Probestudium Physik. Theoretische Physik. Einführung in. Statistische Physik und Thermodynamik. Jochen Hub, Universität des Saarlandes

Größe: px
Ab Seite anzeigen:

Download "Probestudium Physik. Theoretische Physik. Einführung in. Statistische Physik und Thermodynamik. Jochen Hub, Universität des Saarlandes"

Transkript

1 Probestudium Physik Theoretische Physik Einführung in Statistische Physik und Thermodynamik Jochen Hub, Universität des Saarlandes

2 Theoretische Physik Klassische Mechanik Quanten- mechanik Elektrodynamik und Relativitätstheorie Statistische Physik und Thermodynamik (Quanten-)Feldtheorie Allgemeine Relativitätstheorie

3 Warmup kalt heiß

4 Warmup kalt heiß Warum fließt Energie von warm nach kalt? Warum nicht umgekehrt?

5 Warmup kalt heiß Warum fließt Energie von warm nach kalt? Warum nicht umgekehrt? kalt heiß

6 Warmup kalt heiß Warum fließt Energie von warm nach kalt? Warum nicht umgekehrt? kalt heiß Was ist überhaupt Temperatur?

7 Warum statistische Physik? Wir wissen doch alles, oder? 1. Anfangsbedingungen ~x(t = 0), ~v(t = 0) 2. Kraftgesetze, z.b. Gravitationsgesetz 3. Bewegungsgesetz ~F = m~a F = G m 1m 2 r 2 ~x(t)

8 Warum statistische Physik? Wir wissen doch alles, oder? 1. Anfangsbedingungen ~x(t = 0), ~v(t = 0) 2. Kraftgesetze, z.b. Gravitationsgesetz 3. Bewegungsgesetz ~F = m~a F = G m 1m 2 r 2 ~x(t) 1 bis 2 Teilchen Einfach! Z.B. Keplergesetze, Planetenbahnen,

9 Warum statistische Physik? Wir wissen doch alles, oder? 1. Anfangsbedingungen ~x(t = 0), ~v(t = 0) 2. Kraftgesetze, z.b. Gravitationsgesetz 3. Bewegungsgesetz ~F = m~a F = G m 1m 2 r 2 ~x(t) 1 bis 2 Teilchen Einfach! Z.B. Keplergesetze, Planetenbahnen, 3 bis mehrere Teilchen Extrem kompliziert, Chaos,

10 Warum statistische Physik? Wir wissen doch alles, oder? 1. Anfangsbedingungen ~x(t = 0), ~v(t = 0) 2. Kraftgesetze, z.b. Gravitationsgesetz 3. Bewegungsgesetz ~F = m~a F = G m 1m 2 r 2 ~x(t) 1 bis 2 Teilchen Einfach! Z.B. Keplergesetze, Planetenbahnen, 3 bis mehrere Teilchen Extrem kompliziert, Chaos, Teilchen Einfach wenn man mit Wahrscheinlichkeiten arbeitet

11 Zustände Beispiel 1) 3 Elektronen auf Kette + = = e 1 e 2 e

12 Zustände Beispiel 1) 3 Elektronen auf Kette + = = e 1 e 2 e {~x 1, ~v 1 } Beispiel 2) Gasmoleküle im Kasten 2 3 {~x 2, ~v 2 } {~x 3, ~v 3 } Zustand = {~x 1,...~x n, ~v 1,...~v n } Bild: resource2.rockyview.ab.ca

13 Zustände haben eine Energie Energie, zum Beispiel: E = m 1 2 v2 1 + m 21 2 v2 2 + m 3 2 v {~x 1, ~v 1 } Beispiel 2) Gasmoleküle im Kasten 2 3 {~x 2, ~v 2 } {~x 3, ~v 3 } E könnte aber auch viel komplizierter sein Zustand = {~x 1,...~x n, ~v 1,...~v n } Bild: resource2.rockyview.ab.ca

14 Wie viele Zustände haben wir typischerweise? Beispiel 1) 3 Elektronen auf Kette + = = e 1 e 2 e N Elektronen: Anzahl möglicher Zustände = 2 N Z.B. N = Anzahl Zustaende 10 (1023 )

15 Wie viele Zustände haben wir typischerweise? Beispiel 2) Gasmoleküle im Kasten N pos = Anzahl möglicher Orte N geschw = Anzahl möglicher Geschwindigkeiten N mol = Anzahl Moleküle, z.b. N mol = Anzahl Zustaende = (N pos N geschw ) N mol Zustand = {~x 1,...~x n, ~v 1,...~v n } Bild: resource2.rockyview.ab.ca

16 Wir haben also Extrem viele Zustände? Jeder Zustand hat eine Energie Diese Zustände heißen Mikrozustände.

17 Aber längst nicht alle Zustände sind erreichbar Energie zu Beginn: zwischen E und E + δe? Energieerhaltung in isoliertem System

18 Aber längst nicht alle Zustände sind erreichbar Energie zu Beginn: zwischen E und E + δe? Energieerhaltung in isoliertem System Nur Zustände zwischen E und E + δe sind erreichbar / zugänglich.

19 Aber längst nicht alle Zustände sind erreichbar Energie zu Beginn: zwischen E und E + δe? Energieerhaltung in isoliertem System Nur Zustände zwischen E und E + δe sind erreichbar / zugänglich. Definition: Zustände, die mit der Energie des Systems kompatibel sind heißen zugängliche Zustände.

20 Wir haben also Extrem viele Zustände? Jeder Zustand hat eine Energie Nur ein kleiner Anteil der Mikrozustände ist zugänglich. Diese Zustände heißen Mikrozustände.

