Gase und Dämpfe. Grundpraktikum II. Grundpraktikum II Gase und Dämpfe 1/5. Übungsdatum: Abgabetermin:

Größe: px
Ab Seite anzeigen:

Download "Gase und Dämpfe. Grundpraktikum II. Grundpraktikum II Gase und Dämpfe 1/5. Übungsdatum: Abgabetermin:"

Transkript

1 rundraktikum II ase und Dämfe /5 Übungsdatum: Abgabetermin: rundraktikum II ase und Dämfe abath erhild Matr. Nr Mittendorfer Stehan Matr. Nr

2 rundraktikum II ase und Dämfe 2/5 Bestimmung des Sannungskoeffizienten Das asthermometer dient in unserem Fall zur Ermittlung des Sannungskoeffizienten von Luft, die als ideales as angesehen wird. Beim asthermometer wird eine Temeraturmessung auf eine Druckmessung zurückgeführt. Es besteht aus einem Reziienten, welcher über eine Kaillare B mit dem Quecksilberthermometer zwei beweglichen Schenkeln verbunden ist. Im linken Schenkel befindet sich ein kleiner Metalldorn, dessen Sitze als Nullmarke für den linken Quecksilbermeniskus dient. Abgelesen werden an einer Siegelskala h r und h, woraus die Höhendifferenz gebildet wird. Um den Sannungskoeffizienten zu bestimmen, wird der Reziient zunächst in ein Eisbad und dann in ein Bad aus siedendem Wasser getaucht. Abgelesen wird dabei jeweils der Höhenunterschied der Quecksilbersäule. Der gesamte Luftdruck ergibt sich dann aus dem Druck, der aus dem Höhenunterschied berechnet werden kann, sowie dem barometrischen Luftdruck b. Als Einheit wird hier Torr verwendet. Das hat den Vorteil, dass der Höhenunterschied, der ja die Einheit mm Quecksilbersäule hat, direkt als Druck hergenommen werden kann. Die Einheit des Luftdruckes kann am Labormessgerät ebenfalls in Torr abgelesen werden. Zuerst wurde der barometrische Luftdruck im Praktikumsraum bestimmt. Das Heberbarometer lieferte uns folgenden Wert für den Luftdruck: b = 733 Torr Die Einheit Torr stellt sich hier als sehr raktisch heraus, da beim Ablesen des Druckes am asthermometer die Einheit mm Quecksilbersäule abgenommen wird, was ja identisch mit der Einheit Torr ist. Folgende Tabelle zeigt die gemessenen Werte des Druckes in Torr (mm Hg-Säule) sowie die errechneten esamtdrücke unter Berücksichtigung des Luftdruckes: h l =8,3 cm h r =78,2 cm h = -3 mmhg = 72 Torr h l =8,45 cm h r =2,8 cm h S = 23,5 mmhg S = 946,5 Torr Die Siedetemeratur des Wassers liegt laut Walcher Tab. A3. Seite 399 für einen barometrischen Druck von 733 Torr bei ca. 99 C. ϑ S = 99 C Daraus lässt sich nun der Sannungskoeffizient bestimmen: Zwischen den Drücken, die sich beim Eisbad bzw. beim Bad aus siedendem Wasser einstellen, besteht folgender Zusammenhang: S = ( + αϑs ) daraus lässt sich nun unsere gewünschte röße berechnen: α = S ϑ α =,93 K - Für ideale ase gilt: = =, ,5 α K - S Die Abweichung zwischen den beiden Werten beträgt ÜBER 4% Obige Formel gilt allerdings nur dann, wenn sich das gesamte Luftvolumen auf gleicher Temeratur befindet. Dies ist bei uns allerdings nicht der Fall, da sich in der Kaillare B und im Bereich des Dorns Luft mit Zimmertemeratur befindet. Tz = 296,8 K Der thermische Ausdehnungskoeffizient beträgt für AR-las: γ = K - Laut Werkstattzeichnung ergeben sich für die beiden Volumina: V = 5786 mm³ v = 3447,64 mm³

3 rundraktikum II ase und Dämfe 3/5 Zu beachten ist weiters, dass sich das las des asthermometers abhängig von der Temeratur ausdehnt. Mit Hilfe des Ansatzes, dass die eingeschlossene Stoffmenge konstant bleibt, erhält man für den Sannungskoeffizienten α in besserer Näherung: α = α ϑb S γ v V T z S S v + γ + ϑs V Tz Sannungskoeffizient von Luft Siedetemeratur des Wassers, abhängig vom barometrischen Druck Druck, der sich beim Abkühlen auf C einstellt Druck, der sich beim Erwärmen auf Siedetemeratur einstellt thermischer Ausdehnungskoeffizient des lasgefäßes Volumen des schädlichen Raumes, totes Volumen Volumen des Reziienten (A) thermodynamische Zimmertemeratur Die thermodynamische Zimmertemeratur wird bestimmt, indem man zuerst den Druck bei Zimmertemeratur misst und mit Hilfe des Druckes, der sich beim Eisbad einstellt, unter Anwendung des asgesetzes die Temeratur berechnet. Es gilt folgender Zusammenhang: Z TZ = 273,5K Bestimmung des Adiabatenexonenten Mit Hilfe dieses Versuches lässt sich der Adiabatenexonent bestimmen. Man verwendet ein efäß mit angeschlossenem U-Manometer und Dreiwegehahn, mit dem der Reziient abgeserrt oder mit einem Blasebalg verbunden werden kann. Eine Verbindung mit der Außenluft wird bei unserem Versuch dadurch erreicht, dass ein ummistofen aus dem Tubus gezogen wird. Das U-Manometer ist mit Silicon- oder Paraffinöl gefüllt. Nachstehendes Bild zeigt den Versuchsaufbau: Das Verfahren arbeitet in 4 Phasen:. Mit Hilfe des Blasebalges wird ein Überdruck von ca. mm Ölsäule erzeugt. Seien nun b der Barometerdruck und T die thermodynamische Anfangstemeratur (Zimmertemeratur). Die Zustandsgrößen der in A eingeschlossenen Luftmenge sind: = b + T = T 2. Man verbindet durch Herausziehen des ummistofens den Reziienten mit der Außenluft. Hierdurch erfolgt Druckausgleich. Das as exandiert und verrichtet dabei Arbeit gegen den äußeren atmoshärischen Druck. Diese Arbeit wird auf Kosten der inneren Energie des ases A verrichtet, die Temeratur des ases sinkt. Die Zustandsgrößen der in. betrachteten asmenge sind nunmehr: + V = b T T T 3. Sofort nach erfolgtem Druckausgleich serrt man das efäß wieder ab. Zustandsgrößen: = = b T = T T 4. Durch Wärmeaustausch mit der Umgebung nimmt die Luft in A im Laufe von etwa Sekunden wieder ihre Anfangstemeratur an. Diese Zustandsänderung erfolgt isochor. Der Druck steigt dabei um 2 an, sodass sich folgender Zustand einstellt = b + 2 T = T Wegen der Schnelligkeit der Zustandsänderung auf 2 kann angenommen werden, dass kein Wärmeaustausch mit der Umgebung stattfindet, der Prozess kann also als adiabatisch angesehen werden. Die ersten beiden Zustände sind miteinander durch die Poissonschen Zustandsgleichungen verknüft:

