Zahlenfolgen, Grenzwerte und Zahlenreihen



Ähnliche Dokumente
KAPITEL 3. Zahlenreihen. 3.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen... 80

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung...

KAPITEL 2. Zahlenfolgen

Nachklausur - Analysis 1 - Lösungen

KAPITEL 8. Zahlenreihen. 8.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen

Aufgaben und Lösungen der Probeklausur zur Analysis I

Kapitel IV: Unendliche Reihen

α : { n Z n l } n a n IR

Zahlenfolgen und Konvergenzkriterien

Index. Majorante, 24 Minorante, 23. Partialsumme, 17

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden

4. Übungsblatt Aufgaben mit Lösungen

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.

Musterlösung Vortragsübung Blatt 14 Vorwort. Variante der harmonischen Reihe.

Zusammenfassung: Folgen und Konvergenz

Zusatzmaterial zur Mathematik I für E-Techniker Übung 4

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt

6 Grenzwerte von Zahlenfolgen

Zusammenfassung: Folgen und Konvergenz

Repetitorium Analysis 1 für Physiker WS08/09 Montag - Folgen und Reihen Musterlösung

2 Vollständige Induktion

4 Konvergenz von Folgen

HTBLA VÖCKLABRUCK STET

Angabe Analysis 1 - Beweise, Vollständige Induktion, Folgen

5. Übungsblatt Aufgaben mit Lösungen

24 Konvergente Teilfolgen und Cauchy-Kriterium

1. Folgen ( Zahlenfolgen )

15.4 Diskrete Zufallsvariablen

Denition 27: Die Fakultät ist eine Folge f : N N mit f(1) := 1 und f(n + 1) := (n + 1) f(n) für alle n N. Wir schreiben n! := f(n) für diese Folge.

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa

Aufgaben und Lösungen Weihnachtsgeschenke zur Vorlesung Analysis I

3.2 Reihen Folgen und Reihen. Beispiele : (i) a n+1 = 1 2 beschränkt. a n 2. ), n N, a 1 = 2; zeigen: (a n ) n monoton fallend & nach unten

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

1 Analysis T1 Übungsblatt 1

Kapitel 3 Folgen von reellen Zahlen

1. Man zeige, daß (IR n, d i ), i = 1, 2, metrische Räume sind, wenn für x = (x 1,..., x n ), y = (y 1,..., y n ) IR n die Abstandsfunktionen durch

TECHNISCHE UNIVERSITÄT MÜNCHEN

Kapitel 6. Aufgaben. Verständnisfragen. Rechenaufgaben

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Reihen. Konvergenz. Folgen besonderer Art sind unendliche Summen. a k = a 1 + a 2 +..

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel.

Vorkurs Mathematik für Informatiker Folgen

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Folgen, Reihen, Potenzreihen, Exponentialfunktion. Musterlösung

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Reelle Folgen. Definition. Eine reelle Folge ist eine Abbildung f : N R. liefert ( 7 9, 37

Tutorium Mathematik I, M Lösungen

2 Konvergenz von Folgen

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen

Kapitel 4: Stationäre Prozesse

Aufgaben zu Kapitel 6

Mathematik für VIW - Prof. Dr. M. Ludwig. Def. 6.1 Eine (reelle) Zahlenfolge ist eine unendliche Menge von (reellen) Zahlen a1, a2,, a n

Klausur Höhere Mathematik I für die Fachrichtung Physik

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

1. Zahlenfolgen und Reihen

Lösungen zur Präsenzübung 6

Übungen zum Ferienkurs Analysis 1, Vorlesung 2

TECHNISCHE UNIVERSITÄT MÜNCHEN

Kapitel 6: Quadratisches Wachstum

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i

Höhere Mathematik für die Fachrichtung Physik

3 2n = 1 6 (( 2)3 ) n. < 1 ist sie konvergent und hat den Wert = = 1 (n + 1)! 0! 1. und hat den Wert 1. (mit Reihenwert e), also ist auch

Innerbetriebliche Leistungsverrechnung

Die erste Zeile ("Nummerierung") denkt man sich also dazu. Häufig wird eine Indexschreibweise benutzt um ein Folgenglied zu kennzeichnen.