21 Makro- vs. Mikrozustände

22 Makro- vs. Mikrozustände Mikrozustand (einzelne Würfel) Makrozustand (Summe) 6

23 Makro- vs. Mikrozustände Mikrozustand (einzelne Würfel) 6 Anzahl Mikrozustände Makrozustand (Summe) Bild: math.stackexchange.com Makrozustand (Summe)

24 Makro- vs. Mikrozustände Mikrozustand (einzelne Würfel) Makrozustand: definiert durch die von außen sichtbaren Eigenschaften. Viele Mikrozustände können zu einem Makrozustand beitraten. Bild: math.stackexchange.com 6 Anzahl Mikrozustände Makrozustand (Summe) Makrozustand (Summe)

25 Makro- vs. Mikrozustände Mikrozustand (einzelne Würfel) Zugängliche Mikrozustände für den Makrozustand Würfelsumme = 6 Bild: math.stackexchange.com 6 Anzahl Mikrozustände Makrozustand (Summe) Makrozustand (Summe)

26 Zentrales Postulat der statistischen Physik Postulat der gleichen A-priori-Wahrscheinlichkeiten Wenn ein isoliertes System im Gleichgewicht ist (nach langer Zeit), so hat jeder zugängliche Zustand die gleiche Wahrscheinlichkeit.

27 Zentrales Postulat der statistischen Physik Postulat der gleichen A-priori-Wahrscheinlichkeiten Wenn ein isoliertes System im Gleichgewicht ist (nach langer Zeit), so hat jeder zugängliche Zustand die gleiche Wahrscheinlichkeit. Folge 1) Sei Ω die Anzahl der zugänglichen Mikrozustände. Im Gleichgewicht hat jeder Zustand die Wahrscheinlichkeit P = 1

28 Zentrales Postulat der statistischen Physik Postulat der gleichen A-priori-Wahrscheinlichkeiten Wenn ein isoliertes System im Gleichgewicht ist (nach langer Zeit), so hat jeder zugängliche Zustand die gleiche Wahrscheinlichkeit. Folge 1) Sei Ω die Anzahl der zugänglichen Mikrozustände. Im Gleichgewicht hat jeder Zustand die Wahrscheinlichkeit P = 1 Folge 2) Sei Ω(E) die Anzahl der Zustände, die zum Makrozustand E führen. Dann ist die Wahrscheinlichkeit für E P (E) = (E)

29 Zentrales Postulat der statistischen Physik Postulat der gleichen A-priori-Wahrscheinlichkeiten Wenn ein isoliertes System im Gleichgewicht ist (nach langer Zeit), so hat jeder zugängliche Zustand die gleiche Wahrscheinlichkeit. Also: lasst uns Zustände zählen! Folge 1) Sei Ω die Anzahl der zugänglichen Mikrozustände. Im Gleichgewicht hat jeder Zustand die Wahrscheinlichkeit P = 1 Folge 2) Sei Ω(E) die Anzahl der Zustände, die zum Makrozustand E führen. Dann ist die Wahrscheinlichkeit für E P (E) = (E)

30 Makro- vs. Mikrozustände Mikrozustand (einzelne Würfel) = 36 (6) = 5 (6) 5 P (6) = = 36 6 Anzahl Mikrozustände Zugängliche Mikrozustände für den Makrozustand Würfelsumme = 6 Makrozustand (Summe) Makrozustand (Summe)

31 Wir haben also Anzahl Mikrozustände: Ω? Interessieren uns für Makrozustand mit Energie E Energie zwischen E und E + δe Anzahl zugängliche Zustände: Ω(E) Ω(E) ~ E f f Ω(E) seigt extrem rasch mit E an! ln Ω(E) ~ f ln E Aus Postulat der gleichen a priori-wahrscheinlichkeiten: P (Makrozustand A) = (Makrozustand A)

32 Boltzmann-Faktor / Boltzmann-Verteilung Kleines System im Kontakt mit Wärmebad: Stein im See Tisch im Haus Protein in Ihrem Körper Wahrscheinlichkeit, dass das kleine System den Zustand r hat: P r / e E r /k B T k B = Boltzmann-Konstante Ludwig Boltzmann

33 Proteine sind die Nanomaschinen des Lebens oxygen storage immune receptor Pore / channel Viral fusion protein

34 Proteine sind die Nanomaschinen des Lebens Chen and Hub, Biophys J, 2015 Kutzner, Grubmüller, de Groot, Zachariae, Biophys J, 2011

35 Protein = Uhrwerk? Chen and Hub, Biophys J, 2015

36 Protein (Fehl-)Funktion durch Konformationsänderungen Aktive Konformation Inaktive Konformation Energie E aktiv Energie E inaktiv P (aktiv) e E aktiv/k B T P (inaktiv) e E inaktiv/k B T Brown and Cooper, BBA (1996) PDB-101,doi: /rcsb_pdb/mom_2003_7

37 Protein (Fehl-)Funktion durch Konformationsänderungen Aktive Konformation Inaktive Konformation Energie E aktiv Energie E inaktiv Protein-Aggregation Alzheimer Parkinsonkrankeit P (aktiv) e E aktiv/k B T P (inaktiv) e E inaktiv/k B T Brown and Cooper, BBA (1996) PDB-101,doi: /rcsb_pdb/mom_2003_7 Ries & Nussbaum-Krammer, DOI: /EBC

38 Warmup kalt heiß Warum fließt Energie von warm nach kalt? Weil der Fluss warm nach kalt viiiiiel wahrscheinlicher ist. kalt heiß Was ist überhaupt Temperatur? 1 k B T = d(ln (E)) de

Drei Beschreibungsebenen der Thermodynamik

Drei Beschreibungsebenen der Thermodynamik F. Herrmann Drei Beschreibungsebenen der Thermodynamik 1 1. Molekularkinetische Ebene 2. Statistische Ebene geeignet, wenn alle Teilchen dasselbe machen 3. Phänomenologische Ebene 4. Folgerungen 2 1. Molekularkinetische

Mehr

Thermodynamik 2. Zweiter Hauptsatz der Thermodynamik. Entropie. Die statistische Definition der Entropie.

