Die Noether Theoreme

Größe: px
Ab Seite anzeigen:

Download "Die Noether Theoreme"

Transkript

1 Die Noether Theoreme Friedemann Brandt Antrittsvorlesung, 12. April 2000 Zur Wahl des Themas Kurzbiographie Noether Allgemeine Form der Theoreme Noethers Originalarbeit Eigene Arbeiten

2 Zur Wahl des Themas Relevanz von Symmetrien u. Erhaltungsgesetzen Ein alter Hut!? Noethers Arbeit ist von 1918; Noethers Theorem ist Standardstoff von Lehrbüchern und Vorlesungen Dennoch: Darstellung meist unvollständig (bisweilen haarsträubend) Ausnahme: Peter J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag 1986 Zusammenhang mit eigenen Arbeiten

3 Emmy (Amalie) Noether Erlangen Höhere Töchter Schule 1900 Staatsexamen Lehramt (Engl., Franz.) Gasthörerin in Math. Unis Erlangen u. Göttingen (u.a. bei Hilbert, Klein, Minkowski, Schwarzschild) Doktorarbeit in Erlangen erste Veröffentlichungen Uni Erlangen, Forschung u. Lehre (ohne Stelle oder Gehalt) Uni Göttingen (auf Einladung Hilberts) Forschung u. Lehre 1919 Habilitation; Habilschrift enthält Invariante Variationsprobleme (Arbeit mit den Noether Theoremen ) Nicht-beamtete ausserord. Prof. geringes Stipendium für Lehrauftrag 1933 Amstenthebung durch Nazis Visiting Prof. in Bryn Mawr, USA Vorlesungen am IAS, Princeton Embolie nach Tumoroperation

4 Allgem. (u. moderne) Form der Theoreme Voraussetzung: Bewegungsgleichungen folgen mittels Variationsprinzip aus einer Wirkung (bzw. Lagrangefunktion) Theorem 1 (einfache Version) Zu jeder kontinuierlichen globalen Symmetrie der Wirkung korrespondiert ein erhaltener Strom (= eine Kontinuitätsgleichung) und umgekehrt. Theorem 2 (einfache Version) Zu jeder lokalen Symmetrie (= Eichsymmetrie) der Wirkung korrespondiert eine (Noether-) Identität zwischen den Bewegungsgleichungen und umgekehrt. Erweiterte Versionen: Theorem 1 gilt analog für Äquivalenzklassen globaler Symmetrien und erhaltener Ströme, Theorem 2 für Äquivalenzklassen lokaler Symmetrien und Noether- Identitäten.

5 Symmetrien und erhaltene Ströme Wirkung: I = d n x L(x, U) L(x, U) L(x µ, U a, µ U a, µ ν U a,...) U a = U a (x) 1. (Kontinuierliche) Globale Symmetrien Infinitesimale Transformationen: δ ɛ x µ = 0, δ ɛ U a = ɛ G a (x, U), ɛ = konstant Invarianzbedingung (Definition!) : δ ɛ L = ɛ µ K µ (x, U) Beispiel (n = 1, {x µ } = {t}, {U a } = {U}): I = dt L(U), L(U) = 1 2 U U V (U) δ ɛ U = ɛ U δ ɛ L = ɛ t L δ ɛ L = L(x, U + δ ɛ U) L(x, U) + O(ɛ 2 )

6 2. Lokale Symmetrien = Eichsymmetrien Infinitesimale Transformationen: δ λ x µ = 0 δ λ U a = R a (x, U, λ) = r a (x, U)λ + r aµ (x, U) µ λ +... λ = beliebige Funktion der x µ Invarianzbedingung: δ λ L = µ K µ (x, U, λ) Beispiel (n = 1, {x µ } = {t}, a = ): I = dt L(U) L(U) = = g ab U a U b U 1 U 1 U 2 U 2 U 3 U 3 U 4 U 4 δ λ U a = λ U a δ λ L = t (λl)

7 3. Erhaltene Ströme Erhaltene Ströme j µ (x, U) sind für jede Lösung der Bewegungsgleichungen divergenzfrei. Was bedeutet das konkret? Bewegungsgleichungen: δl δu a = 0, δl δu a = L U a µ L ( µ U a ) +... Stromerhaltung (= Kontinuitätsgl.): µ j µ (x, U) = G a (x, U) δl δu a Anmerkung: OBdA sind alle G a (x, U) Funktionen (statt Operatoren), denn µ j µ (x, U) = [ g a (x, U) + g aµ (x, U) µ +...] δl δu a führt auf dieselbe Bedingung für äquiv. Strom: µ [ j µ g aµ δl δu a +... } {{ } j µ j µ ] a = [ g µ g aµ +...] }{{} G a δl δu a

8 Beispiele für die Theoreme Beispiel für Theorem 1 L = 1 2 U U V (U), δ ɛ U = ɛ U Die Stromerhaltungsgleichung G a (x, U) δl δu a = µ j µ (x, U) liefert in diesem Fall die Energieerhaltung: U δl δu = U[Ü + V (U)] = t [ 1 2 U U + V (U)] }{{} Energie Beispiel für Theorem 2 L(U) = δ λ U a = λ U a U 1 U 1 U 2 U 2 U 3 U 3 U 4 U 4 Noether-Identität: U a δl δu a = 0

9 Beweis von Theorem 1 (einfache Version) : Sei δ ɛ L = ɛ µ K µ mit δ ɛ U a = ɛ G a (x, U), δ ɛ x µ = 0. Explizit: δ ɛ L = ɛ G a L U a + ɛ ( µg a ) G a δl δu a = µ = ɛ G a δl δu a + ɛ µ = ɛ µ K µ [ K µ G a [ G a L ( µ U a ) +... L ( µ U a ) +... L ( µ U a ) +... } {{ } j µ ] ] : Sei µ j µ = G a δl/δu a. Definiere δ ɛ U a = ɛ G a, δ ɛ x µ = 0. Damit: δ ɛ L = ɛ G a δl }{{ δu a +ɛ µ G a } µ j [ µ = ɛ µ j µ + G a L ( µ U a ) +... [ L ( µ U a ) +... } {{ } K µ ] ] qed

