Die Gutzwiller sche Spurformel. Tobias Dollinger

Größe: px
Ab Seite anzeigen:

Download "Die Gutzwiller sche Spurformel. Tobias Dollinger"

Transkript

1 1 Die Gutzwiller sche Spurformel Tobias Dollinger

2 2 Motivation: Semiklassische Bestimmung von Energieniveaus nicht integrabler Systeme Bestimmung von Energieniveaus integrabler Systeme: Einstein Brillouin Keller (EBK) - Bedingung (1917) Ein Semiklassischer Ansatz für die Lösungen der Schrödingergleichung liefert Quantisierungsbedingung für die invarianten Tori mittels derer die erlaubten Eigenenergien bestimmt werden Methode zur Behandlung nichtintegrabler Systeme: Gutzwiller sche Spurformel (1971)

3 3 Die Gutzwiller sche Spurformel Quantenmechanik Näherung der Stationären Phase Klassische Mechanik

4 4 Klassische Mechanik (1/2): Hamiltonsches Prinzip Entlang klassischer Phasenraumtrajektorien wird die Hamiltonsche Prinzipalfunktion extremal, gemäß dem Hamiltonschen Prinzip: Hamiltonsche Prinzipalfunktion: Lagrangefunktion: Konservative Systeme: Hamiltonfunktion: Zeitentwicklung:

5 5 Klassische Mechanik (2/2): Wirkungsintegral S Legendretransformation in Hamiltonsche Prinzipalfunktion: Wirkungsintegral

6 6 Quantenmechanik: Eigenenergien Die Eigenzustände lösen das Eigenwertproblem des Hamiltonoperators: Die zugehörigen Eigenwerte entsprechen der Energie des jeweiligen Zustandes. Die Eigenzustände bilden ein vollständiges orthonormales (VON) System: (Stationäre SGL) Dies liefert eine Darstellung der Diracschen Deltafunktion: H := Hamiltonoperator, H = T + V Im Folgenden wird die Dirac Schreibweise benutzt

7 Zustandsdichte 7

8 8 Die Green-Funktion lässt sich nach Eigenzuständen von H entwickeln Ausgangspunkt: retardierter Green scher Operator mit Ansatz für Green-Funktion:

9 9 Die Spur (Tr) der Green-Funktion liefert den Zusammenhang mit der Zustandsdichte Für endlichdimensionale quadratische Matrix:

10 10 Zeitentwicklung Die quantenmechanisch erlaubten Zustände sind Lösungen der Schrödingergleichung (SGL): (Zeitabhängige SGL) Zeitentwicklung der Zustände: Bedingung für den Zeitentwicklungsoperator: Zeitentwicklungsoperator in konservativen Systemen:

11 11 Propagator Ortsdarstellung der Zustände: Das ist die Definition des Propagators vom Ort A zum Ort B Bemerkung: Analogie zum Huygens schen Prinzip

12 12 Hinführung zum Pfadintegral (1/2) Betrachte den Zeitentwicklungsoperator in kleinen Zeitintervallen Berechne den Propagator: Propagation über alle möglichen Wege

13 13 Hinführung zum Pfadintegral (2/2) Nach (N-1)-facher Ausführung ergibt sich für den Propagator: Nacheinander werden berechnet: 1. Der One Step Propagator 2. Der Two Step Propagator

14 14 One Step Propagator: Näherung für den Zeitentwicklungsoperator Darstellung des Zeitentwicklungsoperators:

15 One Step Propagator: Ausführen des Integrals 15

16 One Step Propagator: Hamiltonsche Prinzipalfunktion 16

17 One Step Propagator: Betrachtung des Vorfaktors 17

18 18 Feynman sches Pfadintegral Für kurze Zeitintervalle gilt also: Einsetzen in Gesamtpropagator liefert das Feynman sche Pfadintegral: Alternative Darstellung:

19 19 Berechnung des Two Step Propagators oder Stationäre-Phasen-Näherung

20 20 Die Näherung der stationären Phase (1D) (1/4) (entspricht schneller Oszillation)

21 21 Die Näherung der stationären Phase (1D) (2/4) : :

22 Die Näherung der stationären Phase (1D) (3/4) 22

23 23 Die Näherung der stationären Phase (1D) (4/4) : :

24 24 Näherung der stationären Phase: Zusammenfassung (1D) : :

25 25 Zurück zur Berechnung des Two Step Propagators Stationäre-Phasen-Näherung

26 26 Nur klassische Trajektorien überleben die Bedingung der stationären Phase Dies gilt nur für klassisch erlaubte Trajektorien Die Prinzipalfunktion ist additiv:

27 27 Das Integral wird mittels Stationäre-Phasen-Näherung berechnet Stationäre-Phasen-Näherung #1 Ortsraum d- dimensional Vereinfachung

28 28 Der Vorfaktor lässt sich beträchtlich vereinfachen Vorfaktor: Start festgehalten

29 29 Der Vorfaktor kann für große Zeitintervalle singulär werden Letztendlich wird nur durch ersetzt Problem: Bei größeren Zeitintervallen werden konjugierte Punkte durchlaufen Dort wird der Determinanten-Vorfaktor singulär d.h. = 0 Konjugierte Punkte Lösung: Übergang in den Impulsraum Spezialfall: Focus

