2.12 Kurvenparametrisierung

Größe: px
Ab Seite anzeigen:

Download "2.12 Kurvenparametrisierung"

Transkript

1 2.12 Kuvenpaametiieung Definition Funktionen γ : [a, b] R R m beheiben Kuven im R m. Bemekung Kuven laen ih viualiieen duh... (1) den Gaphen Γ γ {t, γ(t) t [a, b]} R m+1 ode (2) die Bildmenge γ([a, b]). Beipiele (1) Zu > 0 betahte γ : R R 2 t (o(t), in(t)). (2) Modikation: γ : R R 2 t t(o(t), in(t)). (3) Zykloide: γ : R R 2 t t in(t), 1 o(t). Beipiel (otieende Rad) Ein Rad mit Radiu > 0 bewege ih mit kontante Gehwindigkeit v > 0. Kuve de Radahe: A(t) (0, ) + (tv, 0) e }{{} 1 +t ve }{{} 2. Statpunkt Gehwindigkeitvekto Sei K K(t) ein augezeihnete Punkt auf dem Rand de Rade (Kieeltein). Wi unteuhen die Bewegung de Vebindungvekto B(t) : K(t) A(t) in Abhängigkeit de Zeit t. Matin Gubih 31 SS 2008

2 K(t) A(t) deht ih im Uhzeigeinn mit kontante Dehgehwindigkeit, alo ϕ(t) ωt, wobei ω R + kontant und ϕ(t) Winkel zwihen B(t) und B(0). Wi betimmen zunäht ω. Nah eine Umdehung hat da Rad den Weg 2π zük gelegt und dafü die Zeit t 1 2π v benötigt, alo ωt 1 ϕ(t 1 ) 2π ω 2π t 1 2πv 2π v. Bezeihnet alo R α die Dehung um den Winkel α in mathematih poitive Rihtung, dann B(t) R ϕ(t) B(0). Duh Einetzen von A(t) in B(t) A(t) K(t) ehalten wi al Koodinatendatellung bzgl. de Standadbai: ( ) ( ) ( ) ( ) K1 (t) tv o ϕ(t) in ϕ(t) tv + in ϕ(t) +, K 2 (t) in ϕ(t) o ϕ(t) o ϕ(t) die allgemeine Zykloidenkuve mit Radiu und Gehwindigkeit v. Im Fall v 1 ehalten wi dann geade die hon bekannte Paametiieung ( ) t in(t) K(t). 1 o(t) Allgemein wid zu eine patiell dieenziebaen Funktion f duh mit g(t) f(x + tξ) eine Kuve im R n behieben. Wi wollen die phyikalihe Bedeutung von D ξ f(x) d dt g(t) t0 d dk (t) betimmen. Wegen d K(t + h) K(t) K(t) lim dt h 0 h gibt die Ableitung von K bei t den Momentangehwindigkeitvekto (Quotient au zuükgelegtem Weg und benötigte Zeit) an. E gilt: Damit folgt weite: K (t) 2 K (t) (v v o ϕ(t), v in ϕ(t)) (v, 0) v(o ϕ(t), in ϕ(t)). v 2 2v 2 o ϕ(t) + v 2 o 2 ϕ(t) + v 2 in 2 ϕ(t) 2v 1 o ϕ(t) it die Momentangehwindigkeit de Kieel zum Zeitpunkt t. Matin Gubih 32 SS 2008

3 Dabei nimmt K (t) v K (t) ein Maximum vk max an bei o ϕ(t) 1 mit Wet K (t) 2v und ein Minimum vk min bei o ϕ(t) 1 mit Wet K (t) 0; bei o ϕ(t) 1 2 wid die Gehwindigkeit v angenommen. v K (t) it peiodih: Fü t 2π v N 0 gilt v K (t) 0; fü t π v (1 + N 0) it v K (t) 2v. Phyikalihe Bedeutung von (K ) (t): Momentanbehleunigungvekto zu Zeit t; hie: Fü den Wet de Behleunigung bei t gilt: K (t) v2 K (t) v2 ( in ϕ(t), o ϕ(t)). in 2 ϕ(t) + o 2 ϕ(t) v2 ont. Intepetation De Stein bleibt teken, o lange die Hafteibung die benötigte Kaft m v2 aufbingt. Veallgemeineung Sei γ : (a, b) R m eine Kuve. Fall alle Komponenten γ i, i 1,..., m, dieenzieba in t ind, exitiet de Tangentialvekto γ (t) zum Paametewet t. Diee Beheibt die Ändeungate und die Rihtung von γ in t. Bei glatten Kuven gilt nah dem Satz von Taylo: Alo: γ i (t + h) γ i (t) + γ i(t)h γ i (ϑ i )h 2, 1 i m : ϑ i (t, t + h), h > 0. γ(t + h) γ(t) + hγ (t) h2 2 γ 1 (ϑ 1 ),..., γ m(ϑ m ) Ch 2 h 0 0, fall γ behänkt it. Intepetation Fü γ (t) goÿ wid die Kuve bei t hnell duhlaufen und fall γ (t) 0, läuft die Kuve bei t in Rihtung γ (t) γ (t). Definition Sei γ C 1 ([a, b], R n ). Dann heiÿt L(γ) die Länge de duh γ paametiieten Kuve. b a γ (t) 2 dt Intepetation It γ tetig dieenzieba, dann it die Länge von γ appoximativ gleih de Länge eine Polygonzug: Matin Gubih 33 SS 2008