10 Beweis von Theorem 2 (einfache Version) : Sei mit δ λ L = µ K µ (x, U, λ) (1) δ λ x µ = 0 δ λ U a = R a (x, U, λ) = r a (x, U)λ + r aµ (x, U) µ λ [Der Einfachheit halber angenommen, dass R a keine 2. Ableitung von λ enthält.] Euler-Lagrange Ableitung von (1) nach λ liefert eine (Noether-) Identität: r a (x, U) δl [ δu a µ r aµ (x, U) δl ] δu a = 0 (2) : Sei (2) gegeben. Multipliziere (2) mit λ. Das Ergebnis läßt sich in die Form δ λ L = µ K µ (x, U, λ) bringen mit δ λ wie oben.

11 Anmerkung δx µ = 0 ist keine Beschränkung der Allgemeinheit. Sei nämlich δi = d n x µ K µ (3) (mit gleichen Integrationsgebieten rechts und links), wobei x µ = x µ ξ µ (x, U), Ũ a ( x) = (U a + δu a )(x) (3) ist equivalent zu wobei δl = µ K µ δx µ = 0 δu a (x) = δu a (x) + ξ µ µ U a (x) K µ = K µ + ξ µ L (Lieableitung) Insbesondere: δi = 0 δl = µ (ξ µ L)

12 Herleitung (bereits bei Noether zu finden): Betrachte {x µ } = {t}, {U a } = {U} und t = t ξ(t, U), Ũ( t) = (U + δu)(t) Ũ(t) = U(t) + δu(t) + ξ(t, U) U(t) Damit: δi = t 1 t 0 d t L( t, Ũ( t)) t1 t 0 dt L(t, U(t)) Substituiere im ersten Integral t = t + ξ δi = wobei t1 t 0 dt t [ξ(t, U(t))L(t, U(t))] + δi δt = 0, δu(t) = δu(t) + ξ(t, U) U(t) Dies liefert, wie behauptet, δi = t1 t 0 dt t K t 0, t 1 δl = t ( K + ξl).

13 Erweiterte Versionen der Theoreme 1. Triviale Eichsymmetrien Jede Wirkung hat unendlich viele triviale Eichsymmetrien! Diese verschwinden on-shell, δ λ U a 0 δ λ U a = N a (x, U, λ, ) δl δu a und sind von der Form δ λ U a = ( ) m µ1... µm (λ aµ 1...µ m bν 1...ν n ν1... νn mit λ aµ 1...µ m bν 1...ν n = λ bν 1...ν n aµ 1...µ m δl δu b) Triviale Noether-Identitäten: R a (x, U, ) δl δu a = 0, R a (x, U, ) 0 Beispiel: L = 1 2 U U, δ λ U = 2λ... U + λü δ λ L = t ( λ UÜ + 2λ U... U λüü) R(U) =... U Ü t

14 2. Triviale globale Symmetrien und Ströme Jede Wirkung hat unendlich viele triviale globale Symmetrien! Diese sind Eichtransformationen (triviale oder nichttriviale!) mit λ = λ(x, U), δ ɛ U a = δ λ(x,u) U a Triviale erhaltene Ströme: j µ ν K νµ, K νµ = K µν Beispiel: L(U) = U 1 U 1 U 2 U 2 U 3 U 3 U 4 U 4 δ λ U a = λ U a δ λ=ɛ U a = ɛ U a j = L U a L U a = 0

15 3. Erweiterte Version der Noether-Theoreme Zu jeder nicht-trivialen globalen Symmetrie korrespondiert ein nicht-trivialer erhaltener Strom und umgekehrt. Zu jeder nicht-trivialen Eichsymmetrie korrespondiert eine nicht-triviale Noether-Identität und umgekehrt. Noch präziser: Definiere Äquivalenzklassen globaler und lokaler Symmetrien, erhaltener Ströme und Noether- Identitäten durch Gleichheit modulo jeweils trivialer Symmetrien, Ströme, Noether-Identitäten. Die Äquivalenzklassen der globalen Symmetrien und erhaltenen Ströme korrespondieren Eins-zu-Eins. Die Äquivalenzklassen der Eichsymmetrien und Noether-Identitäten korrespondieren Eins-zu-Eins. Noether-Ströme von Eichsymmetrien sind trivial!

Kapitel 6. Der Lagrange-Formalismus. 6.2 Lagrange-Funktion in der relativistischen Feldtheorie. 6.1 Euler-Lagrange-Gleichung

Kapitel 6. Der Lagrange-Formalismus. 6.2 Lagrange-Funktion in der relativistischen Feldtheorie. 6.1 Euler-Lagrange-Gleichung 92 Teilchenphysik, HS 2007-SS 2008, Prof. A. Rubbia (ETH Zurich) 6.2 Lagrange-Funktion in der relativistischen Felheorie Kapitel 6 Der Lagrange-Formalismus 6.1 Euler-Lagrange-Gleichung In der Quantenmechanik

Mehr

Das Noether-Theorem. Philipp Arras, Jakob Moritz. 18. Juli Quellen 6

Das Noether-Theorem. Philipp Arras, Jakob Moritz. 18. Juli Quellen 6 Das Noether-Theorem Philipp Arras, Jakob Moritz 18. Juli 013 Inhaltsverzeichnis 1 Herleitung des Noether-Theorems in der Feldtheorie 1 1.1 Voraussetzungen.......................................... 1 1.