4 rundraktikum II ase und Dämfe 4/5 χ χ V = oder V TV χ χ = TV Die Zustandsgrößen aus 3. und 4. Sind durch die Zustandsgleichungen idealer ase miteinander Verknüft: V = T V T Unter Berücksichtigung, dass V << V und << b ergibt sich als einfache Endformel: χ = 2 Unten stehende Tabelle zeigt die fünf durchgeführten Messreihen und die daraus errechneten Adiabatenexonenten: 2 χ 6 2, , ,3769 Der Mittelwert des Adiabatenexonenten beträgt,2997, die Standardabweichung,394. Der genaue Wert für dreiatomige ase beträgt,33. Da Luft aber keineswegs als ein, zwei- oder dreiatomiges as angesehen werden kann, ist die Abweichung durchaus vertretbar.

5 rundraktikum II ase und Dämfe 5/5 Bestimmung der Luftfeuchtigkeit Das Schleudersychrometer dient zur Messung der Luftfeuchtigkeit nach dem nachfolgenden Messrinzi: ein trockenes Thermometer misst die Umgebungstemeratur, ein weiters Thermometer ist mit einem Doch umgeben, welcher mit destilliertem Wasser befeuchtet wird. Beim Rotieren des Schleudersychrometers verdunstet ein Teil des Wassers im Docht und kühlt dabei das entsrechende Thermometer bis zum Tauunkt ab. Der Tauunkt ist jene Temeratur, bei der die maximale absolute Luftfeuchtigkeit erreicht wird. Bei Temeraturen über dem Tauunkt ist der Damf ungesättigt, bei Temeraturen darunter ist der Damf übersättigt und kondensiert. Am Tauunkt wird dem Docht genauso viel Feuchtigkeit entzogen wie aus der Umgebung zugeführt, die Temeratur bleibt daher stabil. Aus dieser Temeratur lässt sich im Prinzi die absolute Feuchte aus der Damfdruckkurve des Wassers bestimmen. Es gilt: H P 2 O = max Wird das Psychrometer mit mindestens 3 U/s gedreht, ist der thermische Verlust des Psychrometers berechenbar: b H O = Pmax A( t t ) 2 755Torr H2O P max aktueller Damfdruck des Wassers der bei gegebener Temeratur maximal mögliche Damfdruck Psychrometerkonstante Temeratur des trockenen Thermometers A t t Temeratur des feuchten Thermometers b Luftdruck Daraus lässt sich nun die aussagekräftige röße der relativen Luftfeuchtigkeit bestimmen: U = P H 2O max Folgende Messdaten wurden bei diesem Versuch aufgenommen: Messung im Labor: t = 23,6 C P max = 2,8 Torr t = 2,8 C Datum: Uhrzeit: 5:48 Messung im Freien: t = 5, C P max = 6,6 Torr t = 2,4 C Datum: Uhrzeit: 5:57 Der maximal mögliche Damfdruck bei der jeweiligen Temeratur wurde der Tabelle A3., Walcher Seite 399 entnommen. In der Tabelle auf der nächsten Seite sind nun die errechneten Werte aufgestellt. Die sehr hohe Luftfeuchtigkeit im Freien ist durchaus möglich, da es zum Zeitunkt der Messung nebelig war und es kurz darauf zum Regnen angefangen hat. Zur exakten Berechnung wurde für die Psychrometerkonstante ein Wert von,6623 Pa/K angenommen. Der Luftdruck wurde aus dem. Versuch übernommen. Aktueller Damfdruck relative Luftfeuchte Absolute Luftfeuchte Messung im Labor 5,96 Torr 27,34 % 5,8 g/m³ Messung im Freien 4,22 Torr 63,94 % 4,4 g/m³

Bestimmung des Spannungskoeffizienten eines Gases

Bestimmung des Spannungskoeffizienten eines Gases Bestimmung des Spannungskoeffizienten eines Gases Einleitung Bei diesem Experiment wollen wir den Spannungskoeffizienten α eines Gases möglichst genau bestimmen und in Folge mit dem Spannungskoeffizienten

Mehr

Vorbereitungshilfe zum Versuch Ideales und Reales Gas

Vorbereitungshilfe zum Versuch Ideales und Reales Gas orbereitungshilfe zum ersuch Ideales und Reales Gas Dieser ersuch soll zur Beschäftigung mit der Wärmelehre anregen. Insbesondere bei Gasen sind die drei Größen Temeratur, Druck und olumen voneinander

Mehr

1. Ziel des Versuchs. 2. Theorie. Dennis Fischer Gruppe 9 Magdalena Boeddinghaus

1. Ziel des Versuchs. 2. Theorie. Dennis Fischer Gruppe 9 Magdalena Boeddinghaus Versuch Nr. 12: Gasthermometer 1. Ziel des Versuchs In diesem Versuch soll die Temperaturmessung durch Druckmessung erlernt werden. ußerdem soll der absolute Nullpunkt des Thermometers bestimmt werden.

Mehr

Grundpraktikum Physikalische Chemie V 3. Kompressibilität von Gasen

Grundpraktikum Physikalische Chemie V 3. Kompressibilität von Gasen Grundraktikum Physikalische Chemie 3 Komressibilität von Gasen = c c Kurzbeschreibung: Ändert man Druck und/oder olumen eines Gases sehr schnell, kann kein Wärmeaustausch mit der Umgebung stattfinden (adiabatische

Mehr

Mathematisch-Naturwissenschaftliche Fakultät I der Humboldt-Universität zu Berlin Institut für Physik Physikalisches Grundpraktikum.