4 Dann gilt L n : MWS n max t i t i 1 0 n γ(t i ) γ(t i 1 ) 2 i1 n γ(t i ) γ(t i 1 ) t i1 i t i 1 (t i t i 1 ) 2 n γ (ϑ i ) 2 (t i t i 1 ) (ϑ i (t i 1, t i )) i1 b a γ (t) dt. Beipiel Sei γ(t) (o(t), in(t)), t [0, 2π], > 0. Dann γ (t) ( in(t), o(t)) und γ (t) ( 2 in 2 (t) + 2 o 2 (t)) 1 2. Alo L(γ) 2π 0 dt 2π. Bemekung Die Denition maht nu Sinn, wenn L(γ) unabhängig von de Paametiieung von γ it. Betahte γ : [, d] R n τ γ(ϕ(τ)) mit Paametewehel ϕ : L( γ) d γ (τ) 2 dτ d Mit de Subtitution t ϕ(τ) und dt ϕ (τ)dτ egibt ih... (1) mit ϕ > 0: (2) mit ϕ < 0, d.h. ϕ ϕ : L( γ) L( γ) aϕ(d) bϕ() bϕ(d) aϕ() γ (t) 2 dt [, d] [a, b] t ϕ(t). Dann γ (ϕ(τ)) ϕ (τ) dτ. γ (t) dt L(γ). b a γ (t) 2 dt L(γ). Spezialfall Sei Ψ(t) t a γ (τ) dτ. Dann Ψ (t) γ (t) > 0, fall γ (t) 0 fü t [a, b]. Ψ : [a, b] [0, L(γ)] it bijektiv mit Umkehfunktion Ψ 1 ϕ : [0, L(γ)] [a, b], wobei alo mit γ : γ ϕ: ϕ () 1 Ψ (Ψ 1 ()) 1 γ (ϕ()), γ () γ (ϕ())ϕ () γ (ϕ()) γ (ϕ()) 1, d.h. mit γ wid die Kuve mit kontante Gehwindigkeit duhlaufen. γ wid dann al die Bogenlängenpaametiieung de Kuve bezeihnet. Matin Gubih 34 SS 2008

5 Beipiel Wi betahten die duh γ : [0, 6π] R 3 t ( o(t), in(t), t) gegebene Helix ( R). Dann γ (t) ( in(t), o(t), ); γ (t) ; t Ψ(t) (2 + 2 )dτ t ; ϕ() , d.h. die Bogenlängenpaametiieung γ de Kuve it gegeben duh ( ( ) ( ) ) γ() o, in, Beobahtungen (1) De Tangenteneinheitvekto θ() γ () de Bogenlängenpaametiieung γ eine Kuve Γ efüllt θ() : θ()θ() 1. (2) Geneell gilt fü die Ableitungen von Einheitvektoen: θ ()θ() 0, d.h. die Ableitung de Einheitvekto it othogonal zum Einheitvekto: 0 d d 1 θ ()θ() + θ()θ () 2θ()θ () θ()θ () 0. (3) Die Kümmung K() θ () gibt an, wie hnell ih die Rihtung de Kuve lokal ändet: (4) Im Fall K() 0 bezeihnet n() : θ () K() den Einheitnomalenvekto. (5) Die Kuve Γ veläuft lokal annähend in de θ-n-ebene: In eine Umgebung von γ() wählen wi al Baivektoen a : γ() γ( h) und b : γ(+h) γ() bzw. äquivalent dazu (d.h. übe Baiwehel) b+a b a 2h und h, dann 2 b + a 2h b a h 2 γ( + h) γ( h) 2h γ( + h) 2γ() + γ( h) h 2 denn mit Taylo-Entwiklung (um den Punkt ) gilt: h γ () θ(); h γ () θ () K()n(), γ( + h) γ() + hγ () + h2 2 γ () + h3 6 γ (ϑ); γ( h) γ() hγ () + h2 2 γ () h3 6 γ (ϑ) mit gleihmäÿig behänktem Retglied, fall γ C 3 ([a, b], R n ). (6) Im Deidimenionalen egänzen wi θ() und n() mit dem Binomalenvekto b() : θ() n() zu eine Othonomalbai. Matin Gubih 35 SS 2008

6 Dabei denieen wi da Vektopodukt (Keuzpodukt) folgendemaÿen: a, b R 3 a b : a 2b 3 a 3 b 2 a 3 b 1 a 1 b 3. a 1 b 2 a 2 b 1 n liegt in de θ-b-ebene, denn n ()n() 0. Weite gilt fü die Kümmung de Kuve: K n(kn) nθ (nθ) nθ n θ. }{{} 0 Wi wollen noh unteuhen, wie tak ih Γ lokal au de n-θ-ebene entfent. Betahte dazu τ() : n ()b(). τ gibt die Ändeung de Nomalenvekto n in Rihtung b an und wid al die Toion de Kuve bezeihnet. Beipiel Wi betahten wiede die Bogenlängenpaametiieung de Helix ( ( ) ( ) ) γ() o, in, (1) Die Kümmung de Kuve betägt K() θ () Im Fall 0 it Γ ein Kei mit K() 1 kontant und abhängig vom Radiu. Man nennt 1 K dahe auh den Kümmungadiu de Kuve Γ. (2) De Nomalenvelto zeigt nah innen (d.h. auf die z-ahe). ( ( ) ( ) ) n() o, in, (3) Fü den Binomalenvelto ehalten wi ( ( ) ( ) ) b() 2 + in, o, ; bei 0 : b() (0, 0, 1 ). (4) Die Toion von Γ it T () ; bei 0 : τ() 0. Matin Gubih 36 SS 2008

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher Seminavotag Diffeentialgeometie: Rotationsflächen konstante Gaußsche Kümmung Paul Ebeman, Jens Köne, Mata Vitalis 1. Juni 22 Inhaltsvezeichnis Vobemekung 2 1 Einfühung 2 2 Este Fundamentalfom 2 3 Vetägliche

Mehr

Lösung - Schnellübung 4

Lösung - Schnellübung 4 D-MAVT/D-MATL Analysis I HS 2016 D Andeas Steige Lösung - Schnellübung 1 Ein Keis vom Radius ollt im Innen eines Keises vom Radius R ab Die Kuve t, die dabei ein feste Punkt P auf dem Rand des kleinen

Mehr

4) Magnetischer Einschluss von Plasmen

4) Magnetischer Einschluss von Plasmen 4) Magnetishe Einshluss on Plasen Mit extenen elektishen elden gibt es aufgund de Abshiung i Plasa kau Kontollöglihkeiten. Dies wid jedoh it Magnetfelden eögliht, da das Magnetfeld geladene Teilhen an

