EUROPA-FACHBUCHREIHE für Chemieberufe Wlter Bierwerth Formelsmmlug Chemietechik. Auflge VERLAG EUROPA-LEHRMITTEL Nourey, Vollmer GmbH & Co. KG Düsselberger Strße 23 4278 H-Gruite Euro-Nr.: 763
Autor Wlter Bierwerth StD. D., Dil.-Ig. Estei/Tuus Uter Mitwirkug vo Reto Ness Dil.-Ig. Estei/Tuus Bildberbeitug: Verlg Euro-Lehrmittel, Abt. Bildberbeitug, Ostfilder Die im Buch verwedete Formelzeiche etsreche der Normereihe DIN EN ISO 80 000 ud de Norme DIN EN 2 723, DIN EN ISO 6892-, DIN EN 60 027-6 ud DIN IEC 60 050-35.. Auflge 205,. korrigierter Nchdruck Druck 5 4 3 2 Alle Drucke derselbe Auflge sid rllel eisetzbr, d sie bis uf die Behebug vo Druckfehler utereider uverädert sid. ISBN 978-3-8085-76-3 Alle Rechte vorbehlte. Ds Werk ist urheberrechtlich geschützt. Jede Verwertug ußerhlb der gesetzlich geregelte Fälle muss vom Verlg schriftlich geehmigt werde. 205 by Verlg Euro-Lehrmittel, Nourey, Vollmer GmbH & Co. KG, 4278 H-Gruite htt://www.euro-lehrmittel.de Umschlggestltug: bruwerbegetur, Rdevormwld Stz: rkt, 42799 Leichlige, www.rktyo.com Druck: M. P. Medi-Prit Iformtiostechologie GmbH, 3300 Pderbor
0 Mthemtische Grudlge 3 Additio ud Subtrktio + = 2 + b = c 3 2 = = = 0 + 0 = Kommuttivgesetz (Gesetz der Vertuschug) + b + c = + c + b = c + b + Assozitivgesetz (Gesetz der Zusmmefssug) + (b + c) = ( + b) + c = + b + c + b + c + d = ( + b) + (c + d) = + (b + c + d) Multiliktio ud Divisio Multiliktio b = c 0 = 0 ( + b + c) 0 = 0 Kommuttivgesetz (Gesetz der Vertuschug) b c = c b = b c Assozitivgesetz (Gesetz der Zusmmefssug) b c d = (c b d) = ( c) (b d) Distributivgesetz (Gesetz der Verteilug) (b + c d) = b + c d Bei Subtrktioe Vorzeicheregel der Klmmerrechug bechte (siehe Abschitt Klmmerrechug) Vorzeicheregel (+) (+b) = b = b ( ) ( b) = b = b (+) ( b) = b = b ( ) (+b) = b = b (+) + (+b) = + b (+) (+b) = b ( b) = + b = b (+) + ( b) = b (+) ( b) = + b Vorzeichewechsel beim Setze oder Auflöse eier Klmmer, vor der ei Mius steht Divisio : b = b c d d : = = b d b c bc b c c : (b : c) = : = = = c b b b c b d = c b c d b + c d = (b c + d) = ( + c) (b + d) b c d = b (c + d) b c + d = b (c d) Distributivgesetz (Gesetz der Verteilug) (b + c) = b + c c c : b c = c = = b b b Dividiere vo Summe + b b = + c c c + b c b c = + d + e d + e d + e d + e : (b c) = = b c b b b = = bc Auflöse verschchtelter Klmmer vo ie ch uße [ (b + c) (d + e z)] = [( b + c) (d + e z)] = b + c d e + z Vorzeicheregel (+) = + = (+b) b b ( ) = + = ( b) b b ( ) = (+b) b (+) = ( b) b
4 0 Mthemtische Grudlge Klmmerrechug Pluszeiche vor der Klmmer (beim Auflöse der Klmmer keie Äderug der Vorzeiche) 3 + (6b 2c) = 3 + 6b 2c Miuszeiche vor der Klmmer (beim Auflöse Vorzeichewechsel i der Klmmer) 3 (6b 2c) = 3 6b + 2c 3 (6b 2c) = 3 6b + 2c Multiliziere mit eier Klmmer (b c) = b c = b c Multiliziere vo Klmmerusdrücke (Summe) Jeder Summd der eie Klmmer wird mit jedem Summde der dere Klmmer multiliziert ( + b) (c + d) = c + d + b c + b d = c d + bc + bd ( + b) (c d) = c d + b c b d = c d + bc bd ( + b) (c d + e) = c d + e + b c b d + b e = c d + e + bc bd + be. Biomische Formel ( + b) 2 = ( + b) ( + b) = 2 + 2b + b 2 2. Biomische Formel ( b) 2 = ( b) ( b) = 2 2b + b 2 Bruchrechug Multiliziere zweier Brüche miteider (m multiliziert Zähler ml Zähler ud Neer ml Neer) c c = b d b d Erweiter vo Brüche (Zähler ud Neer mit dem gleiche Fktor erweiter der Wert des Bruches wird icht verädert) = b c b c Summiere vo Brüche durch Huteerbildug c d c b d cb d + cb + = + = + = b d b d d b bd bd bd Kürze vo Brüche (Zähler ud Neer durch de gleiche Fktor dividiere) c c = = c = c Aus Summe drf icht direkt gekürzt werde, erst ei übergeordetes Produkt bilde b + c (b + c) = = b + c Prozetrechug = Prozetstz (%) G = Grudwert P = Prozetwert E = Edwert N = Nettowert B = Bruttowert P = G 00 % = 00 % P G 3. Biomische Formel ( + b) ( b) = 2 b 2 Ausklmmer eies gemeisme Fktors i der Klmmer (e + be + ce) = e ( + b + c) Dividiere eies Klmmerusdrucks + b b ( + b) : c = = + c c c G = 00 % P Prozetufschlg E = G + G 00 % Nettowert B N = + 00 % N = B 00 % 00 % +
0 Mthemtische Grudlge 5 Potezrechug Rdiziere (Wurzelrechug) = ( Fktore) yx = 2 yx = yx = 0 = (für ( 0) yx X = yx k = k = = = Beim Wechsel der Bruchstrichseite ädert sich ds Vorzeiche beim Exoete m = m m = m Poteze mit gleicher Bsis (sie werde multiliziert, idem m die Exoete ddiert ud sie werde dividiert, idem m de Exoete des Neers vo dem des Zählers subtrhiert) m = m + m : = m = m Poteze mit gleichem Exoete m = d m b m b Poteziere vo Poteze (die Exoete werde miteider multiliziert) _ m i = m = _ i m Poteziere vo Produkte (jeder Fktor wird für sich oteziert) ( b ) = b Poteziere eier egtive Bsis ( ) m = m für ositive gzzhlige m ( ) m = ( m ) für egtive gzzhlige m Wurzel us eiem Produkt yx bx = yx yxb yx yx = yx X 2 = yx k 2 = Wurzel us eiem Bruch X yx = b yxb Wurzel us eier Potez yxm X = m k = m Wurzel us eier Wurzel y Xm yx X = m k = m = m = m yx = m x yx X m x = m x k x x = = m x Logrithmiere b = Logrithmus = Bsis = Numerus b = log b = lg = log 0 (dekdischer Logrithmus) l = log e = log 2,78 (türlicher Logrithmus) lb = log 2 (biärer Logrithmus) log m = m log log ( b) = log b + log log ( m b) = m log + log b m log = log log b b log = log