30 30 Das Passieren eines konjugierten Punktes liefert einen zusätzlichen Phasenfaktor Problem in 1 D: Konjugierte Punkte entsprechen klass. Umkehrpunkten p Klassischer Umkehrpunkt 3 4 Übergang in Impulsraum (Stationäre - Phasen - Näherung): x 2 1 Rücktransformation in Ortsraum (Stationäre Phasen - Näherung): Fazit: Nach Durchlaufen des Umkehrpunktes zusätzlicher Phasenfaktor von -

31 31 Semiklassischer- oder Van-Vleck-Propagator Das Passieren der konjugierten Punkte liefert eine Phase von Der Maslov-Index entspricht der Anzahl der verschwindenden Eigenwerte von D Es gibt möglicherweise mehrere klassisch erlaubte Wege r

32 32 Vom Semiklassischen Propagator zur semiklassischen Green-Funktion Fouriertransformation des Propagators liefert die Green - Funktion Kausalität Stationäre-Phasen-Näherung #2

33 Zusammenhang zwischen Phase und Wirkung 33

34 34 Berechnung der Phasenverschiebung in der Exponentialfunktion Voraussetzung für stationäre Phase: im Exponentialfaktor

35 35 Betrachtung des Vorfaktors (1/2) Differenziere die Wirkung nach dem Anfangsort: Differenziere das Ergebnis nach dem Endort

36 Betrachtung des Vorfaktors (2/2) 36

37 37 Semiklassische Green-Funktion Nach obigen Vereinfachungen erhält man als Semiklassische Green Funktion:

38 38 Einschub: Monodromie - Matrix (1/2) Die Monodromie Matrix liefert in linearer Näherung die Entwicklung einer infinitesimalen Variation im Phasenraum Aus der klassischen Mechanik:

39 39 Einschub: Monodromie - Matrix (2/2) Spezialfall: Insbesondere für periodische Bahnen gilt:

40 40 Spur der Green - Funktion Um zur Zustandsdichte zu gelangen, muss man noch die der Spur der Green Funktion bilden: Stationäre-Phasen-Näherung #3

41 Nur periodische Bahnen überleben die Bedingung der 3.Stationären-Phasen-Näherung 41

42 42 Ausführung des Integrals mittels senkrechter Koordinaten Definition senkrechter Koordinaten: Taylor Entwicklung der Wirkung inklusive Terme zweiter Ordnung: Der erste Summand entspricht dem klassischen Wirkungsintegral

43 43 Entwicklung des Determinanten - Vorfaktors Vereinfachung durch differenzieren der Hamilton Jacobi Gleichung: Analog:

44 Integration über senkrechte Komponenten mittels Fresnel Formel; Einbindung der Monodromie Matrix 44

45 45 Endergebnis: Gutzwiller sche Spurformel Gutzwillersche Spurformel: Näherung des quantenmechanischen Spektrums ausgedrückt Eigenschaften geschlossener Bahnen, nämlich der Stabilität, der Umlaufdauer und der Maslov - Indizes

46 46 Bemerkungen: Dargestellte Formel nur gültig für instabile Bahnen Näherung nur sinnvoll im Semiklassischen Limes, d.h. wenn die betrachteten Wirkungen sehr viel größer als h sind Für Näherung der Zustandsdichte muss Beitrag der Bahnen der Länge 0 addiert werden ( = mittlere Zustandsdichte)

47 Zusammenfassung 47

Poisson-Klammern. Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und Zeit abhängen: Def: "Poisson-Klammer von F und G":

Poisson-Klammern. Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und Zeit abhängen: Def: Poisson-Klammer von F und G: Poisson-Klammern Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und Zeit abhängen: Def: "Poisson-Klammer von F und G": Einfachste Beispiele: im Hamilton-Formalismus sind p, q,

Mehr

Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen:

Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen: Poisson-Klammern Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen: Def: "Poisson-Klammer von F und G": Einfachste Beispiele: im Hamilton-Formalismus sind p,

Mehr

Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen:

Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen: Poisson-Klammern Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen: Def: "Poisson-Klammer von F und G": Einfachste Beispiele: im Hamilton-Formalismus sind p,

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretische Physik 2 (Theoretische Mechanik Prof. Dr. Th. Feldmann 21. Januar 2014 Kurzzusammenfassung Vorlesung 23 vom 21.1.2014 Satz von Liouville Der Fluß eines Hamilton schen Systems im Phasenraum

Mehr

Klassische Mechanik. Friedhelm Kuypers. Mit 103 Beispielen und 167 Aufgaben mit Lösungen. 7., erweiterte und verbesserte Auflage WILEY- VCH

Klassische Mechanik. Friedhelm Kuypers. Mit 103 Beispielen und 167 Aufgaben mit Lösungen. 7., erweiterte und verbesserte Auflage WILEY- VCH Friedhelm Kuypers Klassische Mechanik Mit 103 Beispielen und 167 Aufgaben mit Lösungen 7., erweiterte und verbesserte Auflage WILEY- VCH WI LEY-VCH Verlag GmbH & Co. KGaA IX Inhaltsverzeichnis A Die Newtonsche