Thermodynamik 2. Zweiter Hauptsatz der Thermodynamik. Entropie. Die statistische Definition der Entropie. Thermodynamik 2. Zweiter Hauptsatz der Thermodynamik. Entropie. Die statistische Definition der Entropie. Die Hauptsätze der Thermodynamik Kurze Zusammenfassung der Hauptsätze 0. Hauptsatz: Stehen zwei

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 14. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 14. 06.

Mehr

Experimentalphysik I : Mechanik und Wärmelehre WS 2010/11 Prof. Dr. J. Winter

Experimentalphysik I : Mechanik und Wärmelehre WS 2010/11 Prof. Dr. J. Winter Informationen zur Klausur 2. Teilklausur Freitag, den 28.1.2011 Schwingungen (2.7) Wellen (2.8) Wärmelehre kin. Gastheorie (3.1) Wärme (3.2) Wärmetransport (3.3) 1. Haupsatz (isotherm, adiabatisch, isochor,

Mehr

Nachtrag zu 11: 11.6.Statistische Physik: Entropie, Boltzmann-Verteilung

Nachtrag zu 11: 11.6.Statistische Physik: Entropie, Boltzmann-Verteilung Nachtrag zu 11: 11.6.Statistische Physik: Entropie, Boltzmann-Verteilung Ludwig Boltzmann 1860: Maxwellsche Geschwindigkeitsverteilung 1865: Clausius, thermodynamische Entropie, 2. Hauptsatz: Entropie

Mehr

Unterricht zur Wärmelehre auf der Basis des KPK

Unterricht zur Wärmelehre auf der Basis des KPK DER KARSLRUHER PHYSIKKURS Unterricht zur Wärmelehre auf der Basis des KPK DER KARSLRUHER PHYSIKKURS Wärmelehre ohne Entropie und Entropieströme ist wie Elektrizitätslehre ohne elektrische Ladung und

Mehr

Onsagersche Gleichung. Energetische Beziehungen

Onsagersche Gleichung. Energetische Beziehungen Onsagersche Gleichung. Energetische Beziehungen R I 4 V t t 1 r 8... D A p l J LX c x Zustandsgrössen sind Grössen, die zur Beschreibung des Zustandes eines stofflichen Systems dienen, T, V, p, m,... T,

Mehr

Hauptsätze der Thermodynamik

Hauptsätze der Thermodynamik Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Hauptsätze der Thermodynamik Dominik Pfennig, 31.10.2012 Inhalt 0. Hauptsatz Innere Energie 1. Hauptsatz Enthalpie Satz von Hess 2. Hauptsatz

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 11. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 11. 06.

Mehr

Wiederholung Film Brownsche Bewegung in Milch (Fettröpfchen in Wasser)

Wiederholung Film Brownsche Bewegung in Milch (Fettröpfchen in Wasser) 2.Vorlesung Wiederholung Film Brownsche Bewegung in Milch (Fettröpfchen in Wasser) P.F.: Man weiß heute, dass das Brownsche Teilchen ein Perpetuum mobile zweiter Art ist, und dass sein Vorhandensein den

Mehr

Inhaltsverzeichnis Grundbegriffe. 2. Einführung in die statistische Mechanik. 3. Normalmoden. 4. Molekulardynamik

Inhaltsverzeichnis Grundbegriffe. 2. Einführung in die statistische Mechanik. 3. Normalmoden. 4. Molekulardynamik Inhaltsverzeichnis. Grundbegriffe. ormalmoden 4. Molekulardynamik 5. Monte -Carlo Simulationen 6. Finite-Elemente Methode 844-906 J. W. Gibbs (89 90) 2 Einführung in die statistische Mechanik Gas in einem

Mehr

Statistische Mechanik

Statistische Mechanik David H. Trevena Statistische Mechanik Eine Einführung '«WO«.»vmo i; Übersetzt von Thomas Filk VCH Weinheim New York Basel Cambridge Tokyo Inhaltsverzeichnis Vorwort von H. N. V. Temperley Vorwort des

Mehr

Molekulare Bioinformatik

Molekulare Bioinformatik Molekulare Bioinformatik Wintersemester 2013/2014 Prof. Thomas Martinetz Institut für Neuro- und Bioinformatik Universität zu Luebeck 14.01.2014 1 Molekulare Bioinformatik - Vorlesung 11 Wiederholung Wir

Mehr

Übersicht. Rückblick: klassische Mechanik

Übersicht. Rückblick: klassische Mechanik 61 Übersicht 1) Makroskopische k (phänomenologische) h Thermodynamik Terminologie Hauptsätze der Thermodynamik Kreisprozesse Maxwell Viereck response Funktionen Phasenübergänge 2) Statistische i Mechanik

Mehr

22. Entropie; Zweiter Hauptsatz der Wärmelehre

22. Entropie; Zweiter Hauptsatz der Wärmelehre 22. Entropie; Zweiter Hauptsatz der Wärmelehre Nicht alle Prozesse, die dem Energiesatz genügen, finden auch wirklich statt Beispiel: Um alle Energieprobleme zu lösen, brauchte man keine Energie aus dem

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 18. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 18. 06.

