bedeutung für die lineare Systemtheorie erlangt. 16 2.3 Sprungfunkion, Rampenfunkion Delafunkion Diese 3 Signale haben als Anregungssignale am Eingang eines Sysems besondere Bedeuung für die lineare Sysemheorie erlang. Sprungfunkion: ( σ ( ), 1( ) )

Mehr

mathphys-online Abiturprüfung Berufliche Oberschule 2015 Mathematik 13 Technik - A I - Lösung mit CAS Teilaufgabe 1 mit f a ( x)

mathphys-online Abiturprüfung Berufliche Oberschule 2015 Mathematik 13 Technik - A I - Lösung mit CAS Teilaufgabe 1 mit f a ( x) mhphys-online Abiurprüfung Berufliche Oberschule 05 Mhemik 3 Technik - A I - Lösung mi CAS Teilufgbe Gegeben is die Funkion f mi f ( ) Definiionsmenge D f IR. e e mi IR\ {0} und der mimlen Teilufgbe. (7

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

Lineare Algebra I - Lösungshinweise zur Klausur

Lineare Algebra I - Lösungshinweise zur Klausur Insiu für Mahemaik Winersemeser 0/3 Universiä Würzburg 0 Februar 03 Prof Dr Jörn Seuding Dr Anna von Heusinger Frederike Rüppel Lineare Algebra I - Lösungshinweise zur Klausur Aufgabe : (0 Punke) Zeigen

Mehr

Grundlagenfach Mathematik. Prüfende Lehrpersonen Alitiloh Essodinam

Grundlagenfach Mathematik. Prüfende Lehrpersonen Alitiloh Essodinam Schrifliche Mauriäsprüfung 017 Fach Grundlagenfach Mahemaik Prüfende Lehrpersonen Aliiloh Essodinam essodinam.aliiloh@edulu.ch Mikova Teodora eodora.mikova@edulu.ch Zuidema Roel roel.zuidema@edulu.ch Klassen

Mehr

mathphys-online Abschlussprüfung Berufliche Oberschule 2009 Mathematik 12 Technik - A I - Lösung Teilaufgabe 1.0 Gegeben ist die reelle Funktion f( x)

mathphys-online Abschlussprüfung Berufliche Oberschule 2009 Mathematik 12 Technik - A I - Lösung Teilaufgabe 1.0 Gegeben ist die reelle Funktion f( x) Abschlussprüfung Berufliche Oberschule 9 Mahemaik Technik - A I - Lösung Teilaufgabe. Gegeben is die reelle Funkion f( x) in der Definiionsmenge ID f = IR. Teilaufgabe. (4 BE) Unersuchen Sie das Verhalen

Mehr

Kurven in der Ebene und im Raum

Kurven in der Ebene und im Raum Kapiel 9 Kurven in der Ebene und im Raum 9. Parameerdarsellung von Kurven Aufgabe 9. : Skizzieren Sie die folgenden Mengen und beureilen Sie jeweils, ob es sich um eine abgeschlossene oder offene Menge

Mehr

AVWL II, Prof. Dr. T. Wollmershäuser. Kapitel 5 Die Phillipskurve

AVWL II, Prof. Dr. T. Wollmershäuser. Kapitel 5 Die Phillipskurve AVWL II, Prof. Dr. T. Wollmershäuser Kapiel 5 Die Phillipskurve Version: 22.11.2010 Der empirische Befund in den 60er Jahren Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 : 1931-1939 In

Mehr

u(t) sin(kωt)dt, k > 0

u(t) sin(kωt)dt, k > 0 Übung 7 /Grundgebiee der Elekroechnik 3 WS7/8 Fourieranalyse Dr. Alexander Schaum, Lehrsuhl für verneze elekronische Syseme Chrisian-Albrechs-Universiä zu Kiel mi Im folgenden wird die Fourierreihe = a

Mehr

BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS

BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Name: Vorname: Marikel-Nr.: BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Prüfngsgebie: Einführng in die Wirschafsinformaik (PO 2006) Grndlagen von Decision Sppor Sysemen