Mehr

Skript Montag Stetigkeit, Funktionengrenzwerte, Ableitung und Taylorentwicklung

Skript Montag Stetigkeit, Funktionengrenzwerte, Ableitung und Taylorentwicklung Skipt Montag Stetigkeit, Funktionengenzwete, Ableitung und Tayloentwicklung Jonas Habel, Floian Kollmannsbege 18. Mäz 2018 1 Beweistechniken Beginnen wi mit zwei häufigen Beweistechniken. (a) : (A B) (

Mehr

Bündelungsgrad und Abstandsfaktor

Bündelungsgrad und Abstandsfaktor ünelungga un btanfakto Die Gleihung fü ie ieale Rihthaakteitik von ikofonen lautet ( o (: Übetagungfakto : Dukanteil : Gaientenanteil mit a l ünelungga bezeihnet man a Vehältni e von einem iealen mikofon

Mehr

Das Ski-Rental-Problem

Das Ski-Rental-Problem Da Ski-Rental-Poblem (Voläufige Veion, 15. Mai 212) Pof. D. Hanno Lefmann Fakultät fü Infomatik, TU Chemnitz, D-917 Chemnitz, Gemany lefmann@infomatik.tu-chemnitz.de 1 Da Ski-Rental-Poblem Bei dem Ski-Rental-Poblem

Mehr

Rechnen mit Vektoren im RUN- Menü

Rechnen mit Vektoren im RUN- Menü Kael 09.. CASIO Teach & talk Jügen Appel Einen deidimenionalen Vekto kann man al Matix mit dei Zeilen und eine Spalte auffaen. Daduch kann man mit Vektoen echnen. D.h. konket, man kann Vektoen addieen

Mehr

Aufgabe 15 Kurbeltrieb eines Motorradmotors

Aufgabe 15 Kurbeltrieb eines Motorradmotors Zentale chiftliche Abituüfungen im Fach Mathematik Analyi Leitungku Aufgabe 15 Kubeltieb eine Motoadmoto TG In Abbildung 1 it de Kubeltieb eine Motoadmoto dagetellt. De Pleuel übetägt die Kaft de Kolben

Mehr

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt Übungen zu Ingenieu-Mathematik III WS 3/4 Blatt 7..4 Aufgabe 38: Betachten Sie eine Ellipse (in de Ebene) mit den Halbachsen a und b und bestimmen Sie die Kümmung in den Scheitelpunkten. Lösung:Eine Paametisieung

Mehr

Geben Sie eine Gleichung der Ebene E in Parameterform an.

Geben Sie eine Gleichung der Ebene E in Parameterform an. Pflichtteil ABG_BW) Aufgabe Bilden Sie die ete Ableitung de Funktion f mit 5 f ) 8 Aufgabe Geben Sie eine Stammfunktion de Funktion f mit f ) co) an Aufgabe Löen Sie die Gleichung e e 6 Aufgabe Gegeben

Mehr

4 Kurven im R n. Sei I R ein beliebiges Intervall (offen, halboffen, abgeschlossen, beschränkt oder unbeschränkt), das mindestens einen Punkt enthält.

4 Kurven im R n. Sei I R ein beliebiges Intervall (offen, halboffen, abgeschlossen, beschränkt oder unbeschränkt), das mindestens einen Punkt enthält. 4 Kurven im R n Sei I R ein beliebiges Intervall (offen, halboffen, abgeschlossen, beschränkt oder unbeschränkt), das mindestens einen Punkt enthält. Definition 4.1. (a) Unter einer Kurve im R n versteht

Mehr

Institut für Thermische Verfahrenstechnik. Wärmeübertragung I. Lösung zur 4. Übung (ΔT LM (Rührkessel, Gleich-, Gegenstrom))

Institut für Thermische Verfahrenstechnik. Wärmeübertragung I. Lösung zur 4. Übung (ΔT LM (Rührkessel, Gleich-, Gegenstrom)) Prof. Dr.-Ing. Matthia Kind Intitut für hermihe Verfahrentehnik Dr.-Ing. homa Wetzel Wärmeübertragung I öung zur 4. Übung ( M (Rührkeel, Gleih-, Gegentrom Einführung Ein in der Wärmeübertragung häufig

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Theoretische Physik 1 (Mechanik) Lösung Aufgabenblatt 1

Theoretische Physik 1 (Mechanik) Lösung Aufgabenblatt 1 Technische Univesität München Fakultät fü Physik Feienkus Theoetische Physik 1 (Mechanik) SS 018 Aufgabenblatt 1 Daniel Sick Maximilian Ries 1 Aufgabe 1: Diffeenzieen Sie die folgenden Funktionen und entwickeln

Mehr

Abstandsbestimmungen

Abstandsbestimmungen Abstandsbestimmungen A) Vektoechnungsmethoden (mit Skalapodukt): ) Abstand eines Punktes P von eine Ebene IE im Raum (eine Geade g in de Ebene ): Anmekung: fü Geaden im Raum funktioniet diese Vektomethode

Mehr

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften II

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften II Technische Univesität München SS 29 Fakultät fü Mathematik Pof. D. J. Edenhofe Dipl.-Ing. W. Schult Übung 8 Lösungsvoschlag Mathematische Behandlung de Natu- und Witschaftswissenschaften II Aufgabe T 2

Mehr

17. Die Wellengleichung Die Transportgleichung. t u(t, x) +c x u(t, x) =0mit t, x R, 0 c R. Wegen

17. Die Wellengleichung Die Transportgleichung. t u(t, x) +c x u(t, x) =0mit t, x R, 0 c R. Wegen 98 7. Die Wellengleichung 7.. Die Tanspotgleichung. t u(t, x +c x u(t, x =0mit t, x R, 0 c R. Wegen v u = u, v besagt ie Diffeentialgleichung, ass ie Richtungsableitung von u in Richtung (,c Null ist.