Mehr

Hamiltonsche Mechanik (Kanonische Mechanik)

Hamiltonsche Mechanik (Kanonische Mechanik) Hamiltonsche Mechanik (Kanonische Mechanik) Hamilton-Funktion und Hamiltonsche Bewegungsgleichungen Motivation: Die Hamiltonsche Formulierung der klassischen Mechanik - erweiterert Klasse der zulässigen

Mehr

Einführung in den Pfadintegralformalismus

Einführung in den Pfadintegralformalismus Seminar zur Theorie der Teilchen und Felder Sommersemester 2010 Matthias Peter Matr. Nr. 340614 Einführung in den Pfadintegralformalismus Zusammenfassung zum Seminarvortrag vom 21.04.2010 1) Pfade in der

Mehr

Friedhelm Kuypers. Klassische Mechanik. Mit 99 Beispielen und 172 Aufgaben. mit Lösungen. 5., überarbeitete Auflage WILEY-VCH

Friedhelm Kuypers. Klassische Mechanik. Mit 99 Beispielen und 172 Aufgaben. mit Lösungen. 5., überarbeitete Auflage WILEY-VCH Friedhelm Kuypers Klassische Mechanik Mit 99 Beispielen und 172 Aufgaben mit Lösungen 5., überarbeitete Auflage WILEY-VCH IX In hal tsverzei c h n is A Die Lagrangesche Mechanik 1 Zwangsbedingungen...

Mehr

Quasi-exakt lösbare quantenmechanische Potentiale

Quasi-exakt lösbare quantenmechanische Potentiale Quasi-exakt lösbare quantenmechanische Potentiale Ausarbeitung zum Seminar zur Theorie der Atome, Kerne und kondensierten Materie vom.10.014 Philipp Marauhn p_mara01@uni-muenster.de Inhaltsverzeichnis

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretische Physik 2 (Theoretische Mechanik) Prof. Dr. Th. Feldmann 15. Januar 2014 Kurzzusammenfassung Vorlesung 21 vom 14.1.2014 6. Hamilton-Mechanik Zusammenfassung Lagrange-Formalismus: (generalisierte)

Mehr

Hamilton-Jacobi-Theorie

Hamilton-Jacobi-Theorie Hamilton-Jacobi-Theorie Bewegungsgleichungen werden einfacher, wenn alle (!) neuen Koordinaten zyklisch sind. Dies ist insbesondere dann der Fall, wenn eine zeitabhängige kanonische Transformation existiert,

Mehr

Das Pfadintegral in der Quantenmechanik

Das Pfadintegral in der Quantenmechanik Das Pfadintegral in der Quantenmechanik Ausarbeitung des Vortrags vom 25.04.2012 im Seminar zur Theorie der Teilchen und Felder von Christoph Schöler Inhalt 1. Einleitung...1 2. Grundgedanke...2 3. Herleitung...3

Mehr

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Sebastian Wild Freitag, 6.. Inhaltsverzeichnis Die WKB-Näherung. Grundlegendes............................. Tunnelwahrscheinlichkeit.......................

Mehr

(also ) Oft wird Zusammenhang zwischen und mit einem Index angedeutet, z.b. wird der Eigenvektor v. durch gekennzeichnet.

(also ) Oft wird Zusammenhang zwischen und mit einem Index angedeutet, z.b. wird der Eigenvektor v. durch gekennzeichnet. L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren Viele Anwendungen in der Physik: z.b. Bestimmung der - Haupträgheitsmomente eines starren Körpers durch Diagonalisierung des Trägheitstensors

Mehr

Klassische Mechanik. Friedhelm Kuypers. Mit über 300 Beispielen und Aufgaben mit Lösungen sowie DVD und Software Mechanicus" 9., erweiterte Auflage

Klassische Mechanik. Friedhelm Kuypers. Mit über 300 Beispielen und Aufgaben mit Lösungen sowie DVD und Software Mechanicus 9., erweiterte Auflage Friedhelm Kuypers Klassische Mechanik Mit über 300 Beispielen und Aufgaben mit Lösungen sowie DVD und Software Mechanicus" 9., erweiterte Auflage WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA XVII sverzeichnis

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

Nichtlinearität in der klassischen Physik

Nichtlinearität in der klassischen Physik Nichtlinearität in der klassischen Physik Dr. Peter Schlagheck Vorlesung an der Uni Regensburg im Wintersemester 25/26 Inhaltsverzeichnis Klassische Mechanik 2. Lagrange-Formalismus........................................

Mehr

Näherungsmethoden in der Quantenmechanik

Näherungsmethoden in der Quantenmechanik KAPITEL VIII Näherungsmethoden in der Quantenmechanik In diesem Kapitel werden verschiedene Verfahren eingeführt, die Näherungslösungen von quantenmechanischen Problemen liefern. In der Quantenmechanik

Mehr

Zusammenfassung: Hamilton-Jacobi-Theorie

Zusammenfassung: Hamilton-Jacobi-Theorie Zusammenfassung: Hamilton-Jacobi-Theorie Anwendbar für: Ziel: finde kanonische Transformation, so dass folgende Größen automatisch erhalten sind: Formale Forderung: Bewegungsgleichungen für neue Variablen:

Mehr

Lagrange-Formalismus

Lagrange-Formalismus KAPITEL II Lagrange-Formalismus Die im letzten Kapitel dargelegte Formulierung der Mechanik nach Newton ist zwar sehr intuitiv: man zählt alle auf das zu studierende System wirkenden Kräfte auf, schreibt

Mehr

Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h.

