Univariates Datenmaterial

Ähnliche Dokumente
Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf. Vorlesung 04 Mathematische Grundlagen II,

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 3

Wichtige Definitionen und Aussagen

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.)

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

Mehrdimensionale Zufallsvariablen

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management

Übung 1: Wiederholung Wahrscheinlichkeitstheorie

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf

Statistik für Ingenieure Vorlesung 3

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review)

Statistische Methoden in den Umweltwissenschaften

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik

1.5 Erwartungswert und Varianz

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Klassifikation von Signifikanztests

P (X = 2) = 1/36, P (X = 3) = 2/36,...

1. Grundbegri e der Stochastik

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Forschungsstatistik I

Statistik und Wahrscheinlichkeitsrechnung

1 Multivariate Zufallsvariablen

5 Erwartungswerte, Varianzen und Kovarianzen

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik

1.5 Erwartungswert und Varianz

Einführung in die Statistik

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Hypothesentests. 5 Regression

Binomialverteilung. Häufigkeit, mit der Ereignis A bei n unabhängigen Versuchen eintritt. Träger von X : X = {0, 1, 2,..., n}.

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler

SozialwissenschaftlerInnen II

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten

Statistik I. 1. Klausur Wintersemester 2010/2011 Hamburg, Art der Anmeldung: STiNE FlexNow Zulassung unter Vorbehalt

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1

Statistik für NichtStatistiker

Wahrscheinlichkeitsverteilungen

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen

Tabellarische und graphie Darstellung von univariaten Daten

Wirtschaftsmathematik

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression

Statistics, Data Analysis, and Simulation SS 2017

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5

Sind f X bzw. f Y die wie auf Folie 242 definierten Dichtefunktionen zur N(µ X, σx 2 )- bzw. N(µ Y, σy 2 )-Verteilung, so gilt (genau) im Fall ρ = 0

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

Wirtschaftswissenschaftliches Prüfungssekretariat Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Sommersemester 2015

Forschungsstatistik I

Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm.

Statistik mit und ohne Zufall

Zufallsvariablen [random variable]

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen

Stichwortverzeichnis. Chi-Quadrat-Verteilung 183, 186, 189, 202 ff., 207 ff., 211 Testen von Zufallszahlen 294 Cărtărescu, Mircea 319

Mathematik für Naturwissenschaften, Teil 2

1 Grundlagen der Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsräume. Ein erster mathematischer Blick auf Zufallsexperimente...

Kenngrößen von Zufallsvariablen

i =1 i =2 i =3 x i y i 4 0 1

1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n

Teil / Ein paar statistische Grundlagen 25. Kapitel 1 Was Statistik ist und Warum sie benötigt Wird 2 7

Vorlesung: Statistik II für Wirtschaftswissenschaft

Aufgabenstellung und Ergebnisse zur. Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2018/19

Woche 2: Zufallsvariablen

Wahrscheinlichkeitsrechnung. Sommersemester Kurzskript

Forschungsstatistik I

1 Einleitung und Grundlagen 1

5. Spezielle stetige Verteilungen

Fit for Abi & Study Stochastik

Woche 2: Zufallsvariablen

1. Grundbegri e. T n i=1 A i = A 1 \ A 2 \ : : : \ A n alle A i treten ein. na = A das zu A komplementäre Ereignis; tritt ein, wenn A nicht eintritt.

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9.

Varianz und Kovarianz

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Sommersemester 2011

Über dieses Buch Die Anfänge Wichtige Begriffe... 21

Einführung in die Maximum Likelihood Methodik

I. Deskriptive Statistik 1

Einführung in die Statistik

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009

1.5.4 Quantile und Modi. Bem [Quantil, Modus]

Stochastik in den Ingenieu rwissenschaften

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11.

Transkript:

Univariates Datenmaterial 1.6.1 Deskriptive Statistik Zufallstichprobe: Umfang n, d.h. Stichprobe von n Zufallsvariablen o Merkmal/Zufallsvariablen: Y = {Y 1, Y 2,..., Y n } o Realisationen/Daten: x = {y 1, y 2,..., y n } o Ausprägungen: a 1 < a 2 <... < a k, k n Deskriptive Statistik: Aufarbeitung der Daten o Tabellarisch (Werte, relative und kumulative Häufigkeiten) o Graphisch: Stabdiagramm, Kreisdiagramm, Histogramm 1

Lageparameter 1.6.1 Deskriptive Statistik Abhängig vom Skalierungsniveau der Variable Nominale Daten o Modalwert: häufigster Wert Ordinale Daten o Median: teilt n gegebene Werte in die 50% kleineren bzw. größeren Beobachtungen o Quantil: z ist p-quantil, falls p-fache der Beobachtungen kleiner gleich z sind Kardinale Daten o Mittelwert (arithmetisches Mittel): ȳ = 1 n n i=1 y i 2