Mehr

Kreisbewegungen (und gekrümmte Bewegungen allgemein)

Kreisbewegungen (und gekrümmte Bewegungen allgemein) Auf den folgenden Seiten soll anhand de Gleichung fü die Zentipetalbeschleunigung, a = v 2 / 1, dagelegt weden, dass es beim Ekläen physikalische Sachvehalte oftmals veschiedene Wege gibt, die jedoch fühe

Mehr

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November Seie 3 29. Oktobe 2012 Vozuechnen bis zum 9. Novembe Aufgabe 1: Zwei Schwimme spingen nacheinande vom Zehn-Mete-Tum ins Becken. De este Schwimme lässt sich vom Rand des Spungbetts senkecht heuntefallen,

Mehr

8.2. KURVEN IM RAUM 37

8.2. KURVEN IM RAUM 37 8.2. KURVEN IM RAUM 37 Lemma 8.2.3.10 (Differenzierbarkeit der Wegelängenfunktion für glatte Kurven) Ist γ C 1 (I; V ), so ist die Abbildung t L t (γ) differenzierbar, die Ableitung an der Stelle t ergibt

Mehr

Tutorium zur Vorlesung Differential und Integralrechnung II Bearbeitungsvorschlag

Tutorium zur Vorlesung Differential und Integralrechnung II Bearbeitungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 4 Blatt 5.6.4 Tutorium zur Vorlesung Differential und Integralrechnung II Bearbeitungsvorschlag 37. Wir bestimmen zunächst die Schnittpunkte

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Theorie klassischer Teilchen und Felder I

Theorie klassischer Teilchen und Felder I Mustelösungen Blatt 9.0.006 Theoetische Physik I: Theoie klassische Teilchen und Felde I Pof. D. G. Albe Dipl.-Phys. O. Ken Das Zwei-Köpe-Poblem. Zeigen Sie, dass fü die Potentialfunktion U x x gilt mit

Mehr

Seminar Gewöhnliche Dierentialgleichungen Anwendungen in der Mechanik

Seminar Gewöhnliche Dierentialgleichungen Anwendungen in der Mechanik Semina Gewöhnliche Dieentialgleichungen Anwendungen in de Mechanik Geog Daniilidis 6.Juli 05 Inhaltsvezeichnis Einleitung Motivation:.Newtonsche Gesetz 3 Vowissen 4 Konsevativen Systeme 3 5 Zentale Kaftfelde

Mehr

12.6 Aufgaben zur Laplace-Transformation

12.6 Aufgaben zur Laplace-Transformation 292 12. Aufgaben zu linearen Gleichungen 12.6 Aufgaben zur Laplace-Tranformation A B C D Man löe die folgenden Anfangwertprobleme durch Laplace-Tranformation: 1) ẍ ẋ x = ; x() = ẋ() = 1 2) x (3) 6ẍ + 12ẋ

Mehr

Klausur zur Geometrie

Klausur zur Geometrie PD Dr. A. Kollross Dr. J. Becker-Bender Klausur zur Geometrie Universität Stuttgart SoSe 213 2. Juli 213 Lösungen Aufgabe 1 Sei eine ebene Kurve c: (, ) R 2 durch ( ) 3 t c(t) = 2 t 3/2 definiert. a) Begründen

Mehr

Parametergleichung der Geraden durch den Punkt A mit dem Richtungsvektor u r t R heisst Parameter

Parametergleichung der Geraden durch den Punkt A mit dem Richtungsvektor u r t R heisst Parameter 8 3. Dastellung de Geaden im Raum 3.1. Paametegleichung de Geaden Die naheliegende Vemutung, dass eine Geade des Raumes duch eine Gleichung de Fom ax + by + cz +d 0 beschieben weden kann ist falsch (siehe

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

T = ( ) oder Druck ( )

T = ( ) oder Druck ( ) A Vektoanalsis efinieen bzw beehnen Sie folgende Gößen und ekläen Sie die Bedeutung: Skalafeld Funktionen on meheen Veändelihen im Raum f f (,,z), bei denen jedem Punkt ein Skala, also eine ungeihtete

Mehr

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen Aufgabenblatt-Spialen Tangentenwinkel.doc 1 Aufgaben zu Bestimmung des Tangentenwinkels von Spialen Gegeben ist die Spiale mit de Gleichung = 0,5 φ, φ im Bogenmaß. (a) Geben Sie die Gleichung fü Winkel

Mehr

K l a u s u r N r. 2 G k P h 12

K l a u s u r N r. 2 G k P h 12 .1.010 K l a u u r N r. G k P h 1 Aufgabe 1 Behreiben Sie den Unterhied zwihen einer Läng- und einer Querwelle. Nennen Sie für jeden Wellentyp ein Beipiel. In welhen Stoffen können ih Querwellen aubreiten?

Mehr

Kontakt: Prof. Dr. Michael Düren Tel:

Kontakt: Prof. Dr. Michael Düren Tel: Kontakt: Prof. Dr. Mihael Düren Tel: 9933 Mihael.Dueren@uni-gieen.de www.phik.uni-gieen.de/dueren Zur Erinnerung: Die Vorleung beginnt um 4:00.t. Phikalihe Größen und Einheiten Beobahtung und Eperiment

Mehr

Das Umlaufintegral der magnetischen Feldstärke ist gleich der Summe der vorzeichenbehafteten Stromstärken der vom Integrationsweg umfassten Ströme.

