3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

Ähnliche Dokumente
Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom

2.1 Vektorräume. 1. für alle x, y U ist x + y U und. 2. für alle x U und alle λ R ist λx U. O V (= O U) U, und dass ( 1) x U, also x U.

05. Lineare Gleichungssysteme

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Tutorium: Analysis und Lineare Algebra

2 Vektorräume und Gleichungssysteme

5.7 Lineare Abhängigkeit, Basis und Dimension

Der Kern einer Matrix

9 Lineare Gleichungssysteme

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

35 Matrixschreibweise für lineare Abbildungen

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9)

Lineare Algebra 1. Roger Burkhardt

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen.

32 2 Lineare Algebra

10 Lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition)

Grundlegende Definitionen aus HM I

Tutorium: Analysis und Lineare Algebra

Lineare Algebra 1. Roger Burkhardt

MATHEMATIK II FÜR STUDIERENDE DER INFORMATIK UND WIRTSCHAFTSINFORMATIK (ANALYSIS UND LINEARE ALGEBRA) IM SOMMERSEMESTER Inhaltsverzeichnis

MATHEMATIK II FÜR STUDIERENDE DER INFORMATIK UND WIRTSCHAFTSINFORMATIK (ANALYSIS UND LINEARE ALGEBRA) IM SOMMERSEMESTER Inhaltsverzeichnis

Kapitel 3 Lineare Algebra

3 Systeme linearer Gleichungen

10.2 Linearkombinationen

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K).

Lösungen der Aufgaben zu Abschnitt 5.4

3. Übungsblatt zur Lineare Algebra I für Physiker

1 Linearkombinationen

6 Lineare Gleichungssysteme

4 Lineare Algebra (Teil 2): Quadratische Matrizen

Ausgewählte Lösungen zu den Übungsblättern 4-5

3 Lineare Algebra Vektorräume

1 Matrizen und Vektoren

1 Transponieren, Diagonal- und Dreiecksmatrizen

6.5 Lineare Abhängigkeit, Basis und Dimension

Lineare Gleichungssysteme

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 1

Mathematik für Physiker, Informatiker und Ingenieure

6 Lineare Algebra. 6.1 Einführung

Lineare Algebra I (WS 12/13)

Der Rangsatz für lineare Abbildungen

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.

Mathematische Grundlagen der Computerlinguistik Lineare Algebra

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }.

37 Gauß-Algorithmus und lineare Gleichungssysteme

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Lineare Algebra. I. Vektorräume. U. Stammbach. Professor an der ETH-Zürich

LINEARE ALGEBRA II. FÜR PHYSIKER

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie

$Id: vektor.tex,v /01/15 13:36:04 hk Exp $

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

Lineare Algebra. Wintersemester 2017/2018. Skript zum Ferienkurs Tag Claudia Nagel Pablo Cova Fariña. Technische Universität München

Kapitel 15 Lineare Gleichungssysteme

$Id: matrix.tex,v /12/02 21:08:55 hk Exp $ $Id: vektor.tex,v /12/05 11:27:45 hk Exp hk $

Lineare Gleichungssysteme - Grundlagen

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF

Klausurenkurs zum Staatsexamen (WS 2014/15): Lineare Algebra und analytische Geometrie 1

Beispiele 1. Gegeben ist das lineare System. x+4y +3z = 1 2x+5y +9z = 14 x 3y 2z = 5. Die erweiterte Matrix ist

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen

bzw. eine obere Dreiecksmatrix die Gestalt (U: upper)

Mathematik II Frühjahrssemester 2013

Lineare Algebra I Zusammenfassung

5 Vektorräume. (V1) für alle x, y V : x + y = y + x; (V2) für alle x, y, z V : (x + y) + z = x + (y + z);

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Beweis. Bei (a) handelt es sich um eine Umformulierung des ersten Teils von Satz 6.2, während (b) aus dem zweiten Teil des genannten Satzes folgt.

2 Lineare Gleichungssysteme

Kapitel II. Vektoren und Matrizen

Für die Matrikelnummer M = Dann sind durch A =

m 2 m 3 m 5, m m 2

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

Mathematik I Herbstsemester 2018 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen

Kapitel 1. Matrizen und lineare Gleichungssysteme. 1.1 Matrizenkalkül (Vektorraum M(n,m); Matrixmultiplikation;

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr

4 Vektorräume. 4.1 Definition. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48. Sei K ein Körper.

$Id: vektor.tex,v /01/21 14:35:13 hk Exp $

5.4 Basis, Lineare Abhängigkeit

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt.