Mehr

5. Raum-Zeit-Symmetrien: Erhaltungssätze

5. Raum-Zeit-Symmetrien: Erhaltungssätze 5. Raum-Zeit-Symmetrien: Erhaltungssätze Unter Symmetrie versteht man die Invarianz unter einer bestimmten Operation. Ein Objekt wird als symmetrisch bezeichnet, wenn es gegenüber Symmetrieoperationen

Mehr

Symmetrie und Erhaltungsgröße

Symmetrie und Erhaltungsgröße Symmetrie und Erhaltungsgröße Emmy Noethers Bedeutung für die Physik von T. Fließbach 1. Zur Person Emmy Noether 2. Symmetrie und Erhaltungsgröße Symmetrie Erhaltungsgröße Zusammenhang Keplerproblem 3.

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretische Physik 2 (Theoretische Mechanik Prof. Dr. Th. Feldmann 12. November 2013 Kurzzusammenfassung Vorlesung 8 vom 12.11.2013 2.4 Das Hamiltonsche Prinzip ( Prinzip der kleinsten Wirkung Wir zeigen,

Mehr

Eichtransformationen. i) Satz: HP impliziert Kovarianz der Lagrange-Gl. 2. Art unter Koord.-Transf.

Eichtransformationen. i) Satz: HP impliziert Kovarianz der Lagrange-Gl. 2. Art unter Koord.-Transf. Eichtransformationen i) Satz: HP impliziert Kovarianz der Lagrange-Gl. 2. Art unter Koord.-Transf. Beweis: Wirkung S ist unabhängig von Parametrisierung für gegebene physikalische Bahnkurve; folglich haben

Mehr

6 Spontane Symmetriebrechung

6 Spontane Symmetriebrechung 6 SPONTANE SYMMETRIEBRECHUNG 84 6 Spontane Symmetriebrechung In diesem Abschnitt behandeln wir die Theorien weitgehende auf dem klassischen Niveau. 6.1 Spontan gebrochene diskrete Symmetrie Betrachte die

Mehr

Beispiel: Rollender Reifen mit

Beispiel: Rollender Reifen mit Beispiel: Rollender Reifen mit Kinetische Energie: Trägheitsmoment Potenzielle Energie: Zwangsbedingung: konstant nicht-gleitendes Rollen, holonome ZB Erweiterte Lagrange-Fkt.: t-abhängig: Interpretation:

Mehr

8 Spontane Symmetriebrechung

8 Spontane Symmetriebrechung 8 SPONTANE SYMMETRIEBRECHUNG 111 8 Spontane Symmetriebrechung 8.1 Gebrochene diskrete Symmetrie Betrachte die φ 4 -Theorie eines reellen Skalarfeldes mit der Lagrangedichte L = 1 ( µφ)( µ φ) 1 m φ λ 4!

Mehr

Sechste Vorlesung: Gravitation II

Sechste Vorlesung: Gravitation II Sechste Vorlesung: Gravitation II 6.1 Das Einstein-Hilbert-Funktional 6.2 Relativistische Elektrodynamik 6.3 Spurfreiheit des Energie-Impuls-Tensors T αβ em * 6.1 Das Einstein-Hilbert-Funktional Wir wollen

Mehr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 28. Juli 2014, Uhr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 28. Juli 2014, Uhr KIT SS 4 Klassische Theoretische Physik II V: Prof Dr M Mühlleitner, Ü: Dr M auch Klausur Lösung 8 Juli 4, 7-9 Uhr Aufgabe : Kurzfragen (+++=8 Punkte (a Verallgemeinerte Koordinaten sind Koordinaten, die

Mehr

Abelsche Eichsymmetrie

Abelsche Eichsymmetrie Seminar zur Theorie der Teilchen und Felder Anja Teuber Münster, 11. Juni 2008 Inhaltsverzeichnis 1 Motivation 3 2 Vorbereitung 3 2.1 Eichinvarianz in der klassichen Elektrodynamik................... 3

Mehr

Theoretische Physik II: Elektrodynamik SS 96 C.C. Noack. Das Noether-Theorem. for Pedestrians

Theoretische Physik II: Elektrodynamik SS 96 C.C. Noack. Das Noether-Theorem. for Pedestrians ITP ITP ÍÒ Ú Ö ØĐ Ø Ö Ñ Ò ÁÒ Ø ØÙØ ĐÙÖ Ì ÓÖ Ø È Ý Theoretische Physik II: Elektrodynamik SS 96 C.C. Noack A Einleitung Das Noether-Theorem for Pedestrians Das Noether-Theorem [E. Noether: Nachr.Gesellsch.Wiss.

Mehr

Es kann günstig sein, Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a

Es kann günstig sein, Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a V.3.4 Kanonische Transformationen Es kann günstig sein Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a Koordinatentransformation im Phasenraum Wir betrachten eine allgemeine Koordinatentransformation

Mehr

Lösungen zu Übungsblatt 1

Lösungen zu Übungsblatt 1 Maike Tormählen Übung 1, 11.4.213 Lösungen zu Übungsblatt 1 Aufgabe 1: Large Extra Dimensions & lanck-länge Die Newtonsche Gravitation ist hinreichend, um fundamentale Größen wie die lanck- Länge in diversen

Mehr

1 Lagrange-Formalismus

1 Lagrange-Formalismus Lagrange-Formalismus SS 4 In der gestrigen Vorlesung haben wir die Beschreibung eines physikalischen Systems mit Hilfe der Newton schen Axiome kennen gelernt. Oft ist es aber nicht so einfach die Kraftbilanz

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu Klassische Elektrodynamik 1 Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astrono mie Auf de m Hügel 71 kbasu@astro.uni-bonn.de