Mathematisch-Naturwissenschaftliche Fakultät I der Humboldt-Universität zu Berlin Institut für Physik Physikalisches Grundpraktikum. Mathematisch-Naturwissenschaftliche Fakultät I der Humboldt-Universitäu Berlin Institut für Physik Physikalisches Grundpraktikum Versuchsprotokoll Zustandsgleichung idealer Gase (T4) Arbeitsplatz durchgeführt

Mehr

Die zugeführte Wärmemenge bei isochorer Zustandsänderung berechnet sich aus

Die zugeführte Wärmemenge bei isochorer Zustandsänderung berechnet sich aus Ü 9. Aufheizung einer Preßluftflasche Eine Preßluftflasche, in der sich.84 kg Luft bei einem Druck on.74 bar und einer Temeratur on T 0 C befinden, heizt sich durch Sonneneinstrahlung auf 98 C auf. Gesucht

Mehr

Grundpraktikum T4 Zustandsgleichung idealer Gase

Grundpraktikum T4 Zustandsgleichung idealer Gase Grundpraktikum T4 Zustandsgleichung idealer Gase Julien Kluge 4. Mai 2015 Student: Julien Kluge (564513) Partner: Emily Albert (564536) Betreuer: Luisa Esguerra Raum: 316 Messplatz: 2 INHALTSVERZEICHNIS

Mehr

P2-41: Ideales und reales Gas

P2-41: Ideales und reales Gas Physikalisches Anfängerpraktikum P2) P2-4: Ideales und reales Gas Matthias Faulhaber, Matthias Ernst Gruppe 9) Karlsruhe, 20..200 Ziel des Versuchs ist das Verständnis der Thermodynamik gasförmiger Systeme.

Mehr

Musterlösung Übung 3

Musterlösung Übung 3 Musterlösung Übung 3 Aufgabe 1: Der 1. Hautsatz der Thermodynamik a) Für ein geschlossenes System folgt aus der Energieerhaltung (Gleichung (94) im Skrit) du = dw + dq, (1.1) da ausser Arbeit und Wärme

Mehr

Technische Thermodynamik

Technische Thermodynamik Gernot Wilhelms Übungsaufgaben Technische Thermodynamik 6., überarbeitete und erweiterte Auflage 1.3 Thermische Zustandsgrößen 13 1 1.3.2 Druck Beispiel 1.2 In einer Druckkammer unter Wasser herrscht ein

Mehr

212 - Siedepunktserhöhung

212 - Siedepunktserhöhung 1 - Siedeunktserhöhung 1. Aufgabe Es ist für verschiedene in Wasser lösliche Stoffe die Siedeunktserhöhung ihrer Lösung zu messen und daraus die molare Masse zu bestimmen.. Grundlagen Stichworte: Damfdruck,

Mehr

W2 Gasthermometer. 1. Grundlagen: 1.1 Gasthermometer und Temperaturmessung

W2 Gasthermometer. 1. Grundlagen: 1.1 Gasthermometer und Temperaturmessung W2 Gasthermometer Stoffgebiet: Versuchsziel: Literatur: Temperaturmessung, Gasthermometer, Gasgesetze Mit Hilfe eines Gasthermometers sind der Ausdehnungs- und Druckkoeffizient von Luft zu bestimmen. Beschäftigung

Mehr

3.2 Gasthermometer 203

3.2 Gasthermometer 203 3.2 Gasthermometer 203 3.2. Gasthermometer Ziel Verifizierung von Zusammenhängen, die durch die ideale Gasgleichung beschrieben werden (isotherme und isochore Zustandsänderung), Bestimmung des absoluten

Mehr

Versuchsauswertung: Ideales und Reales Gas

Versuchsauswertung: Ideales und Reales Gas Versuchsauswertung: Ideales und Reales Gas (P2-47,48,49) Christian Buntin, Jingfan Ye Gruppe Mo- Karlsruhe, 4. Juni 200 Inhaltsverzeichnis Messung mit dem Jollyschen Gasthermometer 2 2 Messung des Verhältnisses

Mehr

INSTITUT FÜR PHYSIK HUMBOLDT-UNIVERSITÄT ZU BERLIN. Physikalisches Einführungspraktikum Versuchsprotokoll T4 Zustandsgleichung idealer Gase

INSTITUT FÜR PHYSIK HUMBOLDT-UNIVERSITÄT ZU BERLIN. Physikalisches Einführungspraktikum Versuchsprotokoll T4 Zustandsgleichung idealer Gase INSTITUT FÜR PHYSIK HUMBOLDT-UNIVERSITÄT ZU BERLIN Physikalisches Einführungspraktikum Versuchsprotokoll T4 Zustandsgleichung idealer Gase Betreuer: Dipl.-Phys. J. Lienemann Raum 3'16, NEW 14, Versuchsplatz

Mehr

ADIABATENEXPONENT VON GASEN

ADIABATENEXPONENT VON GASEN Grundpraktikum der Physik Versuch Nr. 10 ADIABATENEXPONENT VON GASEN Versuchsziel: Im ersten Teil des Versuchs wird aus Druckmessungen vor und nach einer adiabatischen Expansion der Adiabatenexponent κ

Mehr

m T 1 0.5kg 8.6K = 7535 m T 2 0.5kg 10.4K = 6923 J

m T 1 0.5kg 8.6K = 7535 m T 2 0.5kg 10.4K = 6923 J 3 Lösungen Lösung zu 39. Zugeführte Energie ro Schritt E W h 36kJ..5l Wasser nähern wir mit der Masse.5kg an. mol Wasser hat eine Masse von 8g. Also sind in dem Behälter 28.78mol Wasser. Aus den beiden

Mehr

W2 Gasthermometer. 1. Grundlagen: 1.1 Gasthermometer und Temperaturmessung

W2 Gasthermometer. 1. Grundlagen: 1.1 Gasthermometer und Temperaturmessung W2 Gasthermometer Stoffgebiet: Versuchsziel: Literatur: emperaturmessung, Gasthermometer, Gasgesetze Mit Hilfe eines Gasthermometers ist der Ausdehnungs- und Druckkoeffizient von Luft zu bestimmen. Beschäftigung

Mehr

Ausdehnung von Luft bei konstantem Druck

Ausdehnung von Luft bei konstantem Druck Lehrer-/Dozentenblatt Ausdehnung von Luft bei konstantem Druck (Artikelnr.: P042700) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-0 Lehrplanthema: Wärmelehre Unterthema: Wärmeausdehnung

Mehr

Dichtebestimmung von Luft, Luftfeuchte

Dichtebestimmung von Luft, Luftfeuchte M02 Dichtebestimmung von Luft, Luftfeuchte Durch Wägung werden Masse und Volumen der Luft in einem Glaskolben bestimmt und unter Berücksichtigung des Luftdrucks und der Luftfeuchtigkeit die Luftnormdichte

Mehr

Ideale Gase. Abb.1: Versuchsanordnung von Torricelli

Ideale Gase. Abb.1: Versuchsanordnung von Torricelli Ideale Gase 1 Empirische Gasgesetze, Einblick in die Geschichte der Naturwissenschaften. Wie hängt das Volumen eines Gases von Druck, Temperatur und Stoffmenge ab? Definition Volumen V: Das Volumen V ist