Mehr

Hochschule Düsseldorf University of Applied Sciences. 20. April 2016 HSD. Energiespeicher Wärme

Hochschule Düsseldorf University of Applied Sciences. 20. April 2016 HSD. Energiespeicher Wärme Energiespeicher 02 - Wärme Wiederholung Energiearten Primärenergie Physikalische Energie Kernenergie Chemische Energie Potentielle Energie Kinetische Energie Innere Energie Quelle: Innere Energie Innere

Mehr

Hochschule Düsseldorf University of Applied Sciences. 13. April 2016 HSD. Energiespeicher. Thermodynamik

Hochschule Düsseldorf University of Applied Sciences. 13. April 2016 HSD. Energiespeicher. Thermodynamik 13. April 2016 Energiespeicher Thermodynamik Prof. Dr. Alexander Braun // Energiespeicher // SS 2016 26. April 2017 Thermodynamik Grundbegriffe Prof. Dr. Alexander Braun // Energiespeicher // SS 2017 26.

Mehr

6.2 Zweiter HS der Thermodynamik

6.2 Zweiter HS der Thermodynamik Die Änderung des Energieinhaltes eines Systems ohne Stoffaustausch kann durch Zu-/Abfuhr von Wärme Q bzw. mechanischer Arbeit W erfolgen Wird die Arbeit reversibel geleistet (Volumenarbeit), so gilt W

Mehr

8.1. Kinetische Theorie der Wärme

8.1. Kinetische Theorie der Wärme 8.1. Kinetische Theorie der Wärme Deinition: Ein ideales Gas ist ein System von harten Massenpunkten, die untereinander und mit den Wänden elastische Stöße durchühren und keiner anderen Wechselwirkung

Mehr

Thermodynamik (Wärmelehre) III kinetische Gastheorie

Thermodynamik (Wärmelehre) III kinetische Gastheorie Physik A VL6 (07.1.01) Thermodynamik (Wärmelehre) III kinetische Gastheorie Thermische Bewegung Die kinetische Gastheorie Mikroskopische Betrachtung des Druckes Mawell sche Geschwindigkeitserteilung gdes

Mehr

Die Carnot-Maschine SCHRITT III. Isotherme Kompression bei einer Temperatur T 2 T 2. Wärmesenke T 2 = konstant. Nicolas Thomas

Die Carnot-Maschine SCHRITT III. Isotherme Kompression bei einer Temperatur T 2 T 2. Wärmesenke T 2 = konstant. Nicolas Thomas Die Carnot-Maschine SCHRITT III Isotherme Kompression bei einer Temperatur T 2 T 2 Wärmesenke T 2 = konstant Die Carnot-Maschine SCHRITT IV Man isoliert das Gas wieder thermisch und drückt den Kolben noch

Mehr

Paarverteilungsfunktion und Strukturfaktor Seminar: Weiche Materie

Paarverteilungsfunktion und Strukturfaktor Seminar: Weiche Materie 30.11.2007 Paarverteilungsfunktion und Strukturfaktor Seminar: Weiche Materie Johanna Flock Gliederung Einleitung Kurze Wiederholung Statistischer Mechanik Ensemble Statistische Beschreibung von Kolloid

Mehr

5.4.2 Was man wissen muss

5.4.2 Was man wissen muss 5.4.2 Was man wissen muss Begriffe wie System, Ensemble mindestens die drei Beispiele (Gas, Kritall-Atome; Kristall-Elektronen) sollte man nachvollziehen können. Den Begriff des thermodynamischen Gleichgewichts.

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 14. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 14. 06.

Mehr

Ab-initio Thermodynamik

Ab-initio Thermodynamik Institut für Theoretische Physik Technische Universität Clausthal 4. Dezember 2004 Hintergrund Für kommende Transistorgenerationen ( 2013) müssen Oxide (z.b: Ba x Sr 1 x TiO 3 ) epitaktisch auf Halbleitern

Mehr

Entropie. Einführung in grundlegende Begrie und formale Herleitung. Alexander Erlich. B. Sc. Physik, 4.

Entropie. Einführung in grundlegende Begrie und formale Herleitung. Alexander Erlich. B. Sc. Physik, 4. Statistische Herleitung der und Anwendungen Einführung in grundlegende Begrie und formale Herleitung alexander.erlich@gmail.com B. Sc. Physik, 4. Semester www.airlich.de Statistische Herleitung der und

Mehr

Systemanalyse und Modellbildung

Systemanalyse und Modellbildung und Modellbildung Universität Koblenz-Landau Fachbereich 7: Natur- und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter) 8. Thermodynamik und Informationstheorie

Mehr

SYSTEMANALYSE 2 Kapitel 8: Thermodynamik und Informationstheorie in der Systemanalyse

SYSTEMANALYSE 2 Kapitel 8: Thermodynamik und Informationstheorie in der Systemanalyse Universität Koblenz-Landau Fachbereich 7: Natur-und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter) SYSTEMANALYSE 2 Kapitel 8: Thermodynamik und Informationstheorie

Mehr

Hier der Rest der Bearbeitungen zu den Übungsbeispielen. Viel Erfolg beim Test!