Übungen zur Vorlesung Funktionentheorie Sommersemester Musterlösung zu Blatt 0

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

2. Diophantische Gleichungen

Analysis ZAHLENFOLGEN Teil 4 : Monotonie

Monotonie einer Folge

4. Der Weierstraßsche Approximationssatz

Ubungen zur Analysis 1. Prof. Dr. Kohnen. Dr. O. Delzeith

TECHNISCHE UNIVERSITÄT MÜNCHEN

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am Betriebswirtschaft BB-WMT-S

Dann ist die Zahl auf der linken Seite gerade und die auf der rechten Seite ungerade. Also sind sie nicht gleich.

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Analysis I für M, LaG/M, Ph 4.Übungsblatt

Kapitel 6 Differenzierbarkeit

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n)

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler

Höhere Mathematik I für die Fachrichtung Informatik. 6. Saalübung ( )

Über die Verteilung der Primzahlen

Versicherungstechnik

AUFGABEN. Verständnisfragen

January 25, n (x + y) n n. n k y k. k=0. := k!(n k)!, k 1, ergibt das. n ) n+1 = n + 1. k! n + 1 n n k + 2.

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015

Vorkurs Mathematik für Informatiker Folgen

( 1) n a n. a n 10. n=1 a n konvergiert, dann gilt lim a n = 0. ( 1) n+1

Grenzwerte von Folgen. 1-E Ma 1 Lubov Vassilevskaya

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

8. Übungsblatt Aufgaben mit Lösungen

GIBS. Übungsaufgaben zur Vertiefung. V1. Beschriften Sie die Konstruktionen! n n n n ' ' ' ' Modul 1.5. Geometrische Optik 1 58.

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

5 Folgen. 5.1 Konvergenz von Folgen. Definition: Zu jedem 0 existiert ein N so, daß. Eine Folge, die gegen 0 konvergiert, heißt

Höhere Mathematik für die Fachrichtung Physik

Transkript:

KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet: N 0 a R. Ma schreibt hierfur (a ) N ud (a ) 0, oder auch a 0, a, a 2,.... Die Zahle a heie Glieder der Folge. Die direte Vorschrift a wird als explizites Bildugsgesetz, die reursive Deitio der a als implizites Bildugsgesetz bezeichet. Eie Zahlefolge heit beschrat, we es reelle Kostate K ud K 2 gibt mit K a K 2 fur alle 0. Beispiel 5.. a =, = 0,, 2,..., ist eie explizit agegebee Zahlefolge (a ) =0. a Beispiel 5.2. Dagege ist a + = 2 a 2 +, a =, eie implizize Bildugsvorschrift. Beispiel 5.3. Eie implizite Bildugsvorschrift ist ebefalls a + = 2 (a + a ), a = 2. Typisch fur die implizite Bildugsvorschrift ist die Vorgabe eies Startwertes, hier a = 2. 49

50 5. ZAHLENFOLGEN, GRENZWERTE UND ZAHLENREIHEN Defiitio 5.2. Eie Zahlefolge (a ) 0 heit mooto wachsed, we a a + fur alle gilt, mooto falled, we a a + fur alle gilt, streg mooto wachsed bzw. streg mooto falled, we < astelle vo bzw. > astelle vo fur alle gilt, ach obe beschrat, we es ei reelles K gibt, so dass a K fur alle gilt, ach ute beschrat, we es ei reelles gibt, mit a fur alle, beschrat, we sie sowohl ach obe als auch ach ute beschrat ist, d.h. es gibt, K R mit a K fur alle. Beispiel 5.4. Die Folge a :=,, ist streg mooto falled ud beschrat, es gilt: > ud 0. + Beispiel 5.5. Die Folge a :=,, ist streg mooto wachsed ud beschrat, es gilt ud 0. + + Beispiel 5.6. Die Folge a + = a 2 +a 2 ist beschrat, da 0 a2 +a 2 = +a 2 gilt, auerdem ist die Folge mooto falled, da a 2 + a 2 = a2 a 2 + a2 = a 2 ( (a 2 +)) = a4 a 2 0 gilt, d.h. + a 2 + a2 + a 2 a + a, da a 0 gilt. Mittels vollstadiger Idutio a ma zeige, dass a = ist. Idutiosstart: a =. Idutiosaahme: a =. Idutiosschritt: a + = a 2 a 2 + = =. + + Defiitio 5.3. Eie Zahlefolge (a ) 0, strebt oder overgiert gege de Grezwert a R, we es zu jeder beliebig leie vorgegebee Schrae ε > 0 eie Idex 0 N gibt, so dass gilt a a < ε fur alle 0. Ma schreibt: a a fur oder urz a a bzw. a = a. Jede gege Null overgierede Folge heit Nullfolge. Nicht overgete Folge heie diverget.