Lineare Algebra I (WS 12/13)

Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1

Lineare Algebra I. Christian Ebert & Fritz Hamm. Gruppen & Körper. Vektorraum, Basis & Dimension. Lineare Algebra I. 18.

Lineare Algebra I für Mathematiker Lösungen

HM II Tutorium 5. Lucas Kunz. 22. Mai 2018

H. Stichtenoth WS 2005/06

Mathematische Grundlagen der Computerlinguistik Lineare Algebra

Affine Hülle. x x 1 ist lineare Kombination der Vektoren x 2 x 1,x 3 x 1,...,x k x 1. Tatsächlich, in diesem Fall ist λ 1 = 1 λ 2 λ 3...

$Id: det.tex,v /01/13 14:27:14 hk Exp $ $Id: vektor.tex,v /01/16 12:23:17 hk Exp $

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12

Transkript:

3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53 a n b n a n + b n (mit a, b R n eine abelsche Gruppe (siehe Anhang A, mit der Nullspalte = (,..., T als neutralem Element und a = ( a,..., a n T als Inversem zu a, a + b = b + a, a + (b + c = (a + b + c, a + = + a = a, a + ( a = ( a + a =. (54 Die Multiplikation einer Spalte a R n mit einer reellen Zahl λ R wird erklärt durch a λa λ a λ. :=. R n. (55 a n λa n (Der Multiplikationspunkt wird meistens fortgelassen. Zusammen mit dieser äußeren Multiplikation R R n R n bildet die Gruppe (R n, + einen Vektorraum (siehe Anhang A über dem Körper R der reellen Zahlen, denn für λ, µ R und a, b R n gilt etwa λ(a + b = λa + λb, (λ + µa = λa + µa, etc. (56 Der Kürze halber sprechen wir vom Vektorraum R n. Bem.: In völlig analoger Weise bildet die Menge C n aller n-dimensionalen Spalten komplexer Zahlen einen Vektorraum über dem Körper C. Um Platz zu sparen, schreiben wir Spalten auch als Zeilen mit dem Transpositionszeichen T. 27

3.2 Lineare Unabhängigkeit Def.: Eine endliche Teilmenge b,..., b m } R n heißt linear abhängig, wenn sich durch eine Linearkombination x b +... + x m b m ihrer Elemente auf nicht-triviale Weise (also so, daß die Koeffizienten x,..., x m R nicht alle gleich null sind die Null darstellen läßt, x b +... + x m b m m x k b k = k= ( m k= x k >. (57 Ist dies nicht möglich, so heißt b,..., b m } linear unabhängig. Bsp. : Ein linear abhängiger Satz von Elementen des R 3 ist b =, b 2 =, b 3 = 2 3 2 4 6 2 2 3, (58 denn er ermöglicht eine nicht-triviale Darstellung der Null, Linear unabhängig dagegen ist der Satz b =, b 2 = 2b + 3b 2 + 4b 3 =. (59, b 3 = denn die Forderung x b + x 2 b 2 + x 3 b 3 = führt auf das Gleichungssystem x + x 2 + x 3 =, und dies ist nur lösbar durch x = x 2 = x 3 =., (6 x + x 2 =, (6 x =, (62 Satz : Der Satz b,..., b m } R n ist gewiß linear abhängig, wenn m > n ist. Bsp. 2: (, 2 T, (2, 3 T, (3, 4 T } R 2 ist linear abhängig. Tatsächlich gilt ( ( ( 2 3 2 + =. (63 2 3 4 28

3.3 Dimension Def.: Unter der linearen Hülle des Satzes b,..., b m } R n versteht man die Menge aller Linearkombinationen seiner Elemente, also die unendliche Teilmenge [ b,..., b m ] := a = m k= x k b k x,..., x m R R n. (64 Satz 2: Die lineare Hülle jedes Satzes b,..., b m } R n ist ein Untervektorraum von R n. Bsp. 3: Die lineare Hülle U = [ ] b, b 2 R 3 des Satzes b, b 2 } =, (65 ist im Wesentlichen der Vektorraum R 2, denn es gilt [ ] x b, b 2 = a = x b + x 2 b 2 x 2 x, x 2 R. (66 Def.: Sei V R n ein Untervektorraum von R n. Der Satz b,..., b m } R n heißt ein Erzeugendensystem von V, wenn V = [ b,..., b m ]. Bsp. 4: In Bsp. 3 ist b, b 2 } ein Erzeugendensystem von U. Ein anderes Erzeugendensystem desselben Vektorraums U ist etwa a, a 2, a 3, a 4 } mit den Vektoren a = 2, 2 a 2 = 3, 3 a 3 = 4, 4 a 4 = 5. (67 Weitere Erzeugendensysteme von U sind a, a 2 }, a, a 3 },..., a 3, a 4 }. Wir betrachten das letzte Beispiel näher. Tatsächlich läßt sich jedes a = x b + x 2 b 2 U darstellen als x 3y + 4y 2 a x 2 = y a 3 + y 2 a 4 4y + 5y 2, (68 denn zu beliebig vorgegebenen Werten x und x 2 ist das Gleichungssystem x = 3y + 4y 2, x 2 = 4y + 5y 2 } (69 lösbar, mit den Lösungen y = 5x 4x 2 und y 2 = 4x 3x 2. 29