Mehr

24 Herleitung der Maxwell-Gleichungen

24 Herleitung der Maxwell-Gleichungen 24 Herleitung der Maxwell-Gleichungen In dieser Vorlesung werden wir die Maxwell-Gleichungen aus rein theoretischen Erwägungen herleiten. Dabei muß der Begriff Herleitung allerdings mit Vorsicht betrachtet

Mehr

1 Die direkte Methode der Variationsrechnung

1 Die direkte Methode der Variationsrechnung Die direkte Methode der Variationsrechnung Betrachte inf I(u) = f(x, u(x), u(x)) dx : u u + W,p () wobei R n, u W,p mit I(u ) < und f : R R n R. (P) Um die Existenz eines Minimierers direkt zu zeigen,

Mehr

Numerik I. Gewöhnliche Differentialgleichungen. Prof.Dr.G.Wittum. Teil I:

Numerik I. Gewöhnliche Differentialgleichungen. Prof.Dr.G.Wittum. Teil I: Numerik I Prof.Dr.G.Wittum Teil I: Gewönlice Differentialgleicungen Sommersemester 2005 INHALTSVERZEICHNIS 1 Inaltsverzeicnis 1 Numerik gewönlicer Differentialgleicungen 2 1.1 Einleitung....................................

Mehr

(a) Λ ist eine Erhaltungsgröße. (b) Λ ist gleich der Exzentrizität ε der Bahnkurve.

(a) Λ ist eine Erhaltungsgröße. (b) Λ ist gleich der Exzentrizität ε der Bahnkurve. PD Dr. S. Mertens S. Falkner, S. Mingramm Theoretische Physik I Mechanik Blatt 7 WS 007/008 0.. 007. Lenz scher Vektor. Für die Bahn eines Teilchens der Masse m im Potential U(r) = α/r definieren wir mit

Mehr

Eichinvarianz in der Quantenmechanik. abgeleitet aus der Maxwell-Theorie

Eichinvarianz in der Quantenmechanik. abgeleitet aus der Maxwell-Theorie Eichinvarianz in der Quantenmechanik abgeleitet aus der Maxwell-Theorie Seminarvortrag Quantenelektrodynamik 1. Teil: Schrödingergleichung Motivation: Eichtheorien sind ein inhaltsreicher Gedankenkomplex

Mehr

Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen:

Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen: Poisson-Klammern Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen: Def: "Poisson-Klammer von F und G": Einfachste Beispiele: im Hamilton-Formalismus sind p,

Mehr

Das Atiyah-Singer-Index-Theorem in SU(2)-Yang-Mills-Theorie

Das Atiyah-Singer-Index-Theorem in SU(2)-Yang-Mills-Theorie Das Atiyah-Singer-Index-Theorem in SU(2)-Yang-Mills-Theorie Marc Wagner mcwagner@theorie3.physik.uni-erlangen.de http://theorie3.physik.uni-erlangen.de/ mcwagner 13. November 2006 Das Atiyah-Singer-Index-Theorem

Mehr

2.10 Normierung der Dirac-Spinoren

2.10 Normierung der Dirac-Spinoren 2.10 Normierung der Dirac-Spinoren In der schwachen Wechselwirkung, die die Parität verletzt, werden auch Axial-Vektoren eine große Rolle spielen, da der Strom eines linkshändigen Spin-1/2 Teilchens ū

Mehr

1d) Die z Komponente L z des Drehimpulses. 1e) f(x)g (x)δ(x z) = f(z)g (z) nach Definition der Delta-Distribution. heißt

1d) Die z Komponente L z des Drehimpulses. 1e) f(x)g (x)δ(x z) = f(z)g (z) nach Definition der Delta-Distribution. heißt Aufgabe 1 (10 Punkte) Fragen 1a) Jede Drehung im dreidimensionalen Raum lässt sich als Hintereinanderausführung dreier Drehungen um die ursprüngliche z-achse, die x-achse im Koordinatensystem nach der

Mehr

Minimierung der Energie

Minimierung der Energie Grundlagen Minimierung der Energie Im Ausdruck für die Energie finden sich die Spinorbitale χ j (Raumorbitale ψ i. Welche Orbitale geben die beste Annäherung an die gesuchte Mehrelektronenwellenfunktion

Mehr

DIFFERENTIATION PARAMETERABHÄNGIGER INTEGRALE

DIFFERENTIATION PARAMETERABHÄNGIGER INTEGRALE DIFFERENTIATION PARAMETERABHÄNGIGER INTEGRALE Zusammenfassung. Ergänzend zur Übung vom 06.06.203 soll hier die Leibnizregel für die Differentiation parameterabhängiger Integrale formuliert und bewiesen

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent.

Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent. Definition der Basis Def. Es sei (V,+, ) ein nichttrivialer Vektorraum. Die Menge A V heißt eine Basis-Menge, falls sie (a) linear unabhängig ist und (b) span(a) = V. Satz 7. A sei eine Teilmenge des nichttrivialen

Mehr

Einführung in den Symmetriebegriff und gruppentheoretische Grundlagen

Einführung in den Symmetriebegriff und gruppentheoretische Grundlagen Einführung in den Symmetriebegriff und gruppentheoretische Grundlagen Stephanie Artmeier WS 0/ Inhaltsverzeichnis Einführung... Gruppen.... Beispiel gleichseitiges Dreieck... 3. Darstellung von Gruppen...