. FOLGEN 5 Beispiel 5.7. Fur die Folge (a ) >0 mit a = α, α R, gilt a = α =, α > 0,, α = 0, 0, α < 0, Der Fall fur α = 0 folgt umittelbar aus 0 =. Nu zum Fall α > 0. Es sei K eie beliebige positive reelle Zahl, da gilt α > K > α K. Es gibt folglich immer uedlich viele Glieder der Folge mit a > K ud damit ist α = fur α > 0. Im Fall α < 0, sei ε > 0 eie beliebige reelle Zahl. Da gilt 0 < α = α = α < ε ε < α ud deshalb ist α = 0. > α ε Bemerug 5.. Ma beachte, dass fur eie irratioale Zahl α > 0 die Wurzel α deiert ist als e α l. Satz 5.. Fur jede overgete Zahlefolge (a ) 0 gilt () Der Grezwert ist eideutig bestimmt, d.h. aus a = a ud a = b folgt a = b. (2) Kovergete Zahlefolge sid beschrat, d.h. es gibt eie Kostate K mit a K fur alle N 0. Beweis: zu (): Wir ehme a, dass gilt a = a ud a = b, d.h. es gilt a a < ε fur alle 0 ud a b < ε fur alle. Damit ist aber auch a b beliebig lei, da aus de Voraussetzuge folgt a b = a a + a b a a + a b 2ε fur max( 0, ). zu (2): Es sei ε =, da die Zahlefolge overget ist, gilt a a fur 0 a a a a a + fur 0. D.h. alle Glieder der Zahlefolge mit 0 liege zwische a ud a +. Es verbleibe damit edlich viele Glieder der Zahlefolge, die u.u. auerhalb des Itervalls [a, a + ] liege, deshalb musse diese edlich viele Glieder extra mit

52 5. ZAHLENFOLGEN, GRENZWERTE UND ZAHLENREIHEN eibezoge werde, es sei K := mi(a, a 0, a,..., a 0 ) ud K 2 := max(a +, a 0, a,..., a 0 ), da gilt K a K 2 fur alle 0. # Defiitio 5.4. Ist (a ) 0 eie Folge ud 0 < < 2 <... < m <... eie (uedliche) aufsteigede Idexfolge, da heit die Folge a 0, a, a 2..., a m,... Teilfolge vo (a ) 0. Umittelbar aus der Deitio folgt: Ist a = a, da overgiert auch jeder (uedliche) Teilfolge gege a. Defiitio 5.5. Ma sagt, dass eie Folge (bestimmt) gege de ueigetliche Grezwert divergiert, we zu jedem och so groem K R die Ugleichug a K fur alle > 0 (K) gilt. Aalog deiert ma die bestimmte Divergez gege de ueigetliche Grezwert. Beispiel 5.8. Fur die Folge(a ) >0 mit a = x, N, gilt, x >, a = x, x =, = 0, x <, diverget fur x. Es ist x R fest gewahlt ud wir betrachte die Folge x, x 2, x 3, x 4,..., x,.... Wir utersuche ur de Fall x < geauer, wie ma leicht sieht fallt die Folge i diesem Fall mooto (der Futiosverlauf vo x, fur 0 x ud = 2, 3, 5, 7, 0, 20 ist im folgede Bild dargestellt). Um die Kovergez achzuweise, musse wir zeige, dass für alle ε > 0