Das Umlaufintegral der magnetischen Feldstärke ist gleich der Summe der vorzeichenbehafteten Stromstärken der vom Integrationsweg umfassten Ströme. of. D.-ng. Hezig Voleung "Gundlagen de Elektotechnik " 4 etv. Biot-Savatche Geetz Biot, Jean Baptite 774-86 Savat, Felix 79-84.. Duchflutunggeetz, Beechnung de Feldtäke H d = Θ = ν O. Maxwellche Geetz:

Mehr

Geometrie der Cartan schen Ableitung

Geometrie der Cartan schen Ableitung Geoetie de Catan schen Ableitung - - Notation Sei + Sei + Wi bezeichnen it ( L den Vektoau alle fach ultilineaen Abbildungen f : -al 2 Wi bezeichnen it S die Guppe alle Peutationen σ : {,, } {,, } Des

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 89

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 89 9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 89 Beweis. Der Beweis erfolgt durch vollständige Induktion. Angenommen wir hätten den Satz für k 1 gezeigt. Dann ist wegen auch Damit ist f(g(y), y) = 0 0 = D y

Mehr

Gradient, Divergenz, Rotation und Laplace-Operator in Polarkoordinaten. Umrechnung des Laplace-Operators auf Polarkoordinaten

Gradient, Divergenz, Rotation und Laplace-Operator in Polarkoordinaten. Umrechnung des Laplace-Operators auf Polarkoordinaten Polakoodinaten Vektofeld mit Polakoodinaten Gadient, Divegenz, Rotation und Laplace-Opeato in Polakoodinaten Gadient des Skalafeldes Φ(, ϕ) Divegenz des Vektofeldes v(,ϕ) Divegenz Umechnung des Laplace-Opeatos

Mehr

7 Arbeit, Energie, Leistung

7 Arbeit, Energie, Leistung Seite on 6 7 Abeit, Enegie, Leitung 7. Abeit 7.. Begiffekläung Abeit wid ie dann eictet, wenn ein Köpe unte de Einflu eine äußeen Kaft läng eine ege ecoben, becleunigt ode efot wid. 7.. Eine kontante Kaft

Mehr

Wagen wird als Massepunkt aufgefasst, von der Reibung ist abzusehen.

Wagen wird als Massepunkt aufgefasst, von der Reibung ist abzusehen. 7. Die Skizze tellt den Velauf de Siene eine Loopingban da. I Punkt at de Wagen die Gewindigkeit 6,1 /. I Punkt C oll e eine Zentifugalkaft vo 1,5faen Betag eine Gewitkaft augeetzt ein. De Punkt C befindet

Mehr

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Feienkus Sommesemeste 2011, Pof. Metzle 1 Inhaltsvezeichnis 1 Kelegesetze 3 2 Zweiköeoblem 3 3 Zentalkäfte 4 4 Bewegungen im konsevativen Zentalkaftfeld 5 5 Lenzsche Vekto 7 6 Effektives

Mehr

3 Kurven und Kurvenintegrale

3 Kurven und Kurvenintegrale HM III = MATH III FT 2013 35 3 urven und urvenintegrale 3.1 urven 3.1.1 Definition von Wegen und urven; Jordankurven Definition: Eine stetige Abbildung γ : [a, b] IR n heißt ein Weg im IR n. Den zugehörigen

Mehr

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Coulomb, el. Feld, Potenzial. - Lösungen -

Coulomb, el. Feld, Potenzial. - Lösungen - Gynaiu, OS, OS Coulob,. d, otenzial Klae / - Löungen -. geg.: Seitenlänge de uadat a Ladungen ge.: Göße und Richtung de Kaft, it de jeweil dei Ladungen auf die viete wiken. Lö.: Anatz: Coulob-Geetz οδ

Mehr

Laplace Transformation

Laplace Transformation Department Mathematik der Univerität Hamburg SoSe 29 Dr. Hanna Peywand Kiani Laplace Tranformation Die in Netz getellten Kopien der Anleitungfolien ollen nur die Mitarbeit während der Verantaltung erleichtern.

Mehr

Lösung V Veröentlicht:

Lösung V Veröentlicht: 1 Bewegung entlang eines hoizontalen Keises (a) Ein Ball de Masse m hängt an einem Seil de Länge L otiet mit eine konstanten Geschwindigkeit v auf einem hoizontalen Keis mit Radius, wie in Abbildung 2

Mehr

Klausurenkurs zum Staatsexamen (SS 2014): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2014): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 204): Differential und Integralrechnung 6 6. (Herbst 200, Thema 2, Aufgabe 4) Suchen Sie für alle c R einen Punkt auf der Parabel P := { (x,y) : y

Mehr

Verschiebung und Skalierung bei Laplace-Transformation

Verschiebung und Skalierung bei Laplace-Transformation Verchiebung und Skalierung bei Laplace-Tranformation Bezeichnet man, wie in der Abbildung illutriert, mit u( a) die um a nach recht verchobene Funktion, o gilt für die Laplace-Tranformation u(t a) L exp(

Mehr

Klausur zu Analysis II - Lösungen

Klausur zu Analysis II - Lösungen Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Dr. Axel Grünrock WS 1/11 11..11 Klausur zu Analysis II - Lösungen 1. Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind.

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EPI 06 I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang EPI WS 2006/07 Dünnwebe/Faessle 1 x 1 = x 1 y 1 x 1 x 1 = y 1 I)Mechanik: 1.Kinematik, 2.Dynamik Bewegung in Ebene und Raum (2- und

Mehr

Titrationskurven in der Chemie

Titrationskurven in der Chemie RS 1..004 Titationskuven.mcd Titationskuven in de Chemie In de Chemie wid de sauee bzw. de basische Chaakte eine wässigen Lösung mit Hilfe des ph-wetes beschieben. In jede wässigen Lösung gilt: [H O] +.

Mehr

m d2 x dt 2 = K( x), d 2 x j dt 2 = K i.

m d2 x dt 2 = K( x), d 2 x j dt 2 = K i. P m d2 x dt 2 = K( x), m δ ij d 2 x j dt 2 = K i. C W C = C K i dx i δ ij δ ij λδ ij, m m λ d v dt K BA = K AB R 4 E 3 R Σ Σ x = R x a, R T R = I, R... E 3 T 1, 3 + 3 + 1 = 7 E 3 = O 3 T 3,... E 3 O 3

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Impulssatz und Impulsmomentensatz. Bestimmung der Kräfte der Strömung auf die Umgebung

Impulssatz und Impulsmomentensatz. Bestimmung der Kräfte der Strömung auf die Umgebung Imulatz und Imulmomentenatz nwendung: Betimmung de Käfte de Stömung auf die Umgebung Imulatz Imul : bzw. Imul de Sytem :. Newtonche Geetz I m di dv I d dt y dv dv y y zum Zeitunkt t ei KSKV y anhand de

Mehr

Mögliche Lösung. Erde und Mond

Mögliche Lösung. Erde und Mond echanik X Gavitation und Planetenbewegungen Ede und ond Die Schwepunkte (ittelpunkte) von ond und Ede haben i Duchchnitt die Entfenung von 84000k. Schlagen Sie die aen von ond und Ede in de Foelalung nach

Mehr

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve.