Mehr

Teilchenphysik für Fortgeschrittene

Teilchenphysik für Fortgeschrittene Teilchenphysik für Fortgeschrittene Notizen zur Vorlesung im Wintersemester 2015-2016 Peter Schleper 15. Oktober 2015 Institut für Experimentalphysik, Universität Hamburg peter.schleper@physik.uni-hamburg.de

Mehr

Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen:

Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen: Poisson-Klammern Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen: Def: "Poisson-Klammer von F und G": Einfachste Beispiele: im Hamilton-Formalismus sind p,

Mehr

Fast jedes Lineare-Algebra Buch für Uni-Studenten der Mathe ist gut Aus der Lehrbibliothek Definition des Vektorraums z.b.

Fast jedes Lineare-Algebra Buch für Uni-Studenten der Mathe ist gut Aus der Lehrbibliothek Definition des Vektorraums z.b. Buchempfelungen Fast jedes Lineare-Algebra Buch für Uni-Studenten der Mathe ist gut Aus der Lehrbibliothek Definition des Vektorraums z.b. Serge Lang, Lineare Algebra Lineare Abbildungen z.b. Kowalsky

Mehr

Primzahlen Primzahlsatz Satz von Szemerédi Verallg. von Green/Tao Anwendung. Arithmetische Progressionen von Primzahlen

Primzahlen Primzahlsatz Satz von Szemerédi Verallg. von Green/Tao Anwendung. Arithmetische Progressionen von Primzahlen Arithmetische Progressionen von Primzahlen Sei N := {1, 2, 3,... } die Menge der natürlichen Zahlen. Definition Eine Primzahl ist eine natürliche Zahl > 1, die nur durch 1 und durch sich selbst teilbar

Mehr

7 Poisson-Punktprozesse

7 Poisson-Punktprozesse Poisson-Punktprozesse sind natürliche Modelle für zufällige Konfigurationen von Punkten im Raum Wie der Name sagt, spielt die Poisson-Verteilung eine entscheidende Rolle Wir werden also mit der Definition

Mehr

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06 Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06 Dörte Hansen Seminar 11 1 Hamiltonsche Mechanik, kanonische Transformationen und Hamilton-Jacobi-Theorie Wie die Lagrangesche Mechanik

Mehr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 27. Juli 2015, Uhr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 27. Juli 2015, Uhr KIT SS 05 Klassische Theoretische Physik II V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch Klausur Lösung 7. Juli 05, 6-8 Uhr Aufgabe : Kurzfragen (+4++3=0 Punkte) (a) Zwangsbedingungen beschreiben Einschränkungen

Mehr

T2 Quantenmechanik Lösungen 4

T2 Quantenmechanik Lösungen 4 T2 Quantenmechanik Lösungen 4 LMU München, WS 17/18 4.1. Lösungen der Schrödinger-Gleichung Beweisen Sie die folgenden Aussagen. Prof. D. Lüst / Dr. A. Schmi-May version: 06. 11. a) Die Separationskonstante

Mehr

Mathematik I. Vorlesung 11. Lineare Unabhängigkeit

Mathematik I. Vorlesung 11. Lineare Unabhängigkeit Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 11 Lineare Unabhängigkeit Definition 11.1. Es sei K ein Körper und V ein K-Vektorraum. Dann heißt eine Familie von Vektoren v i, i I,

Mehr

Der Beweis des Ergodizitätssatzes von Moore

Der Beweis des Ergodizitätssatzes von Moore Der Beweis des Ergodizitätssatzes von Moore Markus Schwagenscheidt Forschungsseminar Darmstadt-Frankfurt am 23.05.2013 Moores Theorem Theorem (Moore) Sei G = G i endliches Produkt zusammenhängender nicht-kompakter

Mehr

Grundlagen der Lagrange-Mechanik

Grundlagen der Lagrange-Mechanik Grundlagen der Lagrange-Mechanik Ahmed Omran 1 Abriss der Newton schen Mechanik 1.1 Newton sche Axiome 1. Axiom: Im Inertialsystem verharrt ein Körper in seinem momentanen Bewegungszustand (in Ruhe, oder

Mehr

4 Holomorphie-Konvexität. Definition Satz. 42 Kapitel 2 Holomorphiegebiete

4 Holomorphie-Konvexität. Definition Satz. 42 Kapitel 2 Holomorphiegebiete 42 Kapitel 2 Holomorphiegebiete 4 Holomorphie-Konvexität Wir wollen weitere Beziehungen zwischen Pseudokonvexität und affiner Konvexität untersuchen. Zunächst stellen wir einige Eigenschaften konvexer

Mehr

2 Lagrange sche Bewegungsgleichungen

2 Lagrange sche Bewegungsgleichungen 2 Lagrange sche Bewegungsgleichungen Ausgearbeitet von Christine Cronjäger, Klaus Grambach und Ulrike Wacker 2.1 Zwangsbedingungen: Zwangsbedingungen schränken die 3 Freiheitsgrade des Teilchens ein. Unterwirft

Mehr

Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus

Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus Fakultät für Physik Michael Schrapp Technische Universität München Vorlesung Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus Inhaltsverzeichnis 1 Motivation 2 2 Generalisierte Koordinaten und

Mehr

Prüfungsfragen und Prüfungsaufgaben

Prüfungsfragen und Prüfungsaufgaben Mathematische Modelle in der Technik WS 3/4 Prüfungsfragen und Prüfungsaufgaben Fragen - 9:. Modellieren Sie ein örtlich eindimensionales, stationäres Wärmeleitproblem (Integralbilanzformulierung, differentielle

Mehr

(a), für i = 1,..., n.