. FOLGEN 53 existiert ei 0 (ε) ( 0 darf ud wird vom gewahlte ε abhage), so dass a a = x < ε ist, für alle > 0. Es ist x = x ε fur x = 0, falls x 0, da gilt x < ε l( x ) = l x < l ε > l ε l x fur 0 < x <. Ma beachte, dass der aturliche Logarithmus eie mooto wachsede Futio ist, die fur 0 < x < egative reelle Werte aimmt. Folglich wahlt ma als 0 die leiste aturliche Zahl mit > l ε l x fur 0 < x <. Mit diesem 0 ist die Kovergez fur x < achgewiese. Satz 5.2. (Mootoie-Kriterium) Jede mooto wachsede oder mooto fallede beschrate Zahlefolge ist overget. ohe Beweis. Beispiel 5.9. Die Folge a := = 2 = + 2 + 2 2 +... + 2 ist oesichtlich mooto wachsed ud beschrat, da fur > gilt ud damit 0 a + 0 2 ( ) = ( ) ( + 2 2 ) ( +... + 3 ) = 2 2. Nach dem Mootoie-Kriterium existiert der Grezwert a. Mittels Fourier- Reihe a ma zeige, dass a = π2 6.

54 5. ZAHLENFOLGEN, GRENZWERTE UND ZAHLENREIHEN 2. Grezwertbestimmug 2.. Recheregel. Aus gegebee Folge (a ) 0 ud (b ) 0 werde durch Additio, Subtratio, Multipliatio ud Divisio eue Folge gewoe. Satz 5.3. Sid (a ) 0 ud (b ) 0 overgete Zahlefolge mit a = a ud b = b da gilt () a ± b = a ± b, (2) a b = ab, isbesodere ist ca = ca, fur c R. (3) Ist a 0, da gibt es ei N 0 mit a 0 fur alle ud fur die Folge (a ), (b ) gilt a = a, b = b a a. (4) a = a. (5) Ist a > 0, da gibt es ei 2 N 0 mit a > 0 fur alle 2 ud fur die Folge (a ) 2 gilt a = a. Beweisidee: () Aus a a 0 ud b b 0 folgt als Abschatzug mittels Dreiecsugleichug: (a ± b ) (a ± b) = (a a) ± (b b) a a + b b 0. (2) Wieder Dreiecsugleichug: a b ab = a (b b)+b(a a) a b b + b a a A b b + b a a 0, isbesodere ist a A da jede overgete Folge beschrat ist (siehe Satz 5..) ( ) (3) Ist a 0, da ethalt a a, a a icht die Null, aber alle Glieder der 2 2 Folge ab eiem gewisse Idex. Fur diese gilt a a = a a a a C a a, fur. (4) a a a a. (5) Ist a = 0, da sei ε > 0 beliebig lei gewahlt ud es gibt eie Idex 0 N 0, so dass a ε 2 gilt fur alle 0. Da gilt aber auch a ε

2. GRENZWERTBESTIMMUNG 55 fur diese ud damit a 0. Ist dagege a > 0, da gilt a a = a a a + a a a Beispiel 5.0. Die Folge a + = 2 ( a + a ) a + = + (a )2 2a ud deshalb a + a = 2 = a a a + a a a a 0., a = 2, ist mooto falled, da ( ) a a 0 ist, d.h. a + a. Damit ist die Folge ebefalls beschrat, da 2 = a a fur alle gilt. Nach dem Mootoie-Kriterium ist die Folge somit overget. Wege 2 a ist der Grezwert a = a > 0 ud es gilt ud deshalb auch a a fur. Ebeso gilt a + = a, da (a + ) dieselbe Folgeglieder hat wie (a ) 2. Deshalb ergibt sich ach Grezubergag : a = 2 (a + a ) a2 = 2 (a2 + ) 2 a2 = 2 a2 = ud wege a > 0 ist a = (ud icht a =.) Betrachte wir u die Folge h + := x a + = ( x a + x ) = ) (h + xh. 2 x a 2 Da h = x a = x ist, folgt: Die Hero'sche Folge h + = ) (h + xh, x > 0, 2 overgiert fur beliebige Startwert h > 0 gege x. 2.2. Grezwertbestimmug durch Abschätzug. Die Grudidee besteht dari Folgegleider so abzuschatze, dass ma de Grezwert beater Folge verwede a. Satz 5.4. (Vergleichsriterium) Lasse sich fur die Glieder der Zahlefolge (a ) 0 ach obe ud ute abschatze durch b a c mit b = c = c, da ist die Folge (a ) 0 overget ud es gilt = c. Beweis: Fur jedes ε > 0 gilt c ε b a c c + ε fur alle hireiched groe, also a c. #