Mehr

Protokoll Grundpraktikum I: T7 Spezifische Wärmekapazität idealer Gase

Protokoll Grundpraktikum I: T7 Spezifische Wärmekapazität idealer Gase Protokoll Grundpraktikum I: T7 Spezifische Wärmekapazität idealer Gase Sebastian Pfitzner 8. Juni 0 Durchführung: Sebastian Pfitzner (98), Anna Andrle (077) Arbeitsplatz: Platz Betreuer: Martin Rothe Versuchsdatum:.06.0

Mehr

Formel X Leistungskurs Physik 2001/2002

Formel X Leistungskurs Physik 2001/2002 Versuchsaufbau: Messkolben Schlauch PI Barometer TI 1 U-Rohr-Manometer Wasser 500 ml Luft Pyknometer 2 Bild 1: Versuchsaufbau Wasserbad mit Thermostat Gegeben: - Länge der Schläuche insgesamt: 61,5 cm

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

IV T H E R M I S C H E V E R F A H R E N S T E C H N I K A G R U N D L A G E N

IV T H E R M I S C H E V E R F A H R E N S T E C H N I K A G R U N D L A G E N -IV A.1- IV T H E R M I S C H E V E R F A H R E N S T E C H N I K A G R U N D L A G E N 1 Einleitung Während heterogene Stoffgemische sich häufig durch mechanische Trennverfahren in ihre homogenen Phasen

Mehr

Physikalisches Grundpraktikum I

Physikalisches Grundpraktikum I INTITUT FÜR PHYIK DER HUMBOLDT-UNIVERITÄT ZU BERLIN Physikalisches Grundraktikum I Versuchsrotokoll P : T4 Zustandsgleichung idealer Gase Versuchsort: Raum 316-1 Versuchsbetreuer: Dil. - Phys. Lienemann,

Mehr

Stirling-Maschine (STI)

Stirling-Maschine (STI) TUM Anfängerpraktikum für Physiker II Wintersemester 26/27 Stirling-Maschine (STI) Inhaltsverzeichnis 5. Dezember 26 1. Einleitung...2 2. Thermodynamische Kreisprozesse...2 3. Versuchsdurchführung...3

Mehr

T4: Zustandsgleichung idealer Gase

T4: Zustandsgleichung idealer Gase Grundpraktikum T4: Zustandsgleichung idealer Gase Autor: Partner: Versuchsdatum: Versuchsplatz: Abgabedatum: Inhaltsverzeichnis 1 Physikalische Grundlagen und Aufgabenstellung 2 2 Messwerte und Auswertung

Mehr

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung.

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Nullter und Erster Hauptsatz der Thermodynamik. Thermodynamische

Mehr

p = Druck R* = universale Gaskonstante n = Stoffmenge V = Volumen R = R*/M spez. Gaskontante T = absolute Temperatur M = molare Masse m = Masse

p = Druck R* = universale Gaskonstante n = Stoffmenge V = Volumen R = R*/M spez. Gaskontante T = absolute Temperatur M = molare Masse m = Masse 1. Wie ist die ideale Gasgleichung definiert? Unter welchen Voraussetzungen ist sie gültig? Unter welchen Bedingungen ist ein Gas "ideal"? pv=nr*t pv = mrt pv = mr*/m T p = Druck R* = universale Gaskonstante

Mehr

Physik 2 Hydrologen et al., SoSe 2013 Lösungen 3. Übung (KW 19/20) Carnot-Wärmekraftmaschine )

Physik 2 Hydrologen et al., SoSe 2013 Lösungen 3. Übung (KW 19/20) Carnot-Wärmekraftmaschine ) 3. Übung KW 19/20) Aufgabe 1 T 4.5 Carnot-Wärmekraftmaschine ) Eine Carnot-Wärmekraftmaschine arbeitet zwischen den Temperaturen und. Während der isothermen Expansion vergrößert sich das Volumen von auf

Mehr

Technische Thermodynamik

Technische Thermodynamik Thermodynamik 1 Technische Thermodynamik 2. Semester Versuch 2 Thermodynamik Namen : Datum : Abgabe : Fachhochschule Trier Studiengang Lebensmitteltechnik Prof. Dr. Regier / PhyTa Vera Bauer 02/2010 Thermodynamik

Mehr

Ideales und Reales Gas Versuchsvorbereitung

Ideales und Reales Gas Versuchsvorbereitung Versuche P2-47,48,49 Ideales und Reales Gas Versuchsvorbereitung Marco A. Harrendorf und Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 02.05.2011 1 1 Theoretischer

Mehr

Praktikumsprotokoll Physikalisch-Chemisches Anfängerpraktikum

Praktikumsprotokoll Physikalisch-Chemisches Anfängerpraktikum Praktikumsrotokoll Physikalisch-Chemisches Anfängerraktikum Tobias Schabel Datum des Praktikumstags: 14.11.25 Matthias Ernst Protokoll-Datum: 8.12.25 Grue A-11 Assistent: N. Kaernaum 6. Versuch: HG - Homogenes

Mehr

sflt Datum: 1. l.,a+ Handzeichen: 76,*/ {'*ini.2^;,#, 7r*'&**1 Ergebnis: {Q t0 lr ) Fehlerrechnuns: trl nein Praktikum:

sflt Datum: 1. l.,a+ Handzeichen: 76,*/ {'*ini.2^;,#, 7r*'&**1 Ergebnis: {Q t0 lr ) Fehlerrechnuns: trl nein Praktikum: FAULTAT FUR PHYSf, Universität arlsruhe {TH) Praktikum lassische Physik sflt Praktikum: (P@) t^lt/_lu\ Name:..ygl) (Mo/tli/Mi,@) orname:..ß.snk... Name: Hggn.knnwllg"c versucrr:!daajq?ä..*,.!ß.tgä...ggs...

Mehr

Praktikum Physik. Protokoll zum Versuch 4: Schallwellen. Durchgeführt am Gruppe X

Praktikum Physik. Protokoll zum Versuch 4: Schallwellen. Durchgeführt am Gruppe X Praktikum Physik Protokoll zum Versuch 4: Schallwellen Durchgeführt am 03.11.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

Phasengleichgewicht (Destillation)

Phasengleichgewicht (Destillation) Phasengleichgewicht (Destillation) Labor für Thermische Verfahrenstechnik bearbeitet von Prof. Dr.-Ing. habil. R. Geike 1. Grundlagen für das Phasengleichgewicht Damf - Flüssigkeit Die unterschiedliche

Mehr

Auswertung. B06: Wasserdampf

Auswertung. B06: Wasserdampf Auswertung zum Versuch B06: Wasserdampf Jule Heier Partner: Alexander FufaeV Gruppe 254 Versuchsteil A: Dampfdruck von Wasser Messung T in C p in mbar 22,2 28 30,5 44 35,9 59 41 77 45,3 98 48,4 113 51,6

Mehr

Messung der Wärmekapazität von Nieten

Messung der Wärmekapazität von Nieten 1/1 29.09.00,21:47 Erstellt von Oliver Stamm Messung der Wärmekapazität von Nieten 1. Einleitung 1.1. Die Ausgangslage zum Experiment 1.2. Die Vorgehensweise 2. Theorie 2.1. Begriffe und Variablen 2.2.