Hier der Rest der Bearbeitungen zu den Übungsbeispielen. Viel Erfolg beim Test! Liebe Übungsgruppe! Hier der Rest der Bearbeitungen zu den Übungsbeispielen. Viel Erfolg beim Test! 45) Die Nullpunktsenergie von 3ε kommt daher, dass die drei Oszillatoren im Grundzustand jeweils eine

Mehr

E2: Wärmelehre und Elektromagnetismus 8. Vorlesung

E2: Wärmelehre und Elektromagnetismus 8. Vorlesung E2: Wärmelehre und Elektromagnetismus 8. Vorlesung 3.5.2018 Heute: - Boltzmann-Verteilung - Wärmekraftmaschinen - Carnot-Prozess und Wirkungsgrad - Kraftwärmemaschinen Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de

Mehr

15. April Energiespeicher Wärme

15. April Energiespeicher Wärme Energiespeicher 02 - Wärme 1 Wiederholung 2 Eigenschaften von Speichern Eigenschaft Kurzbeschreibung Kapazität Speicherdichte Leistung Zeitskala Wirkungsgrad Temperaturbereich Anzahl Ladezyklen Verluste

Mehr

Repetitorium QM 1 - Tag 5

Repetitorium QM 1 - Tag 5 Thermodynamik und 4. März 2016 Inhaltsverzeichnis 1 Thermodynamik Hauptsätze der Thermodynamik 2 Zustandsgrößen Thermodynamik Hauptsätze der Thermodynamik Ziel: Beschreibung des makroskopischen Gleichgewichtszustandes

Mehr

Klausur zur Statistischen Physik SS 2013

Klausur zur Statistischen Physik SS 2013 Klausur zur Statistischen Physik SS 2013 Prof. Dr. M. Rohlfing Die folgenden Angaben bitte deutlich in Blockschrift ausfüllen: Name, Vorname: geb. am: in: Matrikel-Nr.: Übungsgruppenleiter: Aufgabe maximale

Mehr

O. Sternal, V. Hankele. 5. Thermodynamik

O. Sternal, V. Hankele. 5. Thermodynamik 5. Thermodynamik 5. Thermodynamik 5.1 Temperatur und Wärme Systeme aus vielen Teilchen Quelle: Wikimedia Commons Datei: Translational_motion.gif Versuch: Beschreibe 1 m 3 Luft mit Newton-Mechanik Beschreibe

Mehr

100 Jahre nach Boltzmann - wie steht es um die Grundlagen der Thermodynamik? Jochen Gemmer Osnabrück,

100 Jahre nach Boltzmann - wie steht es um die Grundlagen der Thermodynamik? Jochen Gemmer Osnabrück, 100 Jahre nach Boltzmann - wie steht es um die Grundlagen der Thermodynamik? Jochen Gemmer Osnabrück, 28.10.2004 Primäres Gesetz oder angepaßte Beschreibung? Quantenmechanik: Klassische Mechanik: i h h2

Mehr

Das Ideale Gas Kinetische Gastheorie (auf atomarer Ebene)

Das Ideale Gas Kinetische Gastheorie (auf atomarer Ebene) Das Ideale Gas Kinetische Gastheorie (auf atomarer Ebene) Wir haben gesehen, dass ein sogenanntes 'ideales Gas' durch die Zustandsgleichung pv = νr T [1] beschrieben wird; wir wollen nun verstehen, welchen

Mehr

Übungsblatt 2 ( )

Übungsblatt 2 ( ) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 01 Übungsblatt (11.05.01) 1) Geschwindigkeitsverteilung eines idealen Gases (a) Durch welche Verteilung lässt sich die Geschwindigkeitsverteilung

Mehr

Die fundamentalen Gesetze der Mechanik (Isaac Newton, Kraft, Masse)

Die fundamentalen Gesetze der Mechanik (Isaac Newton, Kraft, Masse) Die fundamentalen Gesetze der Mechanik (Isaac Newton, Kraft, Masse) Die fundamentalen Gesetze der Mechanik (Isaac Newton, Kraft, Masse) Bewegung Masse Kräfte Die fundamentalen Gesetze der Mechanik (Isaac

Mehr

Kapitel 3. Statistische Definition der Entropie. 3.1 Ensemble aus vielen Teilchen

Kapitel 3. Statistische Definition der Entropie. 3.1 Ensemble aus vielen Teilchen Kapitel 3 Statistische Definition der Entropie 3.1 Ensemble aus vielen Teilchen Die Überlegungen dieses Abschnitts werden für klassische Teilchen formuliert, gelten sinngemäß aber genauso auch für Quantensysteme.

Mehr

Thermodynamik. Wechselwirkung mit anderen Systemen Wärme, Arbeit, Teilchen

Thermodynamik. Wechselwirkung mit anderen Systemen Wärme, Arbeit, Teilchen 18a Temperatur 1 Thermodynamik Thermodynamik ist eine phänomenologische Wissenschaft Sie beschreibt die Wechselwirkung von Systemen mit ihrer Umgebung Aus der Erfahrung und durch zahllose Beobachtungen

Mehr

Thermodynamik un Statistische Mechanik

Thermodynamik un Statistische Mechanik Theoretische Physik Band 9 Walter Greiner Ludwig Neise Horst Stöcker Thermodynamik un Statistische Mechanik Ein Lehr- und Übungsbuch Mit zahlreichen Abbildungen, Beispiele n und Aufgaben mit ausführlichen

Mehr

Maxwell-Boltzmann Verteilung. Mykola Zotko Frankfurt am Main

Maxwell-Boltzmann Verteilung. Mykola Zotko Frankfurt am Main Maxwell-Boltzmann Verteilung James Clerk Maxwell 1831-1879 Ludwig Boltzmann 1844-1906 Maxwell-Boltzmann Verteilung 1860 Geschwindigkeitsverteilung - eine Verteilungsfunktion, die angibt, mit welcher relativen