56 5. ZAHLENFOLGEN, GRENZWERTE UND ZAHLENREIHEN Beispiel 5.. Es ist da 0 (si )2. Weiterhi ist da (si ) 2 = (( ) + ) = + ( ) + ach der Biomische Formel + = 0, =, ( ) ( ) 2 +... + ( ) 2 ( ) ( ) 2 2 da fur jedes feste N gilt ud damit 0. Damit ergibt sich die Ugleichug + ( ) ( ) 2 2 ud es gilt ( ) 2 = 0. Damit ist aber auch ( ) 2 = ( ) = 0. ud ( ( ) ) ( ) ( ) 2 2 2 ( ) 2 0 + = (( ) + ) = = 0 + =. Satz 5.5. (Grezwertbildug erhält schwache Ugleichuge) Sid (a ) 0 ud (b ) 0 overgete Folge mit a b fur alle, da gilt a = a b = b. Bemerug 5.2. Die Grezwertbildug erhalt aber i. Allg. eie strite Ugleichuge. Aus a < b fur alle, folgt ur a = a b = b ud icht die strite Ugleichug, wie das Beispiel a = 0 ud b = belegt.

3. ZAHLENREIHEN 57 Satz 5.6. (Cauchy-Kriterium) Eie Zahlefolge (a ) 0 ist geau da overget, we fur alle hireiched groe Idizes m, der Betrag a a m beliebig lei wird, d.h. we es zu jeder (och so leie) positive Zahl ε > 0 eie aturliche Zahl N(ε) gibt, derart dass a a m < ε fur alle m, N(ε). 3. Zahlereihe Defiitio 5.6. Die aus der Zahlefolge (a ) 0 gebildete Folge (s ) 0 mit s := a = a + a 2 +... + a, 0, heit uedliche Reihe, sie wird mit a bezeichet. Die Zahle a i heie Glieder der Reihe ud die Summe s := a dere Partialsumme. Ma sagt, dass die Reihe overgiert bzw. divergiert, we die Folge der Partialsumme overgiert bzw. divergiert. Im Fall s = s R { } { } et ma s de Wert oder die Summe der uedliche Reihe ud schreibt a = s. Beispiel 5.2. Geometrische Reihe Fur die geometrische Reihe ist a := x, N 0, somit lautet die Folge der Partialsumme { s := a = x = + x + x 2 + x 3 +... + x x +, falls x, = x +, falls x =. Mit dem Ergebis fur x aus Beispiel 5.8 ergibt sich := N x := + x + x 2 + x 3 +... + x +... =0 N x = =0 x, falls x <,, falls x, diverget, falls x.