Definition: Variablentransformation d. Form (2) heisst kanonisch, wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h. Zusammenfassung: kanonische Transformationen Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h., wenn ein existiert,

Mehr

Hamiltonsche Mechanik (Kanonische Mechanik)

Hamiltonsche Mechanik (Kanonische Mechanik) Hamiltonsche Mechanik (Kanonische Mechanik) Hamilton-Funktion und Hamiltonsche Bewegungsgleichungen Motivation: Die Hamiltonsche Formulierung der klassischen Mechanik - erweiterert Klasse der zulässigen

Mehr

7.3 Der quantenmechanische Formalismus

7.3 Der quantenmechanische Formalismus Dieter Suter - 389 - Physik B3 7.3 Der quantenmechanische Formalismus 7.3.1 Historische Vorbemerkungen Die oben dargestellten experimentellen Hinweise wurden im Laufe der ersten Jahrzehnte des 20. Jahrhunderts

Mehr

Landau-Theorie. Seminar zur Theorie der Teilchen und Felder. Daniel Schröer

Landau-Theorie. Seminar zur Theorie der Teilchen und Felder. Daniel Schröer Landau-Theorie Seminar zur Theorie der Teilchen und Felder Daniel Schröer 1.Einleitung Um ein Problem der Statistischen Physik zu lösen, wird ein relevantes thermodynamisches Potential, wie beispielsweise

Mehr

Kanonische Transformationen

Kanonische Transformationen Kanonische Transformationen Erinnerung: Hamiltonsches Extremalprinzip: Die Wirkung ist bei vorgegebenen Randbedingungen stationär für die physikalischen Trajektorien: für Dieses Extremalprinzip gilt auch

Mehr

a) In der Regel wird ein Gebiet im Phasenraum im Laufe der Zeit stark deformiert.

a) In der Regel wird ein Gebiet im Phasenraum im Laufe der Zeit stark deformiert. Ergänzende Bemerkungen zum Liouville-Theorem: a) In der Regel wird ein Gebiet im Phasenraum im Laufe der Zeit stark deformiert. Beispiel: Ebenes mathematisches Pendel b) Geladenes Teilchen in äußerem Magnetfeld

Mehr

Kleine Schwingungen vieler Freiheitsgrade

Kleine Schwingungen vieler Freiheitsgrade Kleine Schwingungen vieler Freiheitsgrade Betrachte System mit f Freiheitsgraden: (z.b. N Teilchen in 3 Dim.: ) Koordinaten: Geschwindigkeiten: Kinetische Energie: "Massenmatrix" Nebenbemerkung: Bei fortgeschrittenen

Mehr

Vorlesung 21. Identische Teilchen und das Pauli-Prinzip

Vorlesung 21. Identische Teilchen und das Pauli-Prinzip Vorlesung 1 Identische Teilchen und das Pauli-Prinzip Identische Teilchen: Jede Art von Teilchen in der Natur definieren wir durch ihre Eigenschaften, z.b. Massen, Spins, Ladungen usw. Das bedeutet, dass

Mehr

Es kann günstig sein, Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a

Es kann günstig sein, Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a V.3.4 Kanonische Transformationen Es kann günstig sein Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a Koordinatentransformation im Phasenraum Wir betrachten eine allgemeine Koordinatentransformation

Mehr

Ferienkurs Quantenmechanik 2009

Ferienkurs Quantenmechanik 2009 Ferienkurs Quantenmechanik 2009 Grundlagen der Quantenmechanik Vorlesungsskript für den 3. August 2009 Christoph Schnarr Inhaltsverzeichnis 1 Axiome der Quantenmechanik 2 2 Mathematische Struktur 2 2.1

Mehr

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06 Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06 Dörte Hansen Seminar 11 1 Hamiltonsche Mechanik, kanonische Transformationen und Hamilton-Jacobi-Theorie Wie die Lagrangesche Mechanik

Mehr

r r : Abstand der Kerne

r r : Abstand der Kerne Skript zur 10. Vorlesung Quantenmechanik, Freitag den 0. Mai, 011. 7.6 Anwendung Kernschwingungen in einem zweiatomigen Molekül. V ( r ) r 0 V 0 h ω 1 h ω r r : Abstand der Kerne Für Schwingungen kleiner

Mehr

IV.2 Kanonische Transformationen

IV.2 Kanonische Transformationen IV.2 Kanonische Transformationen 79 IV.2 Kanonische Transformationen IV.2.1 Phasenraum-Funktionen Die verallgemeinerten Koordinaten q a t) und die dazu konjugierten Impulse p a t) bestimmen den Bewegungszustand