(a), für i = 1,..., n. .4 Extremwerte Definition Sei M R n eine Teilmenge, f : M R stetig, a M ein Punkt. f hat in a auf M ein relatives (oder lokales) Maximum bzw. ein relatives (oder lokales) Minimum, wenn es eine offene Umgebung

Mehr

Historisches zur Gruppentheorie

Historisches zur Gruppentheorie Historisches zur Gruppentheorie Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 20 Gruppen: Abstrakte Definition Eine Gruppe

Mehr

Lagrange sche Bewegungsgleichungen

Lagrange sche Bewegungsgleichungen Kapitel 2 Lagrange sche Bewegungsgleichungen Ausgearbeitet von Christine Cronjäger, Klaus Grambach und Ulrike Wacker 2.1 Zwangsbedingungen: Zwangsbedingungen schränken die 3 Freiheitsgrade des Teilchens

Mehr

Kapitel 11: Oberflächen- und Flussintegrale

Kapitel 11: Oberflächen- und Flussintegrale Kapitel 11: Oberflächen- und Flussintegrale Ziel: Berechnung von Integralen, deren Integrationsbereich eine 2-dim. Fläche in einem 3-dim. Raum ist (z.b. Fläche von Kugel) Motivation / Anwendungen: - z.b.

Mehr

Zusammenfassung: Wigner-Eckart-Theorem

Zusammenfassung: Wigner-Eckart-Theorem Zusammenfassung: Wigner-Eckart-Theorem Clebsch-Gordan- Reihe: Def. vontensor - Algebraische Version, (via infinitesimaler Rotation): Clebsch-Gordan- Reihe für Tensoren: Wigner-Eckart- Theorem: Geometrie

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: N. Borg, S. Hagh Shenas Noshari, 5. Gruppenübung zur Vorlesung S. Nitsche, C. Rösinger, Höhere Mathematik 1 A. Thumm, D. Zimmermann Wintersemester 218/19 M. Stroppel Lösungshinweise zu den Hausaufgaben:

Mehr

Nachklausur zur Analysis 2, SoSe 2017

Nachklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 18.9.17 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis 2, SoSe 217 Aufgabe

Mehr

Übungen zur Vorlesung. Einführung in Dynamische Systeme. Musterlösungen zu Aufgabenblatt 8

Übungen zur Vorlesung. Einführung in Dynamische Systeme. Musterlösungen zu Aufgabenblatt 8 Prof. Roland Gunesch Sommersemester 2010 Übungen zur Vorlesung Einführung in Dynamische Systeme Musterlösungen zu Aufgabenblatt 8 Aufgabe 1: Sei (X, d) ein kompakter metrischer Raum. Die Hausdorff-Metrik

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretishe Physik 2 Theoretishe Mehanik) Prof. Dr. Th. Felmann 11. Februar 2014 Kurzzusammenfassung Vorlesung 28 vom 7.2.2014 Vierergeshwinigkeit un Viererimpuls Zur Beshreibung er relativistishen Bewegungsgleihungen

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

5. Vorlesung. Rechnen mit Vektoren.

5. Vorlesung. Rechnen mit Vektoren. 5. Vorlesung. Rechnen mit Vektoren. Vektoren per se gibt es nicht. Vektoren sind immer Teil eines Vektorraumes. In dieser Vorlesung führen wir Vektorräume und Vektoren ein und beweisen ein paar klassische

Mehr

Übungen zur Speziellen und Allgemeinen Relativitätstheorie

Übungen zur Speziellen und Allgemeinen Relativitätstheorie Übungen zur Speziellen und Allgemeinen Relativitätstheorie Blatt 1 WS 08/09 Abgabe: 22.10.2008 Prof. Dr. T. Mannel, S. Faller 1. Galilei-Gruppe Die Gruppe G der Galilei-Transformationen g = g, v, a, λ,

Mehr

Grundlagen der theoretischen Informatik

Grundlagen der theoretischen Informatik Grundlagen der theoretischen Informatik Kurt Sieber Fakultät IV, Department ETI Universität Siegen SS 2013 Vorlesung vom 30.04.2013 Grenzen regulärer Sprachen Wie beweist man, dass eine Sprache nicht regulär

Mehr

2.2 4-Stromdichte [Griffiths , Jackson 11.9]

2.2 4-Stromdichte [Griffiths , Jackson 11.9] Um zu verstehen, wie sich die elektromagnetischen Felder transformieren, gehen wir von den Maxwellgleichungen aus. Dazu brauchen wir zunächst die. 4-Stromdichte [Griffiths 1.3.4, Jackson 11.9] Die Ladungsdichte

Mehr

Darstellungstheorie II - Reduzibilität, Maschkes Theorem, Schurs Lemma, Orthogonalität

Darstellungstheorie II - Reduzibilität, Maschkes Theorem, Schurs Lemma, Orthogonalität Darstellunstheorie II - Reduzibilität, Maschkes Theorem, Schurs Lemma, Orthoonalität Tom Weber 18.11.2015 Inhaltsverzeichnis 1 Reduzibilität 2 1.1 G-Modul................................ 2 1.2 Orthonormalbasen..........................

Mehr

Kapitel 18. Spezielle Relativitätstheorie Einleitung

Kapitel 18. Spezielle Relativitätstheorie Einleitung Kapitel 18 Spezielle Relativitätstheorie Wir werden im Kap. 19 die Lorentz-Invarianz der Maxwell-Gleichungen nachweisen. Historisch ist dieses vor der Entwicklung der relativistischen Mechanik geschehen.

Mehr

Lösungen zu den Hausaufgaben zur Analysis II

Lösungen zu den Hausaufgaben zur Analysis II Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin

Mehr

9 Differentialrechnung für Funktionen in n Variablen

9 Differentialrechnung für Funktionen in n Variablen $Id: diff.tex,v.7 29/7/2 3:4:3 hk Exp $ $Id: ntaylor.tex,v.2 29/7/2 3:26:42 hk Exp $ 9 Differentialrechnung für Funktionen in n Variablen 9.6 Lagrange Multiplikatoren Die Berechnung von Maxima und Minima

Mehr

Definition 1.1 (Wirkung) Wir wollen die Kurvenverläufe x(t) finden, die das Funktional

Definition 1.1 (Wirkung) Wir wollen die Kurvenverläufe x(t) finden, die das Funktional Christina Schindler Karolina Stoiber Ferienkurs Analysis für Physiker SS 13 A 1 Variationsrechnung 1.1 Lagrange. Art Wir führen die Überlegungen von gestern fort und wollen nun die Lagrangegleichungen.