58 5. ZAHLENFOLGEN, GRENZWERTE UND ZAHLENREIHEN Beispiel 5.3. Die Folge b :=! = +! + 2! +... +! ist oesichtlich ebefalls mooto wachsed ud beschrat, da fur 2 gilt 0 <! = 2 3 ( ) 2 2 2 2 = 2 Fur = 0 ist b 0 = 0! = ud fur = ist b = +! = 2, fur 2 gilt 2 +! + 2! +... +! + + 2 +... 2 = + 2 = + 2 ( 2 ) 3. 2 Durch de Grezwert dieser Folge ist die Eulersche Zahl e deiert: e := Bemerug 5.3. Es gilt ebefalls! = ( + ) = e. Mehr och a ma zeige, dass die Expoetialfutio durch de Grezwert!. wohldeiert ist. e x := ( + x ), x R, 3.. Kovergezriterie. Satz 5.7. (Kovergezriterie für Reihe) () Cauchysche Kovergezriterium für Reihe: Die Reihe a ist geau da overget, we es zu jeder och so leie Zahl ε > 0 eie Idex N(ε) gibt, so dass s s m = a m+ + a m+2 +... + a < ε fur alle m, N(ε). Ma a ohe Eischraug aehme, dass > m ist. (2) Notwediges Kovergezriterium: Die Glieder eier overgete Reihe bilde eie Nullfolge. (3) Leibiz-Kriterium für alterierede Reihe: Fur jede mooto fallede Nullfolge a 0, a, a 2,... overgiert die alterierede Reihe ( ) a = a 0 a + a 2 a 3 ±....

3. ZAHLENREIHEN 59 Wir beweise ur (2). Wir setze m = ud erhalte we die Reihe overget ist fur alle ε > 0 : d.h. a 0. s s = a < ε fur alle > N(ε); Bemerug 5.4. Bei (2) hadelt es sich um ei otwediges Kovergezriterium, d.h. auch we dieses Kriterium erfullt ist, muss die Reihe icht overgiere, ist es aber icht erfullt, so divergiert die Reihe. Beispiel 5.4. Wir wede das Cauchy-Kriterium auf die Folge der Partialsumme s = l= ( )l+ a. Mit = m + ist l m+ s s m = ( ) l+ l = ( )m ( ) 2 m + + ( )3 m + 2 +... + ( )+ m + l=m+ { = + ( + ) ( m+ m+2 m+3 +... + + ) m+ 2 m+, falls gerade, m+ + ( + ) ( m+ m+2 m+3 +... + + ) ( m+ 3 m+ 2 + + m+ m+), falls ugerade, m +. D.h. s s m < ε, fur alle > m > ε bzw. > m > [ ε ] = N(ε). Damit ist gezeigt, dass die alterierede harmoische Reihe overgiert. Beispiel 5.5. Die Reihe divergiert, da a! = eie Nullfolge ist:!! = 2 3 = 0. Beispiel 5.6. Die harmoische Reihe = 0 gilt. Ma a amlich wie folgt abschatze: s 2 + = + ( 2 + 3 + ) +... + 4 ist diverget, obwohl a = ( 2 + + 2 + 2 +... 2 + + 2 + 2 4 +... + 2 2 = + 3 + 2. Beispiel 5.7. Die alterierede harmoische Reihe = ( )+ dagege overgiert ach dem Leibiz-Kriterium ud es ist = ( )+ = l 2. Beispiel 5.8. Auf die alterierede Reihe 2 22 3 + 33 2 4 44 3 5 ±... = ( ) + 4 ( + ) = ist das Leibiz-Kriterium icht awedbar, da a = ( + ) = ( ) + = ist. ( + ) ) = e 0

60 5. ZAHLENFOLGEN, GRENZWERTE UND ZAHLENREIHEN Beispiel 5.9. Auf die alterierede Reihe 2 + 8 3 + 27 4 ±... 3 + ±... = ( ) + a = mit a 2 = ud a 3 2 =, =, 2,..., + ist das Leibiz-Kriterium icht awedbar, da wege < 3 + Folge der Glieder (a ) icht mooto falled ist. fur 2 die Beispiel 5.20. Die alterierede Reihe l 2 l 3 + l 4 ±... = ( ) + l( + ) = ist overget ach dem Leibiz-Kriterium, da die Folge der Glieder (a ) mit a = eie mooto fallede Nullfolge ist. l(+) Satz 5.8. (Recheregel für overgete Reihe) Fur alle c R ud overgete Reihe a = a ud b = b, a, b R, gilt (a ± b ) = a ± b ud (c a ) = ca. Bemerug 5.5. Elemetare Umformuge, die bei edliche Summe de Summewert icht verader, sid bei uedliche Reihe ( " uedliche Summe\) icht ugeschrat erlaubt! () Es ist i. Allg. icht erlaubt Klammer wegzulasse. Beispiel: Die Reihe a mit a = ( ) = 0 ist overget. Lasst ma aber die Klammer weg, so divergiert die Reihe + +... = b mit b = ( ). (2) Ma darf i. Allg. aber auch eie Klammer setze. Im vorige Beispiel a ma dadurch aus eier divergete Reihe durch Klammerug eies overgete Reihe. (3) Eie Umordug der Reiheglieder ist ohe Zusatzvoraussetzuge icht erlaubt.