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

Diracs kanonische Quantisierung von Systemen mit Nebenbedingungen

Diracs kanonische Quantisierung von Systemen mit Nebenbedingungen Diracs kanonische von Systemen mit Nebenbedingungen Christof Witte HU Berlin Seminar zur theoretischen Physik WS 08/09 Christof Witte kanonische 1 / 46 Motivation bewährt: Übergang von klassischer zu quantenmechanischer

Mehr

Pfadintegrale in der Quantenmechanik

Pfadintegrale in der Quantenmechanik Westfälische-Wilhelms-Universität Münster Fachbereich Physik Pfadintegrale in der Quantenmechanik Schriftliche Ausarbeitung des Vortrags im Seminar der Teilchen und Felder WS 2015/16 Nicolai Krybus 11.11.2015

Mehr

III.3 Freie Schrödinger-Gleichung

III.3 Freie Schrödinger-Gleichung III.3 Freie Schrödinger-Gleichung 43 III.3 Freie Schrödinger-Gleichung In Abwesenheit von Potential V (x), d.h. für ein freies Teilchen mit Masse m, wird die zeitabhängige Schrödinger-Gleichung (III.b)

Mehr

Kleine Schwingungen vieler Freiheitsgrade

Kleine Schwingungen vieler Freiheitsgrade Kleine Schwingungen vieler Freiheitsgrade Betrachte System mit f Freiheitsgraden: (z.b. N Teilchen in 3 Dim.: f = 3N) Koordinaten: Geschwindigkeiten: Kinetische Energie: "Massenmatrix" Nebenbemerkung:

Mehr

Markus Vogt (Autor) Neue Wege in der Schulphysik? Ein Beitrag zur Kritik aktueller Entwicklungen in der Physikdidaktik

Markus Vogt (Autor) Neue Wege in der Schulphysik? Ein Beitrag zur Kritik aktueller Entwicklungen in der Physikdidaktik Markus Vogt (Autor) Neue Wege in der Schulphysik? Ein Beitrag zur Kritik aktueller Entwicklungen in der Physikdidaktik https://cuvillier.de/de/shop/publications/860 Copyright: Cuvillier Verlag, Inhaberin

Mehr

L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren. Gegeben. Gesucht: Diagonalform: Finde und! Definition: Eigenvektor, Eigenwert

L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren. Gegeben. Gesucht: Diagonalform: Finde und! Definition: Eigenvektor, Eigenwert L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren Viele Anwendungen in der Physik: z.b. Bestimmung der - Haupträgheitsmomente eines starren Körpers durch Diagonalisierung des Trägheitstensors

Mehr

4. Hamiltonformalismus

4. Hamiltonformalismus 4. Hamiltonormalismus Für die praktische Lösung von Problemen bietet der Hamiltonormalismus meist keinen Vorteil gegenüber dem Lagrangeormalismus. Allerdings bietet der Hamiltonormalismus einen direkten

Mehr

Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h.

Definition: Variablentransformation d. Form (2) heisst kanonisch, wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h. Zusammenfassung: kanonische Transformationen Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h., wenn ein existiert,

Mehr

Resultate der Quantisierung der Schrödingergleichung in zwei Dimensionen.

Resultate der Quantisierung der Schrödingergleichung in zwei Dimensionen. Resultate der Quantisierung der Schrödingergleichung in zwei Dimensionen. 22. April 2010 In diesem Text werden die in der Tabelle properties of free fermions angeführten Ergebnisse erklärt und einige Zwischenschritte

Mehr

2. Quadratische Lagrangefunktionen und Fourierreihe.

2. Quadratische Lagrangefunktionen und Fourierreihe. 0. Einführung Wir haben gerade das klassische Wirkungsprinzip betrachtet, nachdem wir wissen, dass der dynamische Verlauf eines Teilchens in dem Diagramm die Kurve darstellen soll, die die minimale Wirkung

Mehr

Zusammenfassung: Goldene Regel (v24) Def.vom Zeitentwicklungsop.

Zusammenfassung: Goldene Regel (v24) Def.vom Zeitentwicklungsop. Zusammenfassung: Goldene Regel (v24) 31.01.2005 Def.vom Zeitentwicklungsop. im WWB : "Dyson-Reihe": Stöhrungsentwicklung der Koeffizienten: Gesamtübergangswahrscheinlichkeit: "Übergangsrate": Fermi's "Goldene

Mehr

11.2 Störungstheorie für einen entarteten Energie-Eigenwert E (0)

11.2 Störungstheorie für einen entarteten Energie-Eigenwert E (0) Skript zur 6. Vorlesung Quantenmechanik, Freitag den. Juni,.. Störungstheorie für einen entarteten Energie-Eigenwert E () n Sei E n () eing-fachentartetet Eigenwert desoperatorsĥ undsei ψ nα, () α =,...,g

Mehr

L5 Matrizen I. Matrix: (Plural: Matrizen)

L5 Matrizen I. Matrix: (Plural: Matrizen) L5 Matrizen I Matrix: (Plural: Matrizen) Vielfältige Anwendungen in der Physik: - Lösung von linearen Gleichungsystemen - Beschreibung von Drehungen - Beschreibung von Lorenz-Transformationen (spezielle

Mehr

5.4 Hamilton-Mechanik

5.4 Hamilton-Mechanik 5.4 Hamilton-Mechanik 157 5.4 Hamilton-Mechanik Die Lagrangegleichung ist das Mittel zur Wahl zum Lösen allgemeiner mechanischer Aufgaben, wobei es unerheblich ist, welches konkrete Problem und unter Benutzung

Mehr

Literatur zum Quantenchaos:

Literatur zum Quantenchaos: von Interesse für Untersuchungen zum Quantenchaos sind: Zeit Energie (Fourier-Transformation) Dynamik Eigenschaften von Energiespektren Eigenschaften der Eigenzustände gibt es chaotische Eigenfunktionen?