Def.: Das Erzeugendensystem b,..., b m } R n von V heißt eine Basis von V, wenn es linear unabhängig ist. Dann heißen die Vektoren b,..., b m Basisvektoren. Offenbar ist.,.,...,., (7 eine Basis des R n, die sog. Standardbasis. Satz 3/Def.: Jede Basis eines bestimmten Vektorraums V R n enthält dieselbe Zahl m von Basisvektoren. Diese Zahl heißt die Dimension von V, m = dim V. (7 Jeder linear unabhängige Satz aus m (= dim V Vektoren V ist eine Basis von V. Ist b,..., b m } eine Basis von V, so sind die Koeffizienten x k in der Darstellung a = m x k b k (72 k= eines gegebenen Vektors a V eindeutig bestimmt. Bsp. 5: R n selbst hat die Dimension n. In Bsp. 4 ist jedes der Erzeugendensysteme a, a 2 }, a, a 3 },..., a 3, a 4 } zugleich eine Basis von U, da in diesem Fall a i, a j } für i j jeweils linear unabhängig ist. Es gilt also dim U = 2 und das Erzeugendensystem a, a 2, a 3, a 4 } ist keine Basis von U. 3

3.4 Lineare Gleichungssysteme 3.4. Definition Ein System aus n linearen Gleichungen für m Unbekannte x,..., x m hat die Form a x + a 2 x 2 +... + a m x m = b, a 2 x + a 22 x 2 +... + a 2m x m = b 2,.... a n x + a n2 x 2 +... + a nm x m = b n. (73 Fassen wir die Koeffizienten a ik R der Variable x k (mit i =,..., n zur Spalte a k R n und die Koeffizienten b i zur Spalte b R n zusammen, so wird daraus m x k a k x a +... + x m a m = b. (74 k= Das lineare Gleichungssystem heißt homogen, falls b =, andernfalls heißt es inhomogen. Unter der Lösungsmenge des Gleichungssystems versteht man die Menge L = (x,..., x m R m x a +... + x m a m = b R m. (75 Das System (74 ist offenbar genau dann lösbar (d.h.: L, wenn gilt b [ a,..., a m ]. (76 Def.: Zwei lineare Gleichungssysteme heißen äquivalent, wenn ihre Lösungsmengen gleich sind. 3.4.2 Gaußscher Algorithmus Zur Bestimmung der vollständigen Lösungsmenge eines linearen Gleichungssystems bemerken wir: Satz 4: Die Lösungsmenge eines linearen Gleichungssystems ändert sich nicht durch: (a Vertauschen zweier Gleichungen; (b Multiplikation einer Gleichung mit einer reellen Zahl c ; (c Addition des c-fachen einer Gleichung zu einer anderen. Durch diese Operationen kann man jedes lineare Gleichungssystem auf eine Form bringen, aus der sich die Lösungsmenge direkt ablesen läßt. In dieser sog. Zeilenstufenform (ZSF gibt es in jeder Einzelgleichung ( Zeile mindestens eine Variable x k, die in allen nachfolgenden Gleichungen nicht mehr vorkommt. Dies sei an einem Beispiel erläutert. 3