3. ZAHLENREIHEN 6 Beispiel 5.2. Wir betrachte das folgede Beispiel: l 2 = 2 + 3 4 + 5 6 + 7 8... + 2 = 0 + 2 + 0 4 + 0 + 6 + 0 8... 3 2 = + 0 + 3 2 + 5 + 0 + 7 4... Umordug + + +... 2 3 4 5 6 7 8 = l 2 Aber: Satz 5.9. I eier overgete Reihe darf ma beliebig Klammer setze: s = a 0 + a + a 2 +... = (a 0 +... + a ) + (a + +... + a 2 ) +.... Beweis: Die Partialsumme s = (a 0 +... + a ) +... + (a + +... + a ) der " gelammerte\ Reihe bilde eie Teilfolge der overgete Folge der Partialsumme s ud overgiere deshalb gege deselbe Grezwert. # 3.2. Absolute Kovergez. Eie Zusatzvoraussetzug, die die Sachlage vereifacht ist die absolut Kovergez: Defiitio 5.7. Die Reihe a heit absolut overget, we die Reihe der Betrage a = a 0 + a + a 2 +... overgiert. Reihe, die zwar overgiere, aber icht absolut overgiere, et ma bedigt overget. Beispiel 5.22. Die alterierede harmoische Reihe ( ) + 2 = ist eie bedigt overgete Reihe, da die Reihe selbst ach dem Leibiz-Kriterium overgiert, die Reihe der Betrage, d.h. die harmoische Reihe, ist aber diverget. Folgeruge: () Jede absolut overgete Reihe ist overget.

62 5. ZAHLENFOLGEN, GRENZWERTE UND ZAHLENREIHEN (2) Die Reihe a ist geau da absolut overget, we die Folge der Par- tialsumme der Reihe a : S := a = a 0 + a + a 2 +... + a beschrat ist. Beispiel 5.23. Die Reihe = { = α overget, falls α >, diverget, falls α. Beweis: Wir betrachte zuachst de Fall α >. Zu gegebeem sei m so gewahlt, dass 2 m gilt. Da ist s s 2 m = + ( 2 + ) ( +... + α 3 α + 2 2 α + 4 4 α +... + 2m (2 m ) α ) (2 m ) +... + α (2 m ) α ( ) m = 2α 2 α 2 α. m=0 Ist dagege α, so sid die etsprechede Partialsumme groer oder gleich de etsprechede Partialsumme der harmoische Reihe ud diese Reihe divergiere, da die harmoische Reihe diverget ist. # 3.3. Kriterie für absolute Kovergez. Diese Kriterie sid die i der Praxis am haugste agewadte zur Utersuchug vo Reihe.

3. ZAHLENREIHEN 63 Satz 5.0. (Kriterie für absolute Kovergez) () Vergleichsriterium: Besteht fur die Reiheglieder die Abschatzug 0 a b fur 0, da gilt Ist die Reihe b (absolut) overget, so ist auch die Rei- he a absolut overget. Gilt dagege a =, so ist auch b =. Eie Reihe b die de Voraussetzuge des Vergleichsriteri- ums geugt, heit Majorate der Reihe a. diver- Ist dagege a >, da ist die Reihe get. a (2) Quotieteriterium: Ist a 0 fur alle 0 ud overgiert die Folge der Quotiete a + a, da gilt: a Ist + a <, da ist die Reihe a absolut overget. a Ist dagege + a >, da ist die Reihe a diverget. (3) Wurzelriterium: Ist a <, da ist die Reihe a absolut overget. a Bemerug 5.6. Im Fall + a = bzw. a = a ma eie Aussage tree, die Reihe a (bedigt) overget oder auch diverget sei. Dies a leicht mit der alterierede harmoische bzw. der harmoische Reihe belegt werde. De es ist + = = =. Wobei wie bereits gezeigt, die alterierde harmoische Reihe overgiert, die harmoische Reihe selbst aber divergiert.