Streuungsparameter 1.6.1 Deskriptive Statistik Spannweite: max(y i ) - min(y i ) Interquartilsspanne: Differenz zwischen 0.75-Quantil (3. Quartil) und 0.25-Quantil (1. Quartil) Kardinale Daten o Empirische Varianz: s 2 = 1 n 1 n i=1 (y i ȳ) 2 o Mittlere quadratische Abweichung: s 2 mqa = 1 n n i=1 (y i ȳ) 2 o Standardabweichung: s = s 2 o Variationskoeffizient: s ȳ 3

Mehrdimensionales Datenmaterial 1.6.1 Deskriptive Statistik Beispiel: zwei Merkmale/ Zufallsvariablen: Daten: ( x1 y 1 ), ( x2 y 2 ),, ( xn y n ) ( X1 Y 1 ), ( X2 Y 2 ),, ( Xn Y n ) Datenaufbereitung o nominale oder ordinale/kardinale Daten mit wenigen Ausprägungen: Kontingenztabelle o kardinale/ordinale Daten mit wenigen Ausprägungen (stetige Daten): Streudiagramm/Scatterplot 4

Streudiagramm 1.6.1 Deskriptive Statistik 5

Korrelation 1.6.1 Deskriptive Statistik Ordinale Daten o Rangkorrelationkoeffizient (Spearman): r SP r SP = n i=1 (rg(x i) rk x )(rg(y i ) rg y ) n i=1 (rg(x n i) rg x ) 2 i=1 (rg(y i) rg y ) 2 Kardinale Daten o Korrelationkoeffizient (Pearson): 1 r xy 1 r xy = n i=1 (x i x)(y i ȳ) Cov(x, y) n i=1 (x i x) 2 n i=1 (y = i ȳ) 2 s x s y 6

Kovarianz und Korrelation 1.6.1 Deskriptive Statistik Kardinale Daten o Kovarianz von x und y: Cov(x, y) = s xy Cov(x, y) = s xy = 1 n 1 n (x i x)(y i ȳ) i=1 Kovarianz und Korrelation beschreiben die lineare Abhängigkeit/ Beziehung von zwei Variablen bzw. den relevanten Daten Korrelation ist im Gegensatz zur Kovarianz ein normiertes Maß: 1 r xy 1 o r xy = 1: perfekter positiver linearer Zusammenhang o r xy = 1: perfekter negativer linearer Zusammenhang o r xy = 0: kein linearer Zusammenhang 7

Varianz-Kovarianz Matrix 1.6.1 Deskriptive Statistik Varianz-Kovarianz Matrix von x und y ( ) s 2 x s x,y s x,y s 2 y Merke: Cov(x, y) = Cov(y, x) bzw. s x,y = s y,x 8

Wahrscheinlichkeitstheorie/ Stochastik Modellieren ökonomische Phänomene als Ergebnis von Zufallsexperimenten Ökonomischen Variablen werden entsprechend als Zufallsvariablen interpretiert o Zufallsvariablen werden durch Verteilungen (z.b. Normalverteilung) und deren Charakteristika beschrieben (z.b. Erwartungswert und Varianz) o Verteilung repräsentiert Eigenschaften der interessierenden Grundgesamtheit (z.b. Grundgesamtheit aller Arbeitnehmer im Rahmen einer Arbeitsmarktstudie) Kollektion von ökonomischen Variablen (z.b. Lohn von 10 Arbeitnehmern) wird als Kollektion von Zufallsvariablen interpretiert (Stichprobe) 9

Wahrscheinlichkeitstheorie/ Stochastik Wieso? o Wollen etwas über die Eigenschaften der Grundgesamtheit (z.b. Streuung der Löhne) lernen Anwendung von Schätzern o Stochastische Modellierung erlaubt uns die sinnvolle Evaluation von Schätzern und Interpretation von Schätzergebnissen o Durch Verteilungssannahmen werden Eigenschaften der Grundgesamtheit,,parametrisiert o Schätzer schätzen die Parameter o Wir können die Eigenschaften der Schätzer ableiten o Wir können Aussagen darüber machen, ob Schätzergebnisse relevant (signifikant) verschieden von einer Referenz sind (Statistische Tests) Referenz: Stock & Watson: Kap. 2.1-2.4 10