Mehr

Absolute Luftfeuchtigkeit Ist die in einem bestimmten Luftvolumen V enthaltene Wasserdampfmasse m W. Übliche Einheit: g/m 3.

Absolute Luftfeuchtigkeit Ist die in einem bestimmten Luftvolumen V enthaltene Wasserdampfmasse m W. Übliche Einheit: g/m 3. Die Luftfeuchtigkeit Die Luftfeuchtigkeit oder kurz Luftfeuchte bezeichnet den Anteil des Wasserdampfs am Gasgemisch der Erdatmosphäre oder in Räumen. Flüssiges Wasser (zum Beispiel Regentropfen, Nebeltröpfchen)

Mehr

UNIVERSITÄT BIELEFELD -

UNIVERSITÄT BIELEFELD - UNIVERSITÄT BIELEFELD - FAKULTÄT FÜR PHYSIK LEHRSTUHL FÜR SUPRAMOLEKULARE SYSTEME, ATOME UND CLUSTER PROF. DR. ARMIN GÖLZHÄUSER Grundversuch Thermodynamik Ideale Gasgesetz Durchgeführt am 10.04.06 BetreuerIn:

Mehr

Aufgaben zum Stirlingschen Kreisprozess Ein Stirling-Motor arbeite mit 50 g Luft ( M= 30g mol 1 )zwischen den Temperaturen = 350 C und T3

Aufgaben zum Stirlingschen Kreisprozess Ein Stirling-Motor arbeite mit 50 g Luft ( M= 30g mol 1 )zwischen den Temperaturen = 350 C und T3 Aufgaben zum Stirlingschen Kreisrozess. Ein Stirling-Motor arbeite mit 50 g Luft ( M 0g mol )zwischen den emeraturen 50 C und 50 C sowie den olumina 000cm und 5000 cm. a) Skizzieren Sie das --Diagramm

Mehr

Protokoll zum Grundpraktikum Versuch T4 - Zustandsgleichung idealer Gase

Protokoll zum Grundpraktikum Versuch T4 - Zustandsgleichung idealer Gase Protokoll zum Grundpraktikum Versuch T4 - Zustandsgleichung idealer Gase Tammo Rukat Mtrknr.: 528345 MB Physik/Mathematik Humboldt-Universität zu Berlin Versuchspartner: Benjamin Bujak (529551) Versuchsplatz

Mehr

T 1 T T Zustandsverhalten einfacher Systeme (Starthilfe S ) - Prozess und Zustandsänderung. Prozess (Q 12

T 1 T T Zustandsverhalten einfacher Systeme (Starthilfe S ) - Prozess und Zustandsänderung. Prozess (Q 12 . Zustandserhalten einfacher Systeme (Starthilfe S. 9-38) - Prozess und Zustandsänderung Zustandsänderung δq Prozess (Q ) - thermodynamisch einfache Systeme reiner Stoff feste flüssige damfförmige Phase

Mehr

b ) den mittleren isobaren thermischen Volumenausdehnungskoeffizienten von Ethanol. Hinweis: Zustand 2 t 2 = 80 C = 23, kg m 3

b ) den mittleren isobaren thermischen Volumenausdehnungskoeffizienten von Ethanol. Hinweis: Zustand 2 t 2 = 80 C = 23, kg m 3 Aufgabe 26 Ein Pyknometer ist ein Behälter aus Glas mit eingeschliffenem Stopfen, durch den eine kapillarförmige Öffnung führt. Es hat ein sehr genau bestimmtes Volumen und wird zur Dichtebestimmung von

Mehr

Aufgaben zur Wärmelehre

Aufgaben zur Wärmelehre Aufgaben zur Wärmelehre 1. Ein falsch kalibriertes Quecksilberthermometer zeigt -5 C eingetaucht im schmelzenden Eis und 103 C im kochenden Wasser. Welche ist die richtige Temperatur, wenn das Thermometer

Mehr

Ausdehnung von Luft bei konstantem Volumen

Ausdehnung von Luft bei konstantem Volumen Lehrer-/Dozentenblatt Ausdehnung von Luft bei konstantem Volumen (Artikelnr.: P042800) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-0 Lehrplanthema: Wärmelehre Unterthema: Wärmeausdehnung

Mehr

Die Zusammensetzung am Ausgang der 1. Verdampfereinheit (0) kann aus dem beigefügten T, x-diagramm abgelesen werden zu

Die Zusammensetzung am Ausgang der 1. Verdampfereinheit (0) kann aus dem beigefügten T, x-diagramm abgelesen werden zu Fragenteil : Aufgabe 1 Phasengleichgewichte 15 P a Eine binäre Mischung wird in einer Verdamfereinheit kontinuierlich teilweise verdamft. Messtechnisch wurden für die Ausgangsströme der Temeratur, der

Mehr

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I 05.12.2014 Wiederholung Teil 1 (28.11.2014) Fragenstellungen: Druckanstieg im Reaktor bei Temeraturerhöhung und Produktbildung? Wie groß

Mehr

8. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler

8. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler 8. Vorlesung EP I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik (Fortsetzung: Auftrieb) c) Oberflächenspannung und Kapillarität Versuche:

Mehr

Beispiel 13: Gasvolumetrie

Beispiel 13: Gasvolumetrie Aufgabenstellung Beisiel 1: Gasvolumetrie Eine abgewogene Menge eines festen carbonathaltigen Stoffes wird mit einem Überschuss starker Säure versetzt. Die Menge an gebildetem gasförmigem Kohlenstoffdioxid

Mehr

Versuch 22. Luftfeuchtigkeit

Versuch 22. Luftfeuchtigkeit Versuch 22 Luftfeuchtigkeit 1 1 Grundlagen Infolge der Verdunstung an der freien Wasseroberfläche der Erde hat die Atmosphäre immer einen gewissen Feuchtigkeitsgehalt. Diese Feuchtigkeit wird gemessen

Mehr

Geometrische Optik. Praktikumsversuch am Gruppe: 3. Thomas Himmelbauer Daniel Weiss

Geometrische Optik. Praktikumsversuch am Gruppe: 3. Thomas Himmelbauer Daniel Weiss Geometrische Optik Praktikumsversuch am 17.11.2010 Gruppe: 3 Thomas Himmelbauer Daniel Weiss Abgegeben am: 24.11.2010 Inhaltsverzeichnis 1 Einleitung 2 2 Bestimmung der Brennweite einer Linse 2 3 Mikroskop

Mehr

Hydromechanik-Tutorium vom

Hydromechanik-Tutorium vom Hydromechanik-Tutorium vom 12.01. 2015 Aufgabe 1: Eine Wetterstation in Florida misst vor dem Sonnenuntergang einen Luftdruck von 1011 hpa, eine Temperatur von 30 C und eine relative Luftfeuchtigkeit von

Mehr

HYGROMETRIE. Im Folgenden werden vier unterschiedliche Verfahren zur Bestimmung der relativen Luftfeuchtigkeit vorgestellt. 1.