Bsp. 6: Wir betrachten das Gleichungssystem x + 2x 2 + 3x 3 + 4x 4 = 5, ( 2x + 3x 2 + 4x 3 + 5x 4 = 2, (2 3x + 4x 2 + 5x 3 + 9x 4 = 7. (3 (77 Durch die Ersetzungen (2 (2 = 2 ( (2 und (3 (3 = 3 ( (3 wird daraus x + 2x 2 + 3x 3 + 4x 4 = 5, ( x 2 + 2x 3 + 3x 4 = 2, (2 2x 2 + 4x 3 + 3x 4 = 2. (3 (78 Schließlich ersetzen wir (3 (3 = (3 2 (2, um ZSF zu erzielen, x + 2x 2 + 3x 3 + 4x 4 = 5, ( x 2 + 2x 3 + 3x 4 = 2, (2 3x 4 = 2. (3 (79 Aus Gl. (3 folgt x 4 = 2 3, womit Gl. (2 lautet x 2 + 2x 3 =. (8 Es ist also etwa x 3 frei wählbar und x 2 = 2x 3 wird festgelegt. Mit Gl. ( ist dann auch x = x 3 + 38 festgelegt, und wir erhalten die einparametrige Lösungsmenge 3 ( L = x 3 + 38, 2x 3 3, x 3, 3 2 x3 R R 4. (8 Die allgemeine Lösung des Gleichungssystems ist also 38 x = 3 + x 2 3. (82 2 Bem.: Offenbar ist die Zahl d der unabhängigen Parameter in der Lösungsmenge eines linearen Gleichungssystems (hier: d =, ein einziger Parameter x 3 gegeben durch d = m r, (83 wobei m die Anzahl der Unbekannten und r die Anzahl der in der ZSF verbleibenden Gleichungen ist. Jede dieser Gleichungen stellt nämlich eine unabhängige Bedingung an die Lösungsmenge dar, welche die Anzahl von deren Freiheitsgraden je um eins reduziert. 32

3.4.3 Allgemeines Lösungsverhalten Die Lösungsmenge eines linearen Gleichungssystems (n Gleichungen für m Unbekannte, m x k a k x a +... + x m a m = b R n, (84 k= wird bestimmt durch die Dimension r der linearen Hülle des Satzes a,..., a m } r = dim [ a,..., a m ] minm, n}. (85 Wir bezeichnen r als Rang des Gleichungssystems (genauer: der Koeffizientenmatrix. r ist gerade die Anzahl der Gleichungen in der ZSF des Systems (sofern diese keinen Widerspruch enthält und das System daher nicht lösbar ist. In homogenen Fall b = ist das System immer lösbar und es gilt der Satz 5: Die Lösungsmenge eines homogenen linearen Gleichungssystems, L = (x,..., x m R m x a +... + x m a m = R m, (86 bildet einen d-dimensionalen Untervektorraum des R m, wobei d = m r. (87 Es gibt also einen linear unbhängigen Satz b,..., b d } R m, sodaß gilt L = x = c b +... + c d b d c,..., c d R. (88 Im Fall r = m, also d =, ist der Satz a,..., a m } linear unabhängig. Dann gibt es nur die triviale Lösung x =, und der Lösungsraum ist -dimensional, L = }. Für inhomogene Systeme mit b gilt der Satz 6: Die Lösungsmenge L eines lösbaren inhomogenen linearen Gleichungssystems ergibt sich durch Addition einer beliebigen Einzellösung x spez zur allgemeinen Lösung des entsprechenden homogenen Systems, L = x = x spez + c b +... + c d b d c,..., c d R. (89 Diese Menge bildet im Gegensatz zu L keinen Vektorraum, denn im Fall b gilt immer / L. Das System ist genau dann unlösbar, L =, wenn b / [ a,..., a m ]. (In diesem Fall führt die Erstellung der ZSF auf einen Widerspruch. 33

3.5 Matrizen 3.5. Definition Def.: Eine (n m-matrix A ist ein rechteckiges Zahlenschema mit n Zeilen und m Spalten, a a 2... a m a 2 a 22... a 2m A =.... (9 a n a n2... a nm Die Zahlen a ij K (hier steht K wahlweise entweder für den Körper R der reellen oder C der komplexen Zahlen heißen die Elemente von A. Dabei steht a ij in der i-ten Zeile und der j-ten Spalte von A. Man schreibt auch kurz A = (a ij. Die Menge aller (n m-matrizen von Zahlen K wird mit M(n m, K bezeichnet. Bem.: Bezüglich der elementweisen Addition und der äußeren ( skalaren Multiplikation A + B (a ij + (b ij := (a ij + b ij (9 λ A λ (a ij := (λa ij (92 bildet M(n m, K einen Vektorraum über dem Körper K. 3.5.2 Rang Def.: Die m Spalten einer (n m-matrix A, aufgefaßt als Elemente des R n, spannen als ihre lineare Hülle einen Untervektorraum des R n auf, den Spaltenraum von A. Auf analoge Weise wird der Zeilenraum von A als Unterraum des R m definiert. Die Dimensionen dieser Räume heißen Zeilen- bzw. Spaltenrang von A. Bem.: Zeilen- und Spaltenrang einer Matrix ändern sich nicht durch: (a Vertauschen zweier Zeilen; (b Multiplikation einer Zeile mit einer reellen Zahl c ; (c Addition des c-fachen einer Zeile zu einer anderen. Jede Matrix A kann durch solche Operationen auf Zeilenstufenform gebracht werden. Es ist leicht einzusehen, daß bei der resultierenden Matrix A Zeilen- und Spaltenrang übereinstimmen. Es gilt also der Satz 7: Zeilen- und Spaltenrang einer (n m-matrix A sind identisch. Ihr gemeinsamer Wert heißt der Rang von A. 34