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve. 1 Ableitungen Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen γ 1 (t) γ(t) = γ n (t) Bild(γ) = {γ(t) t I} heißt auch die Spur der Kurve Beispiel:1)

Mehr

7 Kurvenintegrale und die Greensche Formel

7 Kurvenintegrale und die Greensche Formel nalysis III, WS 2/22 Montag 3. $Id: geen.tex,v.9 22//3 5:4:52 hk Exp $ 7 Kuvenintegale und die Geensche Fomel 7.5 Rotation und die Geensche Fomel m Ende de letzten Sitzung hatten wi die geometische Definition

Mehr

Die komplexe Halbebene faktorisiert nach einer Fuchsschen Gruppe

Die komplexe Halbebene faktorisiert nach einer Fuchsschen Gruppe Die komplexe Halbebene faktorisiert nach einer Fuchsschen Gruppe Matthias Nagel Riemannsche Flächen Stets sei X eine 2-dimensionale Mannigfaltigkeit (Fläche). Definition. ) Eine komplexe Karte auf X ist

Mehr

SPEZIELLE FUNKTIONEN. 3. Übungseinheit. H. Leeb Einführung in die Datenverarbeitung 2 Spezielle Funktionen

SPEZIELLE FUNKTIONEN. 3. Übungseinheit. H. Leeb Einführung in die Datenverarbeitung 2 Spezielle Funktionen SPEZIELLE FUNKTIONEN 3. Übungseinheit 1 Übesicht In de (theoetischen) Physi weden zu Veeinfachung de Foulieungen oft spezielle Funtionen bzw. Sätze von Funtionen eingesetzt. Beispiele: Γ- Funtion Kugelflächenfuntion

Mehr

5 Gravitationstheorie

5 Gravitationstheorie 5 Gavitationstheoie Ausgeabeitet von G. Knaup und H. Walitzki 5.1 Gavitationskaft - Gavitationsfeld Die Gundidee zu Gavitationstheoie stammt von Newton (1643-1727): Die Kaft, die einen Apfel fallen lässt,

Mehr

10 Untermannigfaltigkeiten

10 Untermannigfaltigkeiten 10. Untermannigfaltigkeiten 1 10 Untermannigfaltigkeiten Definition. Eine Menge M R n heißt k-dimensionale Untermannigfaltigkeit des R n, 1 k n, falls es zu jedem a M eine offene Umgebung U R n von a und

Mehr

TECHNIKEN ZUR BERECHNUNG DER DIMENSION

TECHNIKEN ZUR BERECHNUNG DER DIMENSION TECHNIKEN ZUR BERECHNUNG DER DIMENSION KATHARINA KIESEL Zuammenfaung Im Folgenden werden Tehniken zur Berehnung der Dimenion von Fraktalen aufgezeigt E wird unter anderem definiert wa eine Mae-Verteilung

Mehr

Mathematikaufgaben > Vektorrechnung > Geraden

Mathematikaufgaben > Vektorrechnung > Geraden Michael Buhlmann Mathematikaufgaben > Vektoechnung > Geaden Aufgabe: Eläutee, wie lineae Gleichungyteme ekennen laen, welche jeweilige Lagebeziehung zwichen zwei Geaden (Identität, Paallelität, Schneiden,

Mehr

49 Uneigentliche Integrale

49 Uneigentliche Integrale Abschnitt 49 Uneigentliche Integale R lato 23 49 Uneigentliche Integale Wi betachten im Folgenden Integale a f / d von Funktionen f, die in einzelnen unkten des betachteten Integationsbeeichs nicht definiet

Mehr

) ein lokales Minimum, oder ein lokales Maximum, oder kein Extremum? Begründen Sie das mit den ersten und zweiten Ableitungen.

) ein lokales Minimum, oder ein lokales Maximum, oder kein Extremum? Begründen Sie das mit den ersten und zweiten Ableitungen. Mathematik 2 Klausur vom 22. November 23 Zoltán Zomotor Versionsstand: 2. Dezember 23, 9:2 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3. Germany License. To view

Mehr

1./2. Klausur der Diplomvorprüfung

1./2. Klausur der Diplomvorprüfung ./. Klausu de Diplomvopüfung fü ae, autip, vef, wewi Aufgabe ( Punkte) (a) Fü das zugehöige chaakteistische Polynom ehält man λ + 5λ + = (λ + )(λ + ) mit den Nullstellen λ = / und λ =. Damit egibt sich

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Pof. D. M. Wolf D. M. Pähofe TECHNISCHE UNIVERSITÄT MÜNCHEN Zentum Mathematik Mathematik fü Phsike 3 (Analsis MA93 http://www-m5.ma.tum.de/allgemeines/ma93 8S Sommesem. 8 Lösungsblatt 7 (8.5.8 Zentalübung

Mehr

8 Laplace-Transformation

8 Laplace-Transformation 8 Laplace-Transformation Ausgangspunkt: Die Heaviside-Funktion für t < u(t) = 1 für t besitzt keine Fourier-Transformation. Denn: Formal bekommt man das unbestimmte Integral ^u(ω) = e iωτ dτ = 1 iω das

Mehr

Newtons Problem des minimalen Widerstands

Newtons Problem des minimalen Widerstands Newtons Poblem des minimalen Widestands Newton-Poblem (685: Wie muss ein sich in eine Flüssigkeit mit konstante Geschwindigkeit bewegende Köe aussehen, damit e, bei vogegebenem maximalen Queschnitt einen

Mehr

12.1 Kurven und Parametertransformationen. Wir untersuchen in diesem Abschnitt so genannte Kurven, die in der nachstehenden Definition