HYGROMETRIE. Im Folgenden werden vier unterschiedliche Verfahren zur Bestimmung der relativen Luftfeuchtigkeit vorgestellt. 1. Versuch 7/1 HYGROMETRIE 04.06.2012 Blatt 1 HYGROMETRIE Im Folgenden werden vier unterschiedliche Verfahren zur Bestimmung der relativen Luftfeuchtigkeit vorgestellt. 1. Grundbegriffe Die Luftfeuchtigkeit

Mehr

Protokoll zum physikalischen Anfängerpraktikum: Adiabatenexponent

Protokoll zum physikalischen Anfängerpraktikum: Adiabatenexponent Protokoll zum physikalischen Anfängerpraktikum: Adiabatenexponent Jan Korger, Studiengang Physik-Diplom, Universität Konstanz Sonja Bernhardt, Studiengang Physik-Diplom, Universität Konstanz durchgeführt

Mehr

Aufgabe 1 ( = 80)

Aufgabe 1 ( = 80) Aufgabe 1 (4 + 42 + 4 + 30 80) Ein rechtslaufender, reversibler, geschlossener Kreisprozess (KP) mit Luft ( 1.4, J 287 ) besteht aus folgenden Zustandsänderungen: K 1-2 Isentrope, wobei im Zustand 1 der

Mehr

1 Atmosphäre (atm) = 760 torr = 1013,25 mbar = Pa 760 mm Hg ( bei 0 0 C, g = 9,80665 m s -2 )

1 Atmosphäre (atm) = 760 torr = 1013,25 mbar = Pa 760 mm Hg ( bei 0 0 C, g = 9,80665 m s -2 ) Versuch Nr.51 Druck-Messung in Gasen (Bestimmung eines Gasvolumens) Stichworte: Druck, Druckeinheiten, Druckmeßgeräte (Manometer, Vakuummeter), Druckmessung in U-Rohr-Manometern, Gasgesetze, Isothermen

Mehr

Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung)

Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung) Versuch Nr. 57 Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung) Stichworte: Dampf, Dampfdruck von Flüssigkeiten, dynamisches Gleichgewicht, gesättigter Dampf, Verdampfungsenthalpie, Dampfdruckkurve,

Mehr

GPH2 Thermodynamik. 27. September Dieser Entwurf ist weder vollständig oder fehlerfrei noch ein offizielles Script zur Vorlesung.

GPH2 Thermodynamik. 27. September Dieser Entwurf ist weder vollständig oder fehlerfrei noch ein offizielles Script zur Vorlesung. GPH2 Thermodynamik Dieser Entwurf ist weder ollständig oder fehlerfrei noch ein offizielles Scrit zur Vorlesung. Für Anregungen und Kritik: mail@sibbar.de 27. Setember 2004 GPH2 Thermodynamik Seite 2 on

Mehr

Physikalisches Grundpraktikum Taupunktmessung. Taupunktmessung

Physikalisches Grundpraktikum Taupunktmessung. Taupunktmessung Aufgabenstellung: 1. Bestimmen Sie den Taupunkt. Berechnen Sie daraus die absolute und relative Luftfeuchtigkeit. 2. Schätzen Sie die Messunsicherheit ab! Stichworte zur Vorbereitung: Temperaturmessung,

Mehr

Protokoll Grundpraktikum: F5 Dichte fester Körper

Protokoll Grundpraktikum: F5 Dichte fester Körper Protokoll Grundpraktikum: F5 Dichte fester Körper Sebastian Pfitzner 6. Februar 013 Durchführung: Sebastian Pfitzner (553983), Jannis Schürmer (5589) Arbeitsplatz: 4 Betreuer: Anicó Kulow Versuchsdatum:

Mehr

Volumenprüfung nach EN DIN ISO 8655/6

Volumenprüfung nach EN DIN ISO 8655/6 Applikation TitroLine alpha plus Volumenprüfung nach EN DIN ISO 8655/6 Anwendung Die Überprüfung von Volumenmeßgeräte mit Hubkolben" - darunter fallen alle Kolbenbüretten und Titratoren mit eigenem Bürettenteil

Mehr

Physikalisches Anfaengerpraktikum. Zustandsgleichung idealer Gase und kritischer Punkt

Physikalisches Anfaengerpraktikum. Zustandsgleichung idealer Gase und kritischer Punkt Physikalisches Anfaengerpraktikum Zustandsgleichung idealer Gase und kritischer Punkt Ausarbeitung von Marcel Engelhardt & David Weisgerber (Gruppe 37) Freitag, 18. März 005 email: Marcel.Engelhardt@mytum.de

Mehr

Institut für Technische Chemie Technische Universität Clausthal. Technisch-chemisches Praktikum TCB. Versuch: Rektifikation

Institut für Technische Chemie Technische Universität Clausthal. Technisch-chemisches Praktikum TCB. Versuch: Rektifikation Institut für Technische Chemie Technische Universität Clausthal Technisch-chemisches Praktikum TCB Versuch: Rektifikation Einleitung In einer Vielzahl von chemischen Produktionsanlagen besteht die Notwendigkeit,

Mehr

Zum Beispiel: Außenluft: 1500 m³/h Umluft: 3000 m³/h Daraus ergibt sich eine Gesamtluftmenge von 4500 m³/h.

Zum Beispiel: Außenluft: 1500 m³/h Umluft: 3000 m³/h Daraus ergibt sich eine Gesamtluftmenge von 4500 m³/h. Klimatechnik Umrechnungen 1 kj/s 1 KW 3600 kj/h 1 KW (3600) Mischung von Luft C C kj/kg kj/kg g/kg g/kg Im h, x Diagramm werden die zwei Luftzustände mit einer Linie verbunden. Der Mischpunkt liegt auf

Mehr

Vakuum (VAK)

Vakuum (VAK) Inhaltsverzeichnis TUM Anfängerpraktikum für Physiker Vakuum (VAK) 25.2.26. Einleitung...2 2. Ideale Gase...2 3. Verwendetes Material...2 4. Versuchsdurchführung...2 4.. Eichung der Pirani-Manometer...2

Mehr

Übungsaufgabe Parameter und Verteilungsschätzung

Übungsaufgabe Parameter und Verteilungsschätzung Übungsaufgabe Parameter und Verteilungsschätzung Prof. Dr. rer. nat. Lüders Datum: 21.01.2019 Autor: Marius Schulte Matr.-Nr.: 10049060 FH Südwestfalen Aufgabenstellung Analysiert werden sollen die Verteilungen

Mehr

Versuch W6: Thermische Zustandsgleichung des idealen Gases

Versuch W6: Thermische Zustandsgleichung des idealen Gases Versuch W6: Thermische Zustandsgleichung des idealen Gases Aufgaben: 1. Führen Sie isotherme Zustandsänderungen durch! Zeigen Sie die Gültigkeit des Gesetzes von BOYLE MARIOTTE für Luft bei Zimmertemperatur!