Mehr

Die Erwartungswerte von Operatoren sind gegeben durch. (x, t)a (x, t) =h A i

Die Erwartungswerte von Operatoren sind gegeben durch. (x, t)a (x, t) =h A i Die Wahrscheinlichkeit, das System zu einem bestimmten Zeitpunkt in einem bestimmten Zustand anzutreffen, ist durch das Betragsquadrat der Wellenfunktion (x, t) 2 gegeben Die Erwartungswerte von Operatoren

Mehr

j 1,m 1 ;j 2,m 2 J 2 1,2 j 1, m 1 ; j 2, m 2 = j 1,2 (j 1,2 + 1) j 1, m 1 ; j 2, m 2, (3)

j 1,m 1 ;j 2,m 2 J 2 1,2 j 1, m 1 ; j 2, m 2 = j 1,2 (j 1,2 + 1) j 1, m 1 ; j 2, m 2, (3) Vorlesung Drehimpulsaddition Wir betrachten ein mechanisches System, das aus zwei unabhängigen Systemen besteht. Jedes der zwei Subsysteme besitzt einen Drehimpuls. Der Drehimpuls des ganzen Systems ist

Mehr

L5.6 Symmetrische, hermitesche, orthogonale und unitäre Matrizen (Abbildungen, die reelles bzw. komplexes Skalarprodukt invariant lassen)

L5.6 Symmetrische, hermitesche, orthogonale und unitäre Matrizen (Abbildungen, die reelles bzw. komplexes Skalarprodukt invariant lassen) L5.6 Symmetrische, heresche, orthogonale und unitäre Matrizen (Abbildungen, die reelles bzw. komplexes Skalarprodukt invariant lassen) In diesem Kapitel kommen Matrizen in Zusammenhang Skalarprodukt vor.

Mehr

X. Quantisierung des elektromagnetischen Feldes

X. Quantisierung des elektromagnetischen Feldes Hamiltonian des freien em. Feldes 1 X. Quantisierung des elektromagnetischen Feldes 1. Hamiltonian des freien elektromagnetischen Feldes Elektromagnetische Feldenergie (klassisch): Modenentwicklung (Moden

Mehr

falls falls Tiefpassfilter lässt tiefe Frequenzen durch und dämpft hohe Frequenzen.

falls falls Tiefpassfilter lässt tiefe Frequenzen durch und dämpft hohe Frequenzen. Anwendung v. Faltungstheorem: Tiefpassfilter Wähle so, dass Dann: Somit: Tiefpassfilter lässt tiefe Frequenzen durch und dämpft hohe Frequenzen. Zusammenfassung habe Periode, mit stückweise stetig und

Mehr

Hamilton-Systeme. J. Struckmeier

Hamilton-Systeme. J. Struckmeier Invarianten für zeitabhängige Hamilton-Systeme J. Struckmeier Vortrag im Rahmen des Winterseminars des Instituts für Angewandte Physik der Johann-Wolfgang-Goethe-Universität Frankfurt a.m. Hirschegg, 04.

Mehr

11. Quantenchemische Methoden

11. Quantenchemische Methoden Computeranwendung in der Chemie Informatik für Chemiker(innen) 11. Quantenchemische Methoden Jens Döbler 2004 "Computer in der Chemie", WS 2003-04, Humboldt-Universität VL11 Folie 1 Grundlagen Moleküle

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

5 Der quantenmechanische Hilbertraum

5 Der quantenmechanische Hilbertraum 5 Der quantenmechanische Hilbertraum 5.1 Die Wellenfunktion eines Teilchens Der Bewegungs- Zustand eines Teilchens Elektrons zu einem Zeitpunkt t, in der klassischen Mechanik das Wertepaar r,p von Ort

Mehr

T2 Quantenmechanik Lösungen 4

T2 Quantenmechanik Lösungen 4 T2 Quantenmechanik Lösungen 4 LMU München, WS 17/18 4.1. Lösungen der Schrödinger-Gleichung Beweisen Sie die folgenden Aussagen. Prof. D. Lüst / Dr. A. Schmi-May version: 06. 11. a) Die Separationskonstante

Mehr

und Unterdeterminante

und Unterdeterminante Zusammenfassung: Determinanten Definition: Entwicklungssätze: mit und Unterdeterminante (streiche Zeile i & Spalte j v. A, bilde dann die Determinante) Eigenschaften v. Determinanten: Multilinearität,