12.1 Kurven und Parametertransformationen. Wir untersuchen in diesem Abschnitt so genannte Kurven, die in der nachstehenden Definition Kapitel 1 Kurven im R n 1.1 Kurven und Parametertransformationen 1. Funktionen von beschränkter Schwankung 1.3 Die Bogenlänge von Kurven 1.4 Parametrisierung nach der Bogenlänge 1.1 Kurven und Parametertransformationen

Mehr

Graphische Datenverarbeitung

Graphische Datenverarbeitung Egänungen u Gaphiche Datenveabeitung Euleinkel und Quatenionen Pof. D.-Ing. Detlef Köke Goethe-Univeität, Fankfut Gaphiche Datenveabeitung Übeicht. Da Poble: Rotationen u beliebige Achen. Die Eule Tanfoation

Mehr

beschreiben wir zuerst den Gesamtschadenprozess, der mit

beschreiben wir zuerst den Gesamtschadenprozess, der mit Die klassishe Ritheoie. Eifühg I diesem Kapitel betahte wi de klassishe Risiko-Pozess d leite eiige Egebisse fü die Wahsheilihkeit des Ris he. Isbesodee beweise wi Ldbeg s Ugleihg d zeige, wie explizite

Mehr

2.1) Aufgrund der geraden Symetrie verschwinden alle Sinuskoeffizienten, also U b 1s;n = 0 für

2.1) Aufgrund der geraden Symetrie verschwinden alle Sinuskoeffizienten, also U b 1s;n = 0 für Muterlöung: Grundgebiete der Elektrotechnik IV 7.0.004 Aufgabe : 0 Punkte.) Aufgrund der geraden Symetrie verchwinden alle Sinukoefienten, alo U b ;n 0 für alle n IN (0,5 P).) Der Gleichanteil berechnet

Mehr

Wir nehmen an, dass die Streuung elastisch ist; d.h., dass die Energie des Teilchens erhalten bleibt. Die Streuung ändert die Wellenfunktion bei r =

Wir nehmen an, dass die Streuung elastisch ist; d.h., dass die Energie des Teilchens erhalten bleibt. Die Streuung ändert die Wellenfunktion bei r = Volesung 9 Die elastische Steuung, optisches Theoem, Steumatix Steuexpeimente sind ein wichtiges Instument, das uns elaubt die Eigenschaften de Mateie bei kleinsten Skalen zu studieen. Ein typisches Setup

Mehr

( ) Parameters α. Links: α < 1. Mitte: α = 1 (Exponentialverteilung). Rechts: α > 1.

( ) Parameters α. Links: α < 1. Mitte: α = 1 (Exponentialverteilung). Rechts: α > 1. KAPITEL 8 Wichtige statistische Veteilungen In diesem Kapitel weden wi die wichtigsten statistischen Veteilungsfamilien einfühen Zu diesen zählen neben de Nomalveteilung die folgenden Veteilungsfamilien:

Mehr

10.2 Kurven und Bogenlänge

10.2 Kurven und Bogenlänge 10.2 Kurven und Bogenlänge Definition: Sei c = (c 1,..., c n ) : [, b] R n eine stetige Funktion. Dnn wird c ls Kurve im R n bezeichnet; c() heißt Anfngspunkt, c(b) heißt Endpunkt von c. c heißt geschlossene

Mehr

Beweis. herleiten. Ist also z S α, so haben wir eine Darstellung der Form. Da log α die Umkehrfunktion ist gilt somit. log α (z) = x + iy.

Beweis. herleiten. Ist also z S α, so haben wir eine Darstellung der Form. Da log α die Umkehrfunktion ist gilt somit. log α (z) = x + iy. Tuto: Matin Fiesen, matin.fiesen@gmx.de Übungsblatt 6 - Funktionentheoie, Pof. G. Hemion Hie weden wi die theoetischen Übelegungen de analytischen Fotsetzungen anhand diese beiden Beispiele diskutieen.

Mehr

KIT WS 2011/12 Theo A 1. 2 = b c ist dann doppelt so lang, wie â, also. c = 2 6

KIT WS 2011/12 Theo A 1. 2 = b c ist dann doppelt so lang, wie â, also. c = 2 6 KIT WS / Theo A Aufgabe : Vetoen [3 + 3 = 6] Gegeben sind die Vetoen a = (, 7, und b = (,,. (a Bestimmen Sie einen Veto c de Länge c = in de a b Ebene mit c b. (b Bestimmen Sie den paametisieten Weg (ϕ

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Physik A VL6 ( )

Physik A VL6 ( ) Physik A VL6 (19.10.01) Bescheibung on Bewegungen - Kinematik in dei Raumichtungen II Deh- und Rotationsbewegungen Zusammenfassung: Kinematik Deh- und Rotationsbewegungen Deh- und Rotationsbewegungen Paamete

Mehr

Ferienkurs Experimentalphysik Übung 1-Musterlösung

Ferienkurs Experimentalphysik Übung 1-Musterlösung Feienkus Expeimentalphysik 1 2012 Übung 1-Mustelösung 1. Auto gegen Baum v 2 = v 2 0 + 2a(x x 0 ) = 2gh h = v2 2g = km (100 h )2 3.6 2 2 9.81 m s 2 39.3m 2. Spungschanze a) Die maximale Hohe nach Velassen

Mehr

Der Lagrange- Formalismus

Der Lagrange- Formalismus Kapitel 8 De Lagange- Fomalismus 8.1 Eule-Lagange-Gleichung In de Quantenmechanik benutzt man oft den Hamilton-Opeato, um ein System zu bescheiben. Es ist abe auch möglich den Lagange- Fomalismus zu vewenden.