Mehr

Ideales und Reales Gas Versuchsauswertung

Ideales und Reales Gas Versuchsauswertung Versuche P2-47,48,49 Ideales und Reales Gas Versuchsauswertung Marco A. Harrendorf und Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 02.05.2011 1 Inhaltsverzeichnis

Mehr

1. Thema Ziel des Versuches ist es mit vier unterschiedlichen Verfahren die Luftfeuchtigkeit zu bestimmen.

1. Thema Ziel des Versuches ist es mit vier unterschiedlichen Verfahren die Luftfeuchtigkeit zu bestimmen. Versuch T5a Hygrometrie Seite 1 von 5 Versuch: Hygrometrie Anleitung für folgende Studiengänge: Physik, L3 Physik, Biophysik, Meteorologie, Chemie, Biochemie, Geowissenschaft, Informatik, Biowissenschaften,

Mehr

Physikalisches Anfaengerpraktikum. Dissoziationsgrad und Gefrierpunkterniedrigung

Physikalisches Anfaengerpraktikum. Dissoziationsgrad und Gefrierpunkterniedrigung Physikalisches Anfaengerpraktikum Dissoziationsgrad und Gefrierpunkterniedrigung Ausarbeitung von Marcel Engelhardt & David Weisgerber (Gruppe ) Montag, 1. Februar 00 1. Versuchsaufbau Um den Dissoziationsgrad

Mehr

d) Das ideale Gas makroskopisch

d) Das ideale Gas makroskopisch d) Das ideale Gas makroskopisch Beschreibung mit Zustandsgrößen p, V, T Brauchen trotzdem n, R dazu Immer auch Mikroskopische Argumente dazunehmen Annahmen aus mikroskopischer Betrachtung: Moleküle sind

Mehr

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17 Karlsruher Institut für echnologie Institut für heorie der Kondensierten Materie Moderne heoretische Physik III (heorie F Statistische Mechanik) SS 17 Prof. Dr. Alexander Mirlin Blatt 2 PD Dr. Igor Gornyi,

Mehr

N(lT. Name:...f9n1... Vorname: Name:...5.q1r9,1... o/-) (mi#.ohne) Fehlerrechnung. Praktikum: (B1tP2) Gruppe-Nr:.?.q-.Ql.

N(lT. Name:...f9n1... Vorname: Name:...5.q1r9,1... o/-) (mi#.ohne) Fehlerrechnung. Praktikum: (B1tP2) Gruppe-Nr:.?.q-.Ql. FAKULTAT FÜR PHYSIK, Universität Karlsruhe (TH) Praktikum Klassische Physik N(lT Praktikum: (BtP2) (fl#ordiä#irdo) SSTSAS 20..a......... Gruppe-Nr:.?.q-.Ql. Name:...f9n... Vorname: Name:...5.qr9,... Vorname:

Mehr

Gasthermometer. durchgeführt am von Matthias Dräger, Alexander Narweleit und Fabian Pirzer

Gasthermometer. durchgeführt am von Matthias Dräger, Alexander Narweleit und Fabian Pirzer Gasthermometer 1 PHYSIKALISCHE GRUNDLAGEN durchgeführt am 21.06.2010 von Matthias Dräger, Alexander Narweleit und Fabian Pirzer 1 Physikalische Grundlagen 1.1 Zustandgleichung des idealen Gases Ein ideales

Mehr

Versuch Nr. 7. = q + p dv

Versuch Nr. 7. = q + p dv Hochschule Augsburg Versuch Nr. 7 Physikalisches Aufbauten 7 a bzw. 27 a Praktikum Spezifische Verdampfungsenthalpie - Dampfdruckkurve 1. Grundlagen_und_Versuchsidee 1.1 Definition der Verdampfungsenthalpie:E

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Grundpraktikum Wechselstromwiderstände 1/7 Übungsdatum: 15.05.001 Abgabetermin:.05.001 Grundpraktikum Wechselstromwiderstände Gabath Gerhild Matr. Nr. 98054 Mittendorfer Stephan Matr. Nr. 9956335 Grundpraktikum

Mehr

Grundpraktikum der Physik Versuch X Adiabatenexponent

Grundpraktikum der Physik Versuch X Adiabatenexponent Grundpraktikum der Physik Versuch X Adiabatenexponent Oliver Heinrich (oliver.heinrich@uni-ulm.de), Bernd Kugler (bernd.kugler@uni-ulm.de) Versuchsdatum: 09. Oktober 2006 Betreuer: Thomas Bschorr 20. Oktober

Mehr

Versuch 07 Der Adiabatenexponent c p/c V

Versuch 07 Der Adiabatenexponent c p/c V Physikalisches A-Praktikum Versuch 07 Der Adiabatenexponent c p/c V Praktikanten: Julius Strake Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 15. 05. 2012 Unterschrift: Inhaltsverzeichnis

Mehr

Praktikum Physik. Protokoll zum Versuch 5: Spezifische Wärme. Durchgeführt am Gruppe X

Praktikum Physik. Protokoll zum Versuch 5: Spezifische Wärme. Durchgeführt am Gruppe X Praktikum Physik Protokoll zum Versuch 5: Spezifische Wärme Durchgeführt am 10.11.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das

Mehr

25. Adiabatische Expansion eines idealen Gases 1

25. Adiabatische Expansion eines idealen Gases 1 25. Adiabatische Exansion eines idealen Gases 1 25. ADABASHE EXPANSON ENES DEALEN GASES 1. Aufgabe Für Luft als annähernd ideales Gas sollen sowohl die Molwäre bei konstante Druck, d.h.,, als auch das

Mehr

4.6 Hauptsätze der Thermodynamik

4.6 Hauptsätze der Thermodynamik Thermodynamik.6 Hautsätze der Thermodynamik.6. Erster Hautsatz: Energieerhaltungssatz In einem abgeschlossenen System bleibt der gesamte Energievorrat, also die Summe aus Wärmeenergie, mechanischer Energie

Mehr

Versuchsauswertung P2-41: Ideales und reales Gas

Versuchsauswertung P2-41: Ideales und reales Gas Versuchsauswertung P2-41: Ideales und reales Gas Kathrin Ender, Michael Walz Gruppe 10 7. Mai 2008 Inhaltsverzeichnis 1 Jollysches Gasthermometer 2 1.1 Bestimmung des Spannungskoezienten.....................