Mehr

und Unterdeterminante

und Unterdeterminante Zusammenfassung: Determinanten Definition: Entwicklungssätze: mit und Unterdeterminante (streiche Zeile i & Spalte j v. A, bilde dann die Determinante) Eigenschaften v. Determinanten: Multilinearität,

Mehr

Zusammenfassung. dp i

Zusammenfassung. dp i Zusammenfassung 1. Hamiltonsche Mechanik und die hamiltonschen Gleichungen d i dt = @H i, dq i dt = @H i, @H @t = @L @t.. Poisson-Klammern. Eigenschaften: NX ale @F @G @F @G {F, G} = i i i i i=1 {F 1,F

Mehr

Das Stern-Gerlach Experiment Basisvektoren für Spin- 1 2Teilchen Spin 1 2. Operatoren... 47

Das Stern-Gerlach Experiment Basisvektoren für Spin- 1 2Teilchen Spin 1 2. Operatoren... 47 Inhaltsverzeichnis Einleitung 1 Literatur 3 1 Wellen und Teilchen 7 1.1 Das Doppelspaltexperiment mit klassischen Teilchen........ 8 1.1.1 Kugeln............................... 8 1.1.2 Wasserwellen...........................

Mehr

1.4. Die Wahrscheinlichkeitsinterpretation

1.4. Die Wahrscheinlichkeitsinterpretation 1.4. Die Wahrscheinlichkeitsinterpretation 1.4.1. Die Heisenbergsche Unschärferelation Wie kann der Welle-Teilchen-Dualismus in der Quantenmechanik interpretiert werden? gibt die Wahrscheinlichkeit an,

Mehr

Methoden der Quantenmechanik mit Mathematica

Methoden der Quantenmechanik mit Mathematica James M. Feagin Methoden der Quantenmechanik mit Mathematica Übersetzt von Felix Pahl Mit einem Geleitwort von S. Brandt und H.D. Dahmen Mit 80 Abbildungen, zahlreichen Übungen und einer 3V 2 "-Diskette

Mehr

Floquet-Theorie Differentialgleichungen mit periodischen Koeffizienten

Floquet-Theorie Differentialgleichungen mit periodischen Koeffizienten Floquet-Theorie Differentialgleichungen mit periodischen Koeffizienten [1] Januar 2011 Institut für Angewandte Physik Nichtlineare Optik/Quantenoptik Friederike Fassnacht 1 Motivation Grundgleichung der

Mehr

Theoretische Physik 5: Quantenmechanik II

Theoretische Physik 5: Quantenmechanik II Rainer J. Jelitto Theoretische Physik 5: Quantenmechanik II Eine Einführung in die mathematische Naturbeschreibung 2., korrigierte Auflage Mit 52 Abbildungen, Aufgaben und Lösungen dulh AULA-Verlag Wiesbaden

Mehr

PC2: Spektroskopie Störungsrechnung

PC2: Spektroskopie Störungsrechnung PC: Spektroskopie Störungsrechnung (neu überarbeitet im SS 014, nach: Wedler-Freund, Physikalische Chemie) Wir betrachten ein System aus quantenchemischen Zuständen m, n, zwischen denen durch die Absorption

Mehr

Die Schrödingergleichung

Die Schrödingergleichung Vortrag im Rahmen der Vorlesung zu Spektralmethoden Magdalena Sigg Wanja Chresta 20. Mai 2008 Zusammenfassung ist die zentrale Gleichung der Quantenmechanik. Mit ihrer Hilfe werden Teilchen in gegebenen

Mehr

Interpretation: f(x) wird zerlegt als Summe von unendlich vielen Funktionen

Interpretation: f(x) wird zerlegt als Summe von unendlich vielen Funktionen C6.3 Fourier-Transformation Entspricht Fourier-Reihe für 'Fourier-Integral' Für endliches L: (C6.1b.3) Für stellt eine kontinuierliche Funktion dar: und Fourier-Summe wird ein Integral: 'Fourier-Transformation'

Mehr

1 Lagrange-Formalismus

1 Lagrange-Formalismus Lagrange-Formalismus SS 4 In der gestrigen Vorlesung haben wir die Beschreibung eines physikalischen Systems mit Hilfe der Newton schen Axiome kennen gelernt. Oft ist es aber nicht so einfach die Kraftbilanz

Mehr

Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Kohärente Zustände des harmonischen Oszillators. Thomas Biekötter

Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Kohärente Zustände des harmonischen Oszillators. Thomas Biekötter Seminar zur Theorie der Atome, Kerne und kondensierten Materie Kohärente Zustände des harmonischen Oszillators Thomas Biekötter 16.11.011 QUANTENMECHANISCHER HARMONISCHER OSZILLATOR 1 Klassischer harmonischer

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu Klassische Elektrodynamik 1 Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astrono mie Auf de m Hügel 71 kbasu@astro.uni-bonn.de

Mehr

Beispiel: Rollender Reifen mit

Beispiel: Rollender Reifen mit Beispiel: Rollender Reifen mit Kinetische Energie: Trägheitsmoment Potenzielle Energie: Zwangsbedingung: konstant nicht-gleitendes Rollen, holonome ZB Erweiterte Lagrange-Fkt.: t-abhängig: Interpretation:

Mehr

Bloch Oszillationen. Klassisch chaotische Streuung. Klassisch chaotische Streuung

Bloch Oszillationen. Klassisch chaotische Streuung. Klassisch chaotische Streuung Bloch Oszillationen periodische Oszillation keine systematische Dispersion Modell der gekippten Bänder: Zwei Zeitskalen: Bloch-Zeit Antriebsperiode Annahme: mit teilerfremden ganzen Zahlen Hamilton-Operator

Mehr

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1) 34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)

Mehr

4. 3 Quantenmechanik & Phasenraum

4. 3 Quantenmechanik & Phasenraum 4.2.7 Superposition unabhängiger Spektren Wichtig ist hier die Gap-Verteilung Z(S), ein Maß für die Wahrscheinlichkeit, ein Intervall der Länge S leer zu finden. Es gilt: für P(S) Poisson ist die komplementäre

Mehr

Bsp2: (einfach) (einfach) Lösung: 1) Nullstellen des Nenners und LFZ des Nenners. Vl (doppelt) Vl. Mathematik 3 MST.

Bsp2: (einfach) (einfach) Lösung: 1) Nullstellen des Nenners und LFZ des Nenners. Vl (doppelt) Vl. Mathematik 3 MST. Vl. 29.1.14 Bsp2: Lösung: 1) Nullstellen des Nenners und LFZ des Nenners (doppelt) (einfach) (einfach) Prof. Dr. B. Grabowski 1 2) Ansatz für die Partialbrüche (doppelt) Konstante Konstante 3) Konstanten

Mehr

Partialbruchzerlegung

Partialbruchzerlegung Partialbruchzerlegung Lucas Kunz 27. Januar 207 Inhaltsverzeichnis Theorie 2. Definition.................................... 2.2 Nullstellen höheren Grades........................... 2.3 Residuen-Formel................................

Mehr

Quantenmechanik - Übungen 5 SS 2018

Quantenmechanik - Übungen 5 SS 2018 Prof Dr A Maas Institut für Physik N A W I G R A Z Quantenmechanik - Übungen 5 SS 08 Präsenzaufgaben 7 April 08 Eine der interessantesten Beobachtungen in der Teilchenphysik der letzten drei Jahrzehnte

Mehr

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

Statistischer Operator

Statistischer Operator KAPITEL I Statistischer Operator In Übereinstimmung mit dem Postulat (II.5) wurde in den bisherigen Kapiteln dieses Skripts der Zustand eines gegebenen quantenmechanischen Systems zur Zeit t anhand eines

Mehr

Crash-Kurs Komplexe Zahlen

Crash-Kurs Komplexe Zahlen 1 Definitionen: j, C, z Im Körper R der reellen Zahlen besitzt die lineare Gleichung ax + b = 0 (a, bεr; a 0) stets eine Lösung. Die quadratische Gleichung ax 2 + bx + c = 0 führt zu der Lösungsformel

Mehr

T2 Quantenmechanik Lösungen 3

T2 Quantenmechanik Lösungen 3 T2 Quantenmechanik Lösungen LMU München, WS 1/18.1. Wellenfunktion und Wahrscheinlichkeit Prof. D. Lüst / Dr. A. Schmidt-May version: 2. 11. Es seien x 1, x 2, N drei reelle Konstanten und x 2 > x 1 >.

Mehr

(also ) Oft wird Zusammenhang zwischen und mit einem Index angedeutet, z.b. wird der Eigenvektor v. durch gekennzeichnet.

(also ) Oft wird Zusammenhang zwischen und mit einem Index angedeutet, z.b. wird der Eigenvektor v. durch gekennzeichnet. L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren Anwendungen in der Physik: Bestimmung der - Haupträgheitsmomente eines starren Körpers durch Diagonalisierung des Trägheitstensors - Normalmoden

Mehr

Ferienkurs Quantenmechanik - Probeklausur

Ferienkurs Quantenmechanik - Probeklausur Seite Ferienkurs Quantenmechanik - Sommersemester 5 Fabian Jerzembeck und Sebastian Steinbeiÿer Fakultät für Physik Technische Universität München Aufgabe FRAGEN ( BE): a) Wie lautet die zeitabhängige

Mehr

KAPITEL VIII. Elektrostatik. VIII.1 Elektrisches Potential. VIII.1.1 Skalarpotential. VIII.1.2 Poisson-Gleichung

KAPITEL VIII. Elektrostatik. VIII.1 Elektrisches Potential. VIII.1.1 Skalarpotential. VIII.1.2 Poisson-Gleichung KAPITEL III Elektrostatik Hier fehlt die obligatorische Einleitung... Im stationären Fall vereinfachen sich die Maxwell Gauß und die Maxwell Faraday-Gleichungen für die elektrische Feldstärke E( r) die

Mehr

Ableitungen von skalaren Feldern Der Gradient

Ableitungen von skalaren Feldern Der Gradient Ableitungen von skalaren Feldern Der Gradient In der letzten Vorlesung haben wir das zu einem konservativen Kraftfeld zugehörige Potential V ( r) = F ( s) d s + V ( r0 ) kennengelernt und als potentielle

Mehr