Zufallsexperiment Annahme: beobachtete Ereignisse sind Ergebnis eines Zufallsexperiment/ Zufallsprozess,,Computerabstürze während des Schreibens einer Seminararbeit o Ergebnisse: sich gegenseitig ausschließende Resultate eines Zufallsexperimentes kein, 1, 2, 3,..., Computerabstürze o Jedem Ergebnis kann eine Wahrscheinlichkeit zugeordnet werden o Ergebnismenge: Menge aller möglichen Ergebnise o Ereignis: Untermenge der Ergebnismenge Ereignis:,,Der Computer stürzt nicht mehr als einmal ab = Menge bestehend aus den Ergebnissen,,kein und,,1 Absturz 11

Zufallsvariablen Zufallsvariable: numerische Zusammenfassung eines zufälligen Ergebnisses ZV:,,Anzahl der Computerabstürze o diskrete ZVen: ZV nimmt nur eine diskrete Menge an Werten an z.b. 0, 1,... Computerabstürze o stetige ZVen: ZV kann unendliche viele Werte (in einem Interval) annehmen z.b. Haushaltseinkommen, Aktienkurse,... o Hinweis: Die meisten,,stetigen ökonomischen Variablen, wie z.b. Einkommen, werden nur als stetig modelliert, sind es im strengen Sinne aber nicht. Grund: die Einheiten, z.b. Währung, sind nicht beliebig teilbar. Zufallsvariablen können durch Verteilungen beschrieben werden: Unterscheidung in diskrete und stetige Variablen ist wichtig 12

Diskrete Zufallsvariablen Wahrscheinlichkeitsfunktion o Liste aller möglichen Werte y i einer ZVen und deren Wahrscheinlichkeiten P (Y = y i ) o Summe der W.keiten = 1 (Kumulative) Verteilungsfunktion o Wahrscheinlichkeit, dass ZVe kleiner oder gleich einem Wert c ist P (Y c) = i:y i c P (Y = y i) = F (c) Beispiele: fiktive Verteilung für Computerabstürze, Bernoulli-Verteilung 13

Stetige Zufallsvariablen (Kumulative) Verteilungsfunktion o Definiert wie für diskrete Variablen o Beispiel: fiktive Verteilung für Fahrzeit zwischen Wohnung und Uni, Normalverteilung Dichtefunktion (Wahrscheinlichkeitsdichte) o Formal: Ableitung der Verteilungsfunktion f(c) = F (c) o Fläche unter der Dichtefunktion zwischen zwei Punkten a und b (Integral) gibt Wahrscheinlichkeit an, dass Wert der ZVe zwischen a und b liegt: P (a Y b) o Merke: P (Y = a) = P (a) = 0 für stetige Zufallsvariablen! 14

Verteilungsannahmen Die wahren Verteilungen von Zufallsvariablen sind unbekannt Häufig nehmen wir eine spezifische Verteilung an, z.b. Normalverteilung o Problem: Daten widersprechen oft der Verteilungsannahme o Lösung: Keine spezifischen Verteilungsannahme, sondern nur Annahmen über Erwartungswert und Varianz einer Zufallsvariable (Existenz, manchmal auch konkrete Werte) o Merke: Erwartungswert und Varianz sind Eigenschaften, die aus der Verteilung der Zufallsvariable abgeleitet werden bzw. Verteilung näher charakterisieren! Konzentrieren uns bei Erläuterungen zu Erwartungswert und Varianz auf diskrete ZVen o stetige ZVen: Summen werden durch Integrale ersetzt 15

Erwartungswert Erwartungswert: mittlerer (durchschnittlicher) Wert, den eine Zufallsvariable nach unendlich vielen Wiederholungen eines Zufallsexperimentes annimmt Lageparameter der Verteilung der Zufallsvariable o Notation: E(Y ) = µ Y, der Wert µ Y ist üblicherweise unbekannt o E(Y ) = y 1 p 1 + y 2 p 2 + + y k p k = k i=1 y ip i o Beispiele: erwartete Anzahl von Computerabstürzen, Erwartungswert einer Bernoulli-ZVe 16

Varianz und Standardabweichung Maße für Streuung der Verteilung o Notation Varianz: Var(Y ) = σy 2 Standardabweichung: σ Y o Var(Y ) = E[(Y µ Y ) 2 ] = k i=1 (y i µ Y ) 2 p i o Beispiele: Varianz der Anzahl von Computerabstürzen, Varianz einer Bernoulli-ZVe 17

Lineare Funktion einer Zufallsvariable Lineare Funktion der Zufallsvariablen X: Y = a + bx a, b sind Konstanten Y ist folglich auch eine Zufallsvariable Erwartungswert und Varianz von Y? o E(Y ) = µ Y = a + be(x) = a + bµ X o Var(Y ) = σy 2 = b2 Var(X) = b 2 σx 2 18