3.5.3 Matrizenmultiplikation Def.: Unter dem Produkt A B der (n l-matrix A = (a ij mit der (l m-matrix B = (b jk versteht man die (n m-matrix C = (c ik mit den Elementen c ik := l a ij b jk. (93 j= Bsp. 7: ( 2 3 4 5 6 7 8 9 = 2 ( 7 + 8 + 33 8 + 2 + 36 28 + 45 + 66 32 + 5 + 72 = ( 58 64 39 54. (94 Bem.: Das Produkt A B ist nur erklärt, wenn A ebensoviele Spalten wie B Zeilen hat! Insbesondere ist das Matrizenprodukt, selbst unter quadratischen (n n-matrizen (mit gleicher und einheitlicher Zeilen- und Spaltenzahl n nicht kommutativ. Bsp. 8: ( ( 2 3 4 ( = ( 5 6 = 7 8 ( ( 9 22 43 5 ( ( 5 6 7 8 ( = ( 2 = 3 4 ( ( 23 34 3 46, (95. (96 Bem.: Die Spaltenvektoren x R n lassen sich natürlich als (n -Matrizen auffassen. Das lineares Gleichungssystem (74 läßt daher schreiben als A x = b. (97 Satz: Für A M(n k, K und B, C M(k m, K gilt das Distributivgesetz A ( ( ( λb + µc = λ A B + µ A C (λ, µ R. (98 Für A M(n k, K, B M(k l, K und C M(l m, K gilt das Assoziativgesetz A ( ( B C = A B C A B C. (99 35

3.5.4 Lineare Abbildungen Eine (n m-matrix A impliziert eine lineare Abbildung f : R n R m, x f(x := A x. (2 Diese ist tatsächlich linear, denn nach Gl. (98 gilt für beliebige λ, µ R und x, x 2 R n f(λx + µx 2 = A (λx + µx 2 = λ (A x + µ (A x 2 = λf(x + µf(x 2. (2 Def.: Bild bzw. Kern einer linearen Abbildung f : R n R m werden definiert als Bildf := y R m x R n : y = f(x R m, Kernf := x R n f(x = R n. (22 Bem.: Bildf ist die Menge aller y R m, für die das inhomogene Gleichungssystem A x = y (23 lösbar ist. Kernf ist die Lösungsmenge L des homogenen Systems A x =. Satz 8: Bildf und Kernf sind Untervektorräume von R m bzw. R n. Ihre Dimensionen, r = dim Bildf, s = dim Kernf, (24 auch Rang bzw. Defekt von f genannt, addieren sich zur Ausgangsdimension n, r ist der (Spalten- Rang der Matrix A. r + s = n. (25 Bsp. 9: Für die lineare Abbildung f : R 5 R 4, mit x 2 3 f(x = A x 2 3 3 6 x 2 x 3 x 2 3 4 ( a, a 2, a 3, a 4, a 5 x, (26 x 5 berechnen wir zunächst r. Es gilt Bildf = x a + x 2 a 2 + x 3 a 3 + x 4 a 4 + x 5 a 5 x, x 2, x 3, x 4, x 5 R. (27 36

Wegen a 2 = a + a 4, a 3 = 2a a 4 und a 5 = 3a folgt also Bildf = y a + y 4 a 4 y, y 4 R (28 und, weil a, a 4 } offensichtlich linear unabhängig ist, schließlich Berechnung von s: Die Matrix A hat die ZSF A = r dim Bildf = 2. (29 2 3. (2 Für die Lösungsmenge L des homogenen Gleichungssystems A x = gilt also s dim Kernf dim L = 5 2 = 3. (2 Tatsächlich finden wir r + s = dim R 5 = 5. Anmerkung: Das Ergebnis r = 2 hätten wir natürlich direkt aus der ZSF A ablesen können, da Zeilen- und Spaltenrang von A bzw. A gleich sind. 37