Mehr

E2: Wärmelehre und Elektromagnetismus 8. Vorlesung

E2: Wärmelehre und Elektromagnetismus 8. Vorlesung E2: Wärmelehre und Elektromagnetismus 8. Vorlesung 3.5.2018 Heute: - Boltzmann-Verteilung - Wärmekraftmaschinen - Kraftwärmemaschinen - Carnot-Prozess und Wirkungsgrad Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de

Mehr

Auswahl von Prüfungsfragen für die Prüfungen im September 2011

Auswahl von Prüfungsfragen für die Prüfungen im September 2011 Auswahl von Prüfungsfragen für die Prüfungen im September 2011 Was ist / sind / bedeutet / verstehen Sie unter... Wie nennt man / lautet / Wann spricht man von / Definieren Sie... Die anschließenden Fragen

Mehr

Thermodynamik und Statistische Mechanik

Thermodynamik und Statistische Mechanik Theoretische Physik Band 9 Walter Greiner Ludwig Neise Horst Stöcker Thermodynamik und Statistische Mechanik Ein Lehr- und Übungsbuch Mit zahlreichen Abbildungen, Beispielen und Aufgaben mit ausführlichen

Mehr

RT N j Mit den Potentialen unter Standardbedingungen können wir die Energien der beiden Zustände identifizieren: = e Ei

RT N j Mit den Potentialen unter Standardbedingungen können wir die Energien der beiden Zustände identifizieren: = e Ei im Gleichgewicht wechseln genauso viele Teilchen aus dem einen Zustand in den zweiten wie umgekehrt, die chemischen Potentiale µ i sind also gleich) N i = e µ i µ N Mit den Potentialen unter Standardbedingungen

Mehr

Statistische Physik I

Statistische Physik I Statistische Physik I 136.020 SS 2010 Vortragende: C. Lemell, S. YoshidaS http://dollywood.itp.tuwien.ac.at/~statmech Übersicht (vorläufig) 1) Wiederholung Begriffsbestimmung Eulergleichung 2) Phänomenologische

Mehr

Proseminar: Theoretische Physik. und Astroteilchenphysik. Fermi- und Bose Gase. Thermodynamisches Gleichgewicht

Proseminar: Theoretische Physik. und Astroteilchenphysik. Fermi- und Bose Gase. Thermodynamisches Gleichgewicht Proseminar: Theoretische Physik und Astroteilchenphysik Thermodynamisches Gleichgewicht Fermi- und Bose Gase Inhalt 1. Entropie 2. 2ter Hauptsatz der Thermodynamik 3. Verteilungsfunktion 1. Bosonen und

Mehr

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System: Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar

Mehr

6.2 Temperatur und Boltzmann Verteilung

6.2 Temperatur und Boltzmann Verteilung 222 KAPITEL 6. THERMODYNAMIK UND WÄRMELEHRE 6.2 Temperatur und Boltzmann Verteilung Im letzten Abschnitt haben wir gesehen, dass eine statistische Verteilung von Atomen eines idealen Gases in einem Volumen

Mehr

f) Ideales Gas - mikroskopisch

f) Ideales Gas - mikroskopisch f) Ideales Gas - mikroskopisch i) Annahmen Schon gehabt: Massenpunkte ohne Eigenvolumen Nur elastische Stöße, keine Wechselwirkungen Jetzt dazu: Wände vollkommen elastisch, perfekte Reflektoren Zeitliches

Mehr

Der Entropiebegriff in der Thermodynamik und der. Statistischen Mechanik

Der Entropiebegriff in der Thermodynamik und der. Statistischen Mechanik Der Entropiebegriff in der Thermodynamik und der Statistischen Mechanik Kurt Schönhammer Institut für Theoretische Physik Universität Göttingen Inhaltsangabe Zur historischen Enwicklung der Thermodynamik

Mehr

Kapitel 5. Kanonisches Ensemble. 5.1 Herleitung 1; E 1 =? 2; E 2 =?

Kapitel 5. Kanonisches Ensemble. 5.1 Herleitung 1; E 1 =? 2; E 2 =? Kapitel 5 Kanonisches Ensemble 5.1 Herleitung Abgesehen von der Legendre-Transformation S(E,, N) F (T,, N) besteht noch eine weitere Möglichkeit, die freie Energie zu berechnen, und zwar wiederum mittels

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften

Mehr

Einführung in die theoretische Physik 1

Einführung in die theoretische Physik 1 Einführung in die theoretische Physik 1 Prof. Dr. L. Mathey Dienstag 15:45 16:45 und Donnerstag 10:45 12:00 Beginn: 23.10.12 Jungius 9, Hörs 2 Mathey Einführung in die theor. Physik 1 1 Bedeutung der statistischen

Mehr

1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen

1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen IV. Wärmelehre 1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen Historisch: Wärme als Stoff, der übertragen und in beliebiger Menge erzeugt werden kann. Übertragung: Wärmezufuhr Joulesche

Mehr

Grundlagen der statistischen Physik und Thermodynamik

Grundlagen der statistischen Physik und Thermodynamik Grundlagen der statistischen Physik und Thermodynamik "Feuer und Eis" von Guy Respaud 6/14/2013 S.Alexandrova FDIBA 1 Grundlagen der statistischen Physik und Thermodynamik Die statistische Physik und die

Mehr

Integrierter Kurs P1a im WiSe 2009/10. Skript Experimentalphysik. Prof. Dr. Oliver Benson