Zwei Zufallsvariablen Die meisten ökonomisch interessanten Fragen betreffen zwei oder mehrere Variablen o Finden Uniabsolventen leichter einen Arbeitsplatz als als Bewerber ohne Uniabschluß? o Ist die Einkommensverteilung für Männer und Frauen unterschiedlich? Wir müssen Verteilung mehrerer Zufallsvariablen (z.b. Ausbildung/ Einkommen und Einkommen/Geschlecht) gleichzeitig berücksichtigen. Konzepte: gemeinsame, marginale und bedingte Wahrscheinlichkeitsverteilung 19

Gemeinsame und marginale Verteilung Gemeinsame Wahrscheinlichkeitsverteilung gibt Wahrscheinlichkeit an, dass die ZVen X und Y gleichzeitig die Werte x und y annehmen P (X = x, Y = y) o Beispiel: Gemeinsame Verteilung von Wetterbedingungen und Fahrzeit Marginale Wahrscheinlichkeitsverteilung einer ZVe Y ist ein anderer Name für die Wahrscheinlichkeitsfunktion von Y o Marginale Verteilung ergibt sich aus gemeinsamer Verteilung durch Addition der W.keiten aller Ereignisse für die Y einen bestimmten Wert annimmt P (Y = y) = l i=1 P (X = x i, Y = y) 20

Bedingte Verteilung, Erwartungswert und Varianz Bedingte Verteilung von Y gegeben X Verteilung von Y gegeben, dass eine andere Zufallsvariable X einen spezifischen Wert annimmt P (X = x, Y = y) o P (Y = y X = x) = P (X = x) o Beispiel: Bedingte Verteilung der Fahrzeit gegeben, dass es regnet Bedingter Erwartungswert von Y gegeben X o Wird unter Verwendung bedingter Verteilung bestimmt o E(Y X = x) = k i=1 y ip (Y = y i X = x) Bedingte Varianz von Y gegeben X ist die Varianz der bedingten Verteilung von Y gegeben X 21

o Var(Y X = x) = k i=1 [y i E(Y X = x)] 2 P (Y = y i X = x) 22

Gesetz der iterierten Erwartungen Herleitung des unbedingten Erwartungswertes über den bedingten Erwartungswert E(Y ) = E[E(Y X)] o Implikation: E(Y X) = 0 E(Y ) = E[E(Y X)] = E[0] = 0 23

Unabhängigkeit von Zufallsvariablen X und Y sind unabhängig verteilt bzw. unabhängig, falls Informationen über eine Variable keine Information über die andere Variable liefert o Bedingte Verteilung von Y gegeben X entspricht marginaler Verteilung von Y o P (Y = y X = x) = P (Y = y) o Implikation: P (Y = y, X = x) = P (X = x)p (Y = y) 24

Kovarianz und Korrelation Kovarianz ist lineares Abhängigkeitsmaß der Zufallsvariablen X und Y Cov(X, Y ) = σ XY = E[(X µ X )(Y µ Y )] = k i=1 l (x i µ X )(y j µ Y )P (X = x i, Y = y j ) j=1 Korrelation ist normiertes lineares Abhängigkeitsmaß ρ X,Y = Cov(X, Y ) Var(X)Var(Y ) = σ XY σ X σ Y, 1 ρ X,Y 1 25

Unabhängigkeit, Korrelation und bedingter Erwartungswert Unabhängigkeit von X und Y Cov(X, Y ) = ρ X,Y = 0 o Umkehrung gilt nicht! E(Y X) = E(Y ) Cov(X, Y ) = ρ X,Y = 0 o Umkehrung gilt nicht! 26

Summen von Zufallsvariablen E(X + Y ) = E(X) + E(Y ) = µ X + µ Y Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X, Y ) = σ 2 X + σ2 Y + σ XY o Falls X und Y unabhängig oder unkorrelliert sind: Var(X + Y ) = σ 2 X + σ2 Y Weitere Eigenschaften von Summen von Zufallsvariablen: siehe Key Concept 2.3 in Stock & Watson 27

Verteilungen von Zufallsvariablen Normalverteilung: charakterisiert durch Erwartungswert und Varianz: Y N(µ, σ 2 ) Standardnormalverteilung: µ = 0 und σ 2 = 1 Z = (Y µ)/σ Z N(0, 1) o Berechnung von Wahrscheinlichkeiten mit Normalverteilung: siehe Key Concept 2.4 und Figure 2.6 in Stock & Watson Weitere Verteilungen o Chi 2 -Verteilung mit m Freiheitsgraden Z 1,... Z m sind unabhängig N(0, 1) m i=1 Z2 i χ2 m o t-verteilung mit m Freiheitsgraden Z N(0, 1) und W χ 2 m sind unabhängig Z/ W/m t m 28