Mehr

Hörsaalübung 3 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Hörsaalübung 3 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mahemaik der Universiä Hamburg WiSe 26/27 Dr. Hanna Peywand Kiani Hörsaalübung 3 Differenialgleichungen I für Sudierende der Ingenieurwissenschafen Lineare Differenialgleichungssyseme Die ins

Mehr

Seminar Bewertungsmethoden in der Personenversicherungsmathematik

Seminar Bewertungsmethoden in der Personenversicherungsmathematik Seminar Bewerungsmehoden in der Personenversicherungsmahemaik Technische Reserven und Markwere I Sefanie Schüz Mahemaisches Insiu der Universiä zu Köln Sommersemeser 2010 Bereuung: Prof. Hanspeer Schmidli,

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt Prof Dr M Gerds Dr A Dreves J Michael Winerrimeser 6 Mahemaische Mehoden in den Ingenieurwissenschafen 4 Übungsbla Aufgabe 9 : Mehrmassenschwinger Berache wird ein schwingendes Sysem aus Körpern der Masse

Mehr

III.2 Radioaktive Zerfallsreihen

III.2 Radioaktive Zerfallsreihen N.BORGHINI Version vom 5. November 14, 13:57 Kernphysik III. Radioakive Zerfallsreihen Das Produk eines radioakiven Zerfalls kann selbs insabil sein und späer zerfallen, und so weier, sodass ganze Zerfallsreihen

Mehr

GETE ELEKTRISCHES FELD: DER KONDENSATOR: Elektrische Feldstärke: E r. Hr. Houska Testtermine: und

GETE ELEKTRISCHES FELD: DER KONDENSATOR: Elektrische Feldstärke: E r. Hr. Houska Testtermine: und Schuljahr 22/23 GETE 3. ABN / 4. ABN GETE Tesermine: 22.1.22 und 17.12.2 Hr. Houska houska@aon.a EEKTRISCHES FED: Elekrisch geladene Körper üben aufeinander Kräfe aus. Gleichnamige geladene Körper sießen

Mehr

Regression, Tests und Problembereiche

Regression, Tests und Problembereiche Ökonomerie ufgabensammlung 4 Regression, Tess und Problembereiche ufgabe 7 Führen Sie eine Trendberechnung für die Variable y durch: Jahr 996 997 998 999 000 00 00 3 4 5 6 7 y 3 5 5 8 9 0 Berechnen Sie:

Mehr

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION Eponenialfunkion, Logarihmusfunkion 9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION 9.. Eponenialfunkion (a) Definiion Im Abschni Zinseszinsrechnung konne die Berechnung eines Kapials K n nach n Perioden der

Mehr

Übungsblatt 4 Lösungsvorschläge

Übungsblatt 4 Lösungsvorschläge Insiu für Theoreische Informaik Lehrsuhl Prof. Dr. D. Wagner Übungsbla 4 Lösungsvorschläge Vorlesung Algorihmenechnik im WS 09/10 Problem 1: Flüsse [vgl. Kapiel 4.1 im Skrip] ** Gegeben sei ein Nezwerk

Mehr

Note: FACH NR DIGITALTECHNIK. Fachbereich Elektrotechnik und Informationstechnik Prof. Dr.-Ing. H. Heuermann

Note: FACH NR DIGITALTECHNIK. Fachbereich Elektrotechnik und Informationstechnik Prof. Dr.-Ing. H. Heuermann Name (Blockschrif) Unerschrif Marikel-Nr. Sudiengang FH Aachen Fachbereich Elekroechnik und Informaionsechnik Prof. Dr.-Ing. H. Heuermann FACH NR. 52107 - DIGITALTECHNIK 11. Februar 2014-8:30 bis 10:00

Mehr

Editierabstand und der 4-Russen-Trick

Editierabstand und der 4-Russen-Trick andou für das Seminar über lgorihmen bereu von Prof. r. elmu l, U-erlin Ediierabsand und der 4-Russen-Trick Marco Träger 3.06.011 1 Ediierabsand in O(n m) 1.1 efiniionen Σ endliches lphabe S, T Σ endliche

Mehr

Zeit (in h) Ausflussrate (in l/h)