Mehr

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 }

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 } A Analsis, Woche Implizite Funktionen A Implizite Funktionen in D A3 Wenn man den Kreis mit Radius um, beschreiben möchte, dann ist { x, ; x + = } eine Möglichkeit Oft ist es bequemer, so eine Figur oder

Mehr

Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat

Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat Vortrag von Kristina Rupp und Benjamin Letschert am 29.01.2008 Inhaltsverzeichnis 13 Speziallfälle des Satzes von Fermat 1 13.1 Der Große Satz

Mehr

Analyis I -Metrische Räume - eine Einführung in die Topologie

Analyis I -Metrische Räume - eine Einführung in die Topologie Analyis I -Metrische Räume - eine Einführung in die Topologie E = E isolierter Punkte x 1 x 2 x 3 E ist abgeschlossen U ɛ (x) x innerer Punkt Ω Häufungspunkte Ω Metrik Metrische Räume Definition Sei X

Mehr

Seminarvortrag Hamiltonsches Chaos. Daniel Lahrmann ( ), 2. Dezember 2015

Seminarvortrag Hamiltonsches Chaos. Daniel Lahrmann ( ),   2. Dezember 2015 Seminarvortrag Hamiltonsches Chaos 404 204, E-Mail: d_lahr01@wwu.de 2. Dezember 2015 1 Inhaltsverzeichnis 1 Hamiltonsche Systeme 3 1.1 Allgemeines.................................................. 3 1.2

Mehr

Die Mathematikerin Emmy Noether

Die Mathematikerin Emmy Noether Die Mathematikerin Emmy Noether Amalie Emmy Noether (1882-1935) Vortrag am 6. Juni 2014 von im Inhalt Persönlichkeit 1 Persönlichkeit Herkunft und Familie Bildung 2 3 4 Bücher zur modernen Algebra Namensgeberin

Mehr

Hamilton-Mechanik im erweiterten Phasenraum

Hamilton-Mechanik im erweiterten Phasenraum Hamilton-Mechanik im erweiterten Phasenraum Jürgen Struckmeier Antrittsvorlesung im Rahmen des Physikalischen Kolloquiums des Fachbereichs Physik der Johann Wolfgang Goethe-Universität Frankfurt am Main

Mehr

Einblicke in die Teilchenphysik

Einblicke in die Teilchenphysik Einblicke in die Teilchenphysik 1. Einführung 2. Beschleuniger 3. Detektoren 4. Bewegungsgleichungen und Symmetrien 5. Das Quark-Modell und die CKM-Matrix 6. CP-Verletzung im Standardmodell 7. Proton-

Mehr

Lösung zu Serie Zeige, dass das Minimalpolynom jedes Jordanblocks gleich seinem charakteristischen

Lösung zu Serie Zeige, dass das Minimalpolynom jedes Jordanblocks gleich seinem charakteristischen Lineare Algebra D-MATH, HS 4 Prof. Richard Pink Lösung zu Serie. Zeige, dass das Minimalpolynom jedes Jordanblocks gleich seinem charakteristischen Polynom ist. Lösung: Das charakteristische Polynom eines

Mehr

Lagrange-Formalismus

Lagrange-Formalismus KAPITEL II Lagrange-Formalismus Die im letzten Kapitel dargelegte Formulierung der Mechanik nach Newton ist zwar sehr intuitiv: man zählt alle auf das zu studierende System wirkenden Kräfte auf, schreibt

Mehr

8.5 Symmetrische Polynome, Diskriminate und Resultante

8.5 Symmetrische Polynome, Diskriminate und Resultante 332 85 Symmetrische Polynome, Diskriminate und Resultante Ein weiteres Verfahren zur Feststellung, ob mehrfache Wurzeln vorliegen, ist die Betrachtung der Diskriminante, deren Einführung jetzt vorbereitet

Mehr

Prinzipien der modernen Kryptographie Sicherheit

Prinzipien der modernen Kryptographie Sicherheit Prinzipien der modernen Kryptographie Sicherheit Prinzip 1 Sicherheitsziel Die Sicherheitsziele müssen präzise definiert werden. Beispiele für ungenügende Definitionen von Sicherheit Kein Angreifer kann

Mehr

Analysis II 14. Übungsblatt

Analysis II 14. Übungsblatt Jun.-Prof. PD Dr. D. Mugnolo Wintersemester 01/13 F. Stoffers 04. Februar 013 Analysis II 14. Übungsblatt 1. Aufgabe (8 Punkte Man beweise: Die Gleichung z 3 + z + xy = 1 besitzt für jedes (x, y R genau

Mehr

Lösungen zu Übungsblatt 9

Lösungen zu Übungsblatt 9 Analysis : Camillo de Lellis HS 007 Lösungen zu Übungsblatt 9 Lösung zu Aufgabe 1. Wir müssen einfach das Integral 16 (x + y d(x, y x +y 4 ausrechnen. Dies kann man einfach mittels Polarkoordinaten, da

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretische Physik 2 (Theoretische Mechanik) Prof. Dr. Th. Feldmann 15. Januar 2014 Kurzzusammenfassung Vorlesung 21 vom 14.1.2014 6. Hamilton-Mechanik Zusammenfassung Lagrange-Formalismus: (generalisierte)

Mehr

Übungen zur Elektrodynamik

Übungen zur Elektrodynamik Übungen zur Elektrodynamik Blatt, T3: Elektrodynamik, Kurs 7 Professor: H. Ruhl, Übungen: B. King, N. Moshüring, N. Elkina, C. Klier, F.Deutshmann, V. Paulish, A. Kapfer, S. Luest Lösungen: 4.6. - 8.6.3

Mehr

Warum haben Teilchen eine Masse 0?