Mehr

Musterlösung zur Abschlussklausur PC I Übungen (27. Juni 2018)

Musterlösung zur Abschlussklausur PC I Übungen (27. Juni 2018) 1. Abkühlung (100 Punkte) Ein ideales Gas (genau 3 mol) durchläuft hintereinander zwei (reversible) Zustandsänderungen: Zuerst expandiert es isobar, wobei die Temperatur von 50 K auf 500 K steigt und sich

Mehr

Versuch 08 Der Dampfdruck von Wasser

Versuch 08 Der Dampfdruck von Wasser Physikalisches A-Praktikum Versuch 08 Der Dampfdruck von Wasser Praktikanten: Julius Strake Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 22.05.2012 Unterschrift: Inhaltsverzeichnis

Mehr

Taupunkt und relative Feuchte über die "Wet Bulb Temperature" (Feuchttemperatur) bestimmen

Taupunkt und relative Feuchte über die Wet Bulb Temperature (Feuchttemperatur) bestimmen Taupunkt und relative Feuchte über die "Wet Bulb Temperature" (Feuchttemperatur) bestimmen Hinter dem sperrigen Begriff "Feuchtkugeltemperatur" ("Wet Bulb Temperature", hier verkürzt auf "Feuchttemperatur")

Mehr

1 I. Thermodynamik. 1.1 Ideales Gasgesetz. 1.2 Vereinfachte kinetische Gastheorie. 1.3 Erster Hauptsatz der Thermodynamik.

1 I. Thermodynamik. 1.1 Ideales Gasgesetz. 1.2 Vereinfachte kinetische Gastheorie. 1.3 Erster Hauptsatz der Thermodynamik. 1 I. hermodynamik 1.1 Ideales Gasgesetz eilchenzahl N Stoffmenge: n [mol], N A = 6.022 10 23 mol 1 ; N = nn A molare Größen: X m = X/n ideales Gasgesetz: V = nr, R = 8.314JK 1 mol 1 Zustandsgrößen:, V,,

Mehr

Theoretische Physik 25. Juli 2013 Thermodynamik und statistische Physik (T4) Prof. Dr. U. Schollwöck Sommersemester 2013

Theoretische Physik 25. Juli 2013 Thermodynamik und statistische Physik (T4) Prof. Dr. U. Schollwöck Sommersemester 2013 Theoretische Physik 25. Juli 2013 Thermodynamik und statistische Physik (T4) Klausur Prof. Dr. U. Schollwöck Sommersemester 2013 Matrikelnummer: Aufgabe 1 2 3 4 5 6 Summe Punkte Note: WICHTIG! Schreiben

Mehr

Grundpraktikum T7 spezifische Wärmekapazität idealer Gase

Grundpraktikum T7 spezifische Wärmekapazität idealer Gase Grundpraktikum T7 spezifische Wärmekapazität idealer Gase Julien Kluge 11. Mai 2015 Student: Julien Kluge (564513) Partner: Emily Albert (564536) Betreuer: Maximilian Kockert Raum: 215 Messplatz: 2 (Clément-Desormes

Mehr

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj Aufgabe 4 Zylinder nach oben offen Der dargestellte Zylinder A und der zugehörige bis zum Ventil reichende Leitungsabschnitt enthalten Stickstoff. Dieser nimmt im Ausgangszustand ein Volumen V 5,0 dm 3

Mehr

O. Sternal, V. Hankele. 5. Thermodynamik

O. Sternal, V. Hankele. 5. Thermodynamik 5. Thermodynamik 5. Thermodynamik 5.1 Temperatur und Wärme Systeme aus vielen Teilchen Quelle: Wikimedia Commons Datei: Translational_motion.gif Versuch: Beschreibe 1 m 3 Luft mit Newton-Mechanik Beschreibe

Mehr

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System: Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar

Mehr

1. Ziel des Versuchs. 2. Theorie. Dennis Fischer Gruppe 9 Magdalena Boeddinghaus

1. Ziel des Versuchs. 2. Theorie. Dennis Fischer Gruppe 9 Magdalena Boeddinghaus Versuch Nr. 1: Joule - Thomson - Effekt 1. Ziel des Versuchs In diesem Versuch soll der Joule - Thomson - oeffizient für CO und N bestimmt werden.. Theorie Einfache Zustandsgleichungen gegeben das reale

Mehr

2 Grundbegriffe der Thermodynamik

2 Grundbegriffe der Thermodynamik 2 Grundbegriffe der Thermodynamik 2.1 Thermodynamische Systeme (TDS) Aufteilung zwischen System und Umgebung (= Rest der Welt) führt zu einer Klassifikation der Systeme nach Art der Aufteilung: Dazu: adiabatisch

Mehr

Physik 4 Praktikum Auswertung Zustandsdiagramm Ethan

Physik 4 Praktikum Auswertung Zustandsdiagramm Ethan Physik 4 Praktikum Auswertung Zustandsdiagramm Ethan Von J.W., I.G. 2014 Seite 1. Kurzfassung......... 2 2. Theorie.......... 2 2.1. Zustandsgleichung....... 2 2.2. Koexistenzgebiet........ 3 2.3. Kritischer

Mehr

Klasse : Name : Datum :

Klasse : Name : Datum : Gasgesetze (Boyle-Mariotte, Gay-Lussac, Amontons) Klasse : Name : Datum : Hinweis: Sämtliche Versuche werden vom Lehrer durchgeführt (Lehrerversuche). Die Protokollierung und Auswertung erfolgt durch den

Mehr

Musterlösung Aufgabe 1: Zweikammermesssysatem

Musterlösung Aufgabe 1: Zweikammermesssysatem Klausur Thermodynamik I (08.09.2016) 1 Musterlösung Aufgabe 1: Zweikammermesssysatem Teilaufgabe a) Da die Membrane zunächst für Wärme undurchlässig ist, handelt es sich um eine adiabate Zustandsänderung

Mehr

Versuch 14: Dampfdruckkurve - Messung der Dampfdruckkurven leicht verdampfbarer Flüssigkeiten -

Versuch 14: Dampfdruckkurve - Messung der Dampfdruckkurven leicht verdampfbarer Flüssigkeiten - 1 ersuch 14: Dampfdruckkurve - Messung der Dampfdruckkurven leicht verdampfbarer Flüssigkeiten - 1. Theorie Befindet sich eine Flüssigkeit in einem abgeschlossenen Gefäß, so stellt sich zwischen der Gasphase

Mehr