64 5. ZAHLENFOLGEN, GRENZWERTE UND ZAHLENREIHEN a Beweis: Wir weise die Kovergez ach. Gilt + a <, so gibt es eie reelle Zahl q mit 0 < q <, so dass a + a < q fur alle 0 N. Da a ma aber abschatze: a 0 + q a 0 + q 2 a 0 + 2... q a 0 ud die Reihe mit dem allgemeie Glied b 0 + = q a 0 ist eie overgete Majorate, da b l = l=0 0 l=0 b l + a 0 l= 0 q l 0 = 0 l=0 b l + a 0 q l = l=0 0 l=0 b l + a 0 q. Fur das Wurzelriterium ist die Argumetatio och eifacher. Gilt a <, so gibt es eie reelle Zahl q mit 0 < q <, so dass a < q a < q fur alle 0 N ud damit ist a a 0 = a + 0 = 0 q = a + q 0 0 q = a + q 0 0 = 0 q 0 a + q 0 q. Nachweis der Divergez: Uter de obige Aahme ist (a ) 0 eie Nullfolge. # Beispiel 5.24. Die Reihe = si( 3 +3) 2 3 +2+ ist absolut overget, da si( 3 + 3) 2 3 + 2 + 2, fur 3 (da 2 3 + 2 + > 2 3 ) ist ud die Reihe Beispiel 5.25. Die Reihe 2 3 2 + 2 3 + 3 4 +... = ( + ) gema Beispiel 5.23 overgiert. = ist ach dem Vergleichsriterium overget, da overget ist. = 2 (+) 2 ist ud die Reihe Mit Hilfe der Folge der Partialsumme zeigt ma, dass die Folge gege overgiert. Es gilt s = a = 2 + 2 3 + 3 4 +... + = +. =

Beispiel 5.26. Die Reihe ist ach dem Quotieteriterium diverget, da (+) +2 (+2)! + (+)! = 3. ZAHLENREIHEN 65 + (+)! ( ( + ) +2 ( + )! = = + ) ( + ) + ( + 2)! + + 2 = e >. Beispiel 5.27. Die Reihe + 2 2! + 4 3! + 8 4! + 6 5! +... = 2 ( + )! ist ach dem Quotieteriterium overget, da 2 + (+2)! 2 (+)! Beispiel 5.28. Die Reihe ( ) 2 ( ) 3 2 3 3 + + + 5 7 =0 2 + ( + )! 2 = = ( + 2)!2 + 2 = 0. ( ) 4 4 +... = 9 = ( ) 2 + ist ach dem Wurzelriterium overget, da ( ) = 2 + 2 + = 2 <. Beispiel 5.29. Die Reihe diverget, da (2 3 = ) ( + ) ( 2 ) = ( 2 ) ( 3 + ( ) 2) ist ach dem Wurzelriterium ( ) ( 2 + ) = 2 e, 8 >. 3 3 Ohe Beweis zwei ur fur absolut overgete Reihe gultige Recheregel: Satz 5.. Cauchy-Produt. Fur absolut overgete Reihe a ud b gilt die Produtformel ( ) ( ) ( ) a b = a b = a 0 b 0 +(a 2 b 0 +a 0 b )+(a 2 b 0 +a b +a 0 b 2 )+.... =0 Satz 5.2. Umordugssatz. Ist die Reihe a absolut overget mit dem Summewert s, da overgiert jede aus a durch Umordug der Glieder etstadee Reihe ebefalls gege s.

66 5. ZAHLENFOLGEN, GRENZWERTE UND ZAHLENREIHEN