Warum haben Teilchen eine Masse 0? Warum haben Teilchen eine Masse 0? In der heutigen Doppelstunde werde ich versuchen, den Higgs-Mechanismus zu erklären, der nach heutiger Meinung dafür verantwortlich ist, dass Teilchen überhaupt eine

Mehr

Lösung polynomialer Kongruenzen

Lösung polynomialer Kongruenzen Seminar zur Zahlentheorie Sommersemester 2019 Lösung polynomialer Kongruenzen 16.05.2019 In diesem Vortrag beschäftigen wir uns mit dem Finden von Lösungen polynomialer Kongruenzen. Dazu werden wir das

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II... ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

2.8 KURVENINTEGRALE UND STAMMFUNKTIONEN

2.8 KURVENINTEGRALE UND STAMMFUNKTIONEN 2.8 KURVENINTEGRALE UND STAMMFUNKTIONEN Im folgenden seien X normierter Vektorraum und Y B-Raum über IK = IR oder IK = CI. Wir wollen in diesem Kapitel für stetige Abbildungen f : X D f B(X; Y ) und stückweise

Mehr

Theoretischen Physik II SS 2007 Klausur II - Aufgaben und Lösungen

Theoretischen Physik II SS 2007 Klausur II - Aufgaben und Lösungen Theoretischen Physik II SS 007 Klausur II - Aufgaben und Lösungen Aufgabe Hohlleiter Gegeben sei ein in z-richtung unendlich langer, gerader Hohlleiter (Innenradius R/3, Außenradius R), der einen Stromfaden

Mehr

Die Studenten, die sich in Friedolin EINGETRAGEN haben und von Friedolin wissen in welcher UG sie sind,

Die Studenten, die sich in Friedolin EINGETRAGEN haben und von Friedolin wissen in welcher UG sie sind, Die Studenten, die sich in Friedolin EINGETRAGEN haben und von Friedolin wissen in welcher UG sie sind, schreiben Sie sich bitte in IHRE CAJ-Gruppe ein (möglisch schnell damit die Übungsleiter die Punkte

Mehr

5. Äquivalenzrelationen

5. Äquivalenzrelationen 36 Andreas Gathmann 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will so kann es sinnvoll sein zunächst kleinere einfachere Mengen (bzw. Gruppen) zu betrachten

Mehr

Prinzipien der modernen Kryptographie Sicherheit

Prinzipien der modernen Kryptographie Sicherheit Prinzipien der modernen Kryptographie Sicherheit Prinzip 1 Sicherheitsziel Die Sicherheitsziele müssen präzise definiert werden. Beispiele für ungenügende Definitionen von Sicherheit: Kein Angreifer kann

Mehr

Über teleparallele Gravitationstheorien

Über teleparallele Gravitationstheorien Diplomkolloquium Über teleparallele Gravitationstheorien Uwe Münch 24. September 1997 Übersicht: Geometrische Größen Gravitation als Eichtheorie der Translationen: Teleparallelismus-Theorien Alternative

Mehr

Basiswissen über Bilinearformen mit Betrachtung symmetrischer Bilinearformen

Basiswissen über Bilinearformen mit Betrachtung symmetrischer Bilinearformen Basiswissen über Bilinearformen mit Betrachtung symmetrischer Bilinearformen Zhelun Chen Proseminar Lineare Algebra WS016/017 Universität Konstanz Zusammenfassung In diesem Proseminar lernen wir einige

Mehr

Mathematische Probleme, SS 2019 Donnerstag $Id: dreieck.tex,v /04/12 17:03:16 hk Exp $

Mathematische Probleme, SS 2019 Donnerstag $Id: dreieck.tex,v /04/12 17:03:16 hk Exp $ $Id: dreieck.tex,v 1.53 2019/04/12 17:03:16 hk Exp $ 1 Dreiecke 1.1 Rechtwinklige Dreiecke Wir beschäftigen uns gerade mit den primitiven pythagoräischen Tripeln. Haben wir ein solches Tripel, also teilerfremde

Mehr

Fourier-Transformation

Fourier-Transformation ANHANG A Fourier-Transformation In diesem Anhang werden einige Definitionen Ergebnisse über die Fourier-Transformation dargestellt. A. Definition Theorem & Definition: Sei f eine integrable komplexwertige

Mehr

14. Das Minimumprinzip

14. Das Minimumprinzip H.J. Oberle Variationsrechnung u. Optimale Steuerung SoSe 2008 14. Das Minimumprinzip In diesem Abschnitt behandeln wir die Idee der dynamischen Programmierung, die auf Bellmann 31 (1957) zurückgeht und

Mehr

Anhang G - Bemerkungen zur Weylgruppe

Anhang G - Bemerkungen zur Weylgruppe 32 Anhang G - Bemerkungen zur Weylgruppe Anhang G - Bemerkungen zur Weylgruppe Sei G eine kompakte zusammenhängende (halbeinfache) Liegruppe, T G ein maximaler Torus, W = W T (G) = N G (T )/T die zugehörige

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

Kapitel II. Vektorräume

Kapitel II. Vektorräume Inhalt der Vorlesung LAAG I Prof. Dr. Arno Fehm TU Dresden WS2017/18 Kapitel II. Vektorräume In diesem ganzen Kapitel sei K ein Körper. 1 Definition und Beispiele 1.1 Beispiel. Ist K = R, so haben wir

Mehr