Zeit (in h) Ausflussrate (in l/h) Aufgabe 6 (Enwicklung einer Populaion): (Anforderungen: Inerpreaion von Schaubildern; Inegralfunkion in der Praxis) Von einer Populaion wird - jeweils in Abhängigkei von der Zei - die Geburenrae (in Individuen

Mehr

Kapitel 6: Ort, Geschwindigkeit und Beschleunigung als Funktion der Zeit

Kapitel 6: Ort, Geschwindigkeit und Beschleunigung als Funktion der Zeit Kapiel 6: Or, Geschwindigkei und Beschleunigung als Funkion der Zei 2 Kapiel 6: Or, Geschwindigkei und Beschleunigung als Funkion der Zei Einführung Lerninhal Einführung 3 Das Programm yzet erlaub es,

Mehr

2.2 Rechnen mit Fourierreihen

2.2 Rechnen mit Fourierreihen 2.2 Rechnen mi Fourierreihen In diesem Abschni sollen alle Funkionen als sückweise seig und -periodisch vorausgesez werden. Ses sei ω 2π/. Wir sezen jez aus Funkionen neue Funkionen zusammen und schauen,

Mehr

WORKING PAPERS Arbeitspapiere der Betrieblichen Finanzwirtschaft

WORKING PAPERS Arbeitspapiere der Betrieblichen Finanzwirtschaft WORKING PAPERS Arbeispapiere der Berieblichen Finanzwirschaf Lehrsuhl für Beriebswirschafslehre, insbes. Beriebliche Finanzwirschaf Bfw29V/03 Zusandsabhängige Bewerung mi dem sochasischen Diskonierungsfakor

Mehr

Kapitel 14: Steuern. Hauptidee: Steuern verändern das Wettbewerbsgleichgewicht und führen zu Wohlfahrtsverlusten.

Kapitel 14: Steuern. Hauptidee: Steuern verändern das Wettbewerbsgleichgewicht und führen zu Wohlfahrtsverlusten. Kapiel 14: Seuern Haupidee: Seuern verändern das Webewerbsgleichgewich und führen zu Wohlfahrsverlusen. Aren von Seuern Mengenseuer: Jede gehandele Mengeneinhei des Gues wird mi einer Seuer von belase

Mehr

Gewöhnliche Differentialgleichungen (DGL)

Gewöhnliche Differentialgleichungen (DGL) Gewöhnliche Differenialgleichungen (DGL) Einführende Beispiele und Definiion einer DGL Beispiel 1: 1. Die lineare Pendelbewegung eines Federschwingers führ uner Zuhilfenahme des Newonschen Krafgesezes

Mehr

10. Wechselspannung Einleitung

10. Wechselspannung Einleitung 10.1 Einleiung In Sromnezen benuz man sa Gleichspannung eine sinusförmige Wechselspannung, uner anderem weil diese wesenlich leicher zu erzeugen is. Wie der Name es sag wechsel bei einer Wechselspannung

Mehr

Prüfung Finanzmathematik und Investmentmanagement 2012

Prüfung Finanzmathematik und Investmentmanagement 2012 Prüfung inanzmahemaik und Invesmenmanagemen Aufgabe : (3 Minuen) a) Gegeben sei der Zwei-Werpapier-all sowie die Präferenzfunkion V(R) = E(R) avar(r) Besimmen Sie einen allgemeinen Ausdruck für die Invesmengewiche

Mehr

Warum ist die Frage, wem ein Leasingobjekt zugerechnet wird, wichtig? Welche Vorteile kann ein Leasinggeber (eine Leasinggesellschaft) ggf. erzielen?

Warum ist die Frage, wem ein Leasingobjekt zugerechnet wird, wichtig? Welche Vorteile kann ein Leasinggeber (eine Leasinggesellschaft) ggf. erzielen? 1) Boschafen von Kapiel 7 Welche Eigenschafen ha ein Finanzierungs-Leasing-Verrag? Warum is die Frage, wem ein Leasingobjek zugerechne wird, wichig? FLV, vollkommener Kapialmark und Gewinnseuer Welche

Mehr

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen Dr. G. Lechner Mahemaische Mehoden der klassischen Physik Zusammenfassung Differenialgleichungen In der Vorlesung wurden drei unerschiedliche Typen von Differenialgleichungen (DGL) besprochen, die jeweils

Mehr