Integrierter Kurs P1a im WiSe 2009/10. Skript Experimentalphysik. Prof. Dr. Oliver Benson Integrierter Kurs P1a im WiSe 2009/10 Skript Experimentalphysik Prof. Dr. Oliver Benson I. Einleitung 1. Das physikalische Weltbild Die Physik beschäftigt sich mit den Grundbausteinen der wahrnehmbaren

Mehr

Physikalische Chemie 1

Physikalische Chemie 1 Physikalische Chemie 1 Christian Lehmann 31. Januar 2004 Inhaltsverzeichnis 1 Einführung 2 1.1 Teilgebiete der Physikalischen Chemie............... 2 1.1.1 Thermodynamik (Wärmelehre)............... 2 1.1.2

Mehr

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen Physik für Maschinenbau Prof. Dr. Stefan Schael RWTH Aachen Vorlesung 11 Brechung b α a 1 d 1 x α b x β d 2 a 2 β Totalreflexion Glasfaserkabel sin 1 n 2 sin 2 n 1 c arcsin n 2 n 1 1.0 arcsin

Mehr

Erinnerung an die Thermodynamik

Erinnerung an die Thermodynamik 2 Erinnerung an die Thermodynamik 2.1 Erinnerung an die Thermodynamik Hauptsätze der Thermodynamik Thermodynamische Potentiale 14 2 Erinnerung an die Thermodynamik 2.1 Thermodynamik: phänomenologische

Mehr

PROBLEME AUS DER PHYSIK

PROBLEME AUS DER PHYSIK Helmut Vogel PROBLEME AUS DER PHYSIK Aufgaben und Lösungen zur 16. Auflage von Gerthsen Kneser Vogel Physik Mit über 1100 Aufgaben, 158 Abbildungen und 16 Tabellen Springer-Verlag Berlin Heidelberg New

Mehr

6. Boltzmann Gleichung

6. Boltzmann Gleichung 6. Boltzmann Gleichung 1 6.1 Herleitung der Boltzmann Gleichung 2 6.2 H-Theorem 3 6.3 Transportphänomene G. Kahl (Institut für Theoretische Physik) Statistische Physik II Kapitel 6 3. Juni 2013 1 / 23

Mehr

Aufgaben zur Experimentalphysik II: Thermodynamik

Aufgaben zur Experimentalphysik II: Thermodynamik Aufgaben zur Experimentalphysik II: Thermodynamik Lösungen William Hefter - 5//8 1. 1. Durchmesser der Stahlstange nach T : D s D s (1 + α Stahl T) Durchmesser der Bohrung im Ring nach T : D m D m (1 +

Mehr

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik III (Theorie F Statistische Mechanik SS 7 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 6

Mehr

Experimentalphysik III Relativitätstheorie, Quantenphysik, Kern- & Teilchenphysik

Experimentalphysik III Relativitätstheorie, Quantenphysik, Kern- & Teilchenphysik Experimentalphysik III Relativitätstheorie, Quantenphysik, Kern- & Teilchenphysik Prof. Dr. Kilian Singer 15.10.2015 Mo 11-13 Uhr (Raum 3137) Mo 14-16 Uhr (Raum 0282) Sprechstunde: Mo 16-17 Uhr (Raum 1166)

Mehr

Molekulare Maschinen als Brownsche Motoren

Molekulare Maschinen als Brownsche Motoren Molekulare Maschinen als Brownsche Motoren Gernot Faulseit 10. Juli 2003 Power Stroke vs. Brownsche Ratsche 10. Juli 2003 Power Stroke vs. Brownsche Ratsche gängige Vorstellung bei der Muskelkontraktion:

Mehr

Erster und Zweiter Hauptsatz

Erster und Zweiter Hauptsatz PN 1 Einführung in die alphysik für Chemiker und Biologen 26.1.2007 Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen 26.1.2007 Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti.

Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti. (c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 14. 05. 2007 Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik Universität Ulm (c) Ulm University p.

Mehr

T4p: Thermodynamik und Statistische Physik Prof. Dr. H. Ruhl Übungsblatt 8 Lösungsvorschlag

T4p: Thermodynamik und Statistische Physik Prof. Dr. H. Ruhl Übungsblatt 8 Lösungsvorschlag T4p: Thermodynamik und Statistische Physik Pro Dr H Ruhl Übungsblatt 8 Lösungsvorschlag 1 Adiabatengleichung Als adiabatische Zustandssänderung bezeichnet man einen thermodynamischen organg, bei dem ein

Mehr

5.6 Zusammenfassung / Merkpunkte zu Kapitel 5: Thermodynamisches Gleichgewicht

5.6 Zusammenfassung / Merkpunkte zu Kapitel 5: Thermodynamisches Gleichgewicht 5.6 Zusammenfassung / Merkpunkte zu Kapitel 5: Thermodynamisches Gleichgewicht Ein Teilchen, oder auch ein ganzes System von Teilchen, befindet sich im Gleichgewicht, falls sich "nichts" mehr ändert. Bei

Mehr

Boltzmanns Traum: Statistische Physik auf dem Computer

Boltzmanns Traum: Statistische Physik auf dem Computer Boltzmanns Traum: Statistische Physik auf dem Computer Institut für Physik Martin-Luther-Universität Halle-Wittenberg Übersicht Entropie: Was? Wieso? Wozu? Ein Lernprogramm: Von der Mechanik zur Thermodynamik

Mehr

Theoretische Biophysik - Statistische Physik

Theoretische Biophysik - Statistische Physik Theoretische Biophysik - Statistische Physik 3. Vorlesung Pawel Romanczuk Wintersemester 2018 http://lab.romanczuk.de/teaching/ 1 Zusammenfassung letzte VL Einstieg in die Wahrscheinlichkeitstheorie Axiomatische