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Teilnehmer: Phili Bannach Heinrich-Hertz-Oberchule) Levin Keller Herder-Oberchule) Phili Kende Herder-Oberchule) Carten Kubbernuh Andrea-Oberchule) Giang Nguyen Herder-Oberchule)

Mehr

Verschiebungssatz: Ist F (s) die Laplace-Transformierte von f (t), dann gilt für t 0 > 0

Verschiebungssatz: Ist F (s) die Laplace-Transformierte von f (t), dann gilt für t 0 > 0 3.6 Tranformationätze 853 3.6 Tranformationätze In dieem Abchnitt werden weitere Eigenchaften der Laplace-Tranformation vorgetellt, die in vielen technichen Bechreibungen ihre Anwendung finden. Oftmal

Mehr

Mathematik für Ingenieure 2

Mathematik für Ingenieure 2 Mathematik fü Ingenieue Doppelintegale THE SERVICES Mathematik PROVIDER fü Ingenieue DIE - Doppelintegale Anschauung des Integals ingenieusmäßige Intepetation des bestimmten Integals Das bestimmte Integal

Mehr

Übungsblatt 03. PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 03. PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungblatt 3 PHYS11 Grundkur I Phyik, Wirtchaftphyik, Phyik Lehramt Othmar Marti, othmar.marti@uni-ulm.de 4. 11. 5 und 7. 11. 5 1 Aufgaben 1. Im erten Übungblatt wurde der Fahrplan eine BMW-Maenpunkte

Mehr

7 Das Eulersche Polygonzugverfahren

7 Das Eulersche Polygonzugverfahren 35 7 Das Eulersche Polygonzugverfahren Lösungen von Differentialgleichungen sind nur in speziellen Fällen explizit angebbar; oft können nur Approximationen an Lösungen numerisch berechnet werden. In diesem

Mehr

FOS: Die harmonische Schwingung. Wir beobachten die Bewegung eines Fadenpendels

FOS: Die harmonische Schwingung. Wir beobachten die Bewegung eines Fadenpendels R. Brinkmann http://brinkmann-du.de Seite 1 25.11.213 Bechreibung von Schwingungen. FOS: Die harmoniche Schwingung Veruch: Wir beobachten die Bewegung eine Fadenpendel Lenken wir die Kugel au und laen

Mehr

Parameter-Identifikation einer Gleichstrom-Maschine

Parameter-Identifikation einer Gleichstrom-Maschine Paamete-dentifikation eine Gleichtom-Machine uto: Dipl.-ng. ngo öllmecke oteile de Paamete-dentifikationvefahen eduzieung de Zeit- und Kotenaufwand im Püfpoze olltändige Püfung und Chaakteiieung von Elektomotoen

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

HM I Tutorium 9. Lucas Kunz. 19. Dezember 2018

HM I Tutorium 9. Lucas Kunz. 19. Dezember 2018 HM I Tutorium 9 Lucas Kunz 19. Dezember 2018 Inhaltsverzeichnis 1 Theorie 2 1.1 Definition der Ableitung............................ 2 1.2 Ableitungsregeln................................ 2 1.2.1 Linearität................................

Mehr

Allgemeine Mechanik Musterlo sung 4.

Allgemeine Mechanik Musterlo sung 4. Allgemeine Mechanik Mustelo sung 4. U bung. HS 03 Pof. R. Renne Steuqueschnitt fu abstossende Zentalkaft Betachte die Steuung eines Teilchens de Enegie E > 0 in einem abstossenden Zentalkaftfeld C F x)

Mehr

Kommunikationstechnik I

Kommunikationstechnik I Kommunikationstehnik I of. D. tefan Weinziel ustelösung 7. ufgabenblatt. ikofone. Was vesteht man unte em (Fel-Übetagungsfakto eines ikofons? De Übetagungsfakto eines ikofons (engl. ensitivity ist as Vehältnis

Mehr

Fourieranalyse Digitalisierung von Signalen lineare zeitinvariante Systeme (LTI-Systeme) digitale Filter adaptive Filter

Fourieranalyse Digitalisierung von Signalen lineare zeitinvariante Systeme (LTI-Systeme) digitale Filter adaptive Filter Bioignalveabeitung Studiengang Medizin-Infomatik Inhalt Gundlagen de Elektizitätlehe Signale Fouieanalye Digitaliieung von Signalen lineae zeitinvaiante Syteme (LTI-Syteme) digitale Filte adaptive Filte

Mehr

39 Differenzierbare Funktionen und Kettenregel

39 Differenzierbare Funktionen und Kettenregel 192 VI. Differentialrechnung in mehreren Veränderlichen 39 Differenzierbare Funktionen und Kettenregel Lernziele: Konzepte: totale Ableitungen, Gradienten, Richtungsableitungen, Tangentenvektoren Resultate:

Mehr

Physikpraktikum. Versuch 2) Stoß. F α F * cos α

Physikpraktikum. Versuch 2) Stoß. F α F * cos α Phyikpraktikum Veruch ) Stoß Vorbereitung: Definition von: Arbeit: wenn eine Kraft einen Körper auf einem betimmten Weg verchiebt, o verrichtet ie am Körper Arbeit Arbeit = Kraft * Weg W = * S = N * m

Mehr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr PHYSIK A Zusatvolesung SS 13 3. Gadient Divegen & Rotation 3.1 De Gadient eines Skalafeldes Sei ein skalaes eld.b. ein Potential das von abhängt. Dann kann man scheiben: d d d d d d kann duch eine Veändeung

Mehr

22 Charakteristische Funktionen und Verteilungskonvergenz

22 Charakteristische Funktionen und Verteilungskonvergenz 22 Charakteristische Funktionen und Verteilungskonvergenz Charakteristische Funktionen (Fourier-Transformierte liefern ein starkes analytisches Hilfsmittel zur Untersuchung von W-Verteilungen und deren

Mehr

p und n können bezüglich der starken WW als die beiden Isospin-Zustände eines Teilchens (Nukleon) mit Isospin I=1/2 aufgefasst werden:

p und n können bezüglich der starken WW als die beiden Isospin-Zustände eines Teilchens (Nukleon) mit Isospin I=1/2 aufgefasst werden: 4. sospin 4. Histoisch: sospin-konzept fü Haonen Fü Nukleonen p un n finet man: () Masse nahe beieinane m p 98. MeV m n 99.6 MeV () Kenkaft (stake WW) invaiant unte p n p un n können bezüglich e staken

Mehr