Mehr

Wie die W- und Z-Bosonen zu ihrer Masse kommen (Teil 1)

Wie die W- und Z-Bosonen zu ihrer Masse kommen (Teil 1) Wie die W- und Z-Bosonen zu ihrer Masse kommen (Teil 1) Die Schwache Wechselwirkung ist in der Lage den Flavor von Leptonen und Quarks zu verändern. extrem kurze Reichweite (< 10^-15 m) 3 intermdiäre Bosonen

Mehr

E = w + q. kein Perpetuum Mobile der 1. Art (also: keine Maschine verrichtet Arbeit ohne Brennstoff) de = dw + dq de = 0

E = w + q. kein Perpetuum Mobile der 1. Art (also: keine Maschine verrichtet Arbeit ohne Brennstoff) de = dw + dq de = 0 Thermodynamik: 1. Hauptsatz Energieerhaltung: Arbeit plus Wärmeentwicklung gleich Änderung der inneren Energie E = w + q kein Perpetuum Mobile der 1. Art (also: keine Maschine verrichtet Arbeit ohne Brennstoff)

Mehr

Physik 1 für Chemiker und Biologen 13. Vorlesung

Physik 1 für Chemiker und Biologen 13. Vorlesung Physik 1 für Chemiker und Biologen 13. Vorlesung 30.01.2017 Diese Woche (30.1.-3.2.): Vorlesung heute: o Thermodynamik & statistische Physik o Kurzer Ausblick: Spezielle Relativitätstheorie Übungen: Besprechung

Mehr

Physik. Oldenbourg Verlag München Wien 5 '

Physik. Oldenbourg Verlag München Wien 5 ' Physik Mechanik und Wärme von Klaus Dransfeld Paul Kienle und Georg Michael Kalvius 10., überarbeitete und erweiterte Auflage Mit fast 300 Bildern und Tabellen 5 ' Oldenbourg Verlag München Wien Inhalt

Mehr

Kinematik & Dynamik. Über Bewegungen und deren Ursache Die Newton schen Gesetze. Physik, Modul Mechanik, 2./3. OG

Kinematik & Dynamik. Über Bewegungen und deren Ursache Die Newton schen Gesetze. Physik, Modul Mechanik, 2./3. OG Kinematik & Dynamik Über Bewegungen und deren Ursache Die Newton schen Gesetze Physik, Modul Mechanik, 2./3. OG Stiftsschule Engelberg, Schuljahr 2016/2017 1 Einleitung Die Mechanik ist der älteste Teil

Mehr

Fachbereich Ökotrophologie Prof. Häusler SoSe 2005 Biochemie Definition und Fachgebiete

Fachbereich Ökotrophologie Prof. Häusler SoSe 2005 Biochemie Definition und Fachgebiete Biochemie Definition und Fachgebiete Grenzwissenschaft zwischen Chemie, Biologie, Agrarwissenschaften und Medizin Spezialgebiete wie Immunchemie, Neurochemie, Pathobiologie, Genetik, Molekularbiologie,

Mehr

Alte und neue Fragen der Thermodynamik. Jochen Gemmer Osnabrück,

Alte und neue Fragen der Thermodynamik. Jochen Gemmer Osnabrück, Alte und neue Fragen der Thermodynamik Jochen Gemmer Osnabrück, 12.04.2006 Inhalt Thermodynamik (Wärmelehre) Quantenmechanik Quantenthermodynamik Newtonsche Mechanik (1686) Es müssen bekannt sein: 1) Massen

Mehr

Der 1. Hauptsatz. Energieerhaltung:

Der 1. Hauptsatz. Energieerhaltung: Der 1. Hauptsatz Energieerhaltung: Bei einer Zustandsänderung tauscht das betrachtete System Energie ( W, Q mit seiner Umgebung aus (oft ein Wärmereservoir bei konstantem. Für die Energiebilanz gilt: U

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti.

Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti. (c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 10. 05. 2007 Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik Universität Ulm (c) Ulm University p.

Mehr

Fragen zu Kapitel III Seite 1 III

Fragen zu Kapitel III Seite 1 III Fragen zu Kapitel III Seite 1 III Grundbegriffe der klassischen Mechanik Fragen 3.1 bis 3.8 Zur Beantwortung der Fragen benötigen Sie folgende Daten Masse der Erde 5,974 10 4 kg Erdradius 6371 km Erdbeschleunigung

Mehr

Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie

Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Sommer-Semester 2011 Moderne Theoretische Physik III Statistische Physik Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Di 09:45-11:15, Lehmann HS 022, Geb 30.22 Do 09:45-11:15,

Mehr

Vorlesung 12b. Übergangswahrscheinlichkeiten und Gleichgewichtsverteilungen. Teil 1

Vorlesung 12b. Übergangswahrscheinlichkeiten und Gleichgewichtsverteilungen. Teil 1 Vorlesung 12b Übergangswahrscheinlichkeiten und Gleichgewichtsverteilungen Teil 1 1 Wir wissen schon: 2 Wir wissen schon: Eine gemeinsame Verteilung kann man verstehen als Produkt aus Start-und Übergangsverteilung:

Mehr

T1: Theoretische Mechanik, SoSe 2016

T1: Theoretische Mechanik, SoSe 2016 T1: Theoretische Mechanik, SoSe 2016 Jan von Delft http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik Newtonsche Sätze (Originalformulierung) 1. Jeder Körper verharrt in seinem

Mehr

9. Thermodynamik. 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala. 9.4 Wärmekapazität

9. Thermodynamik. 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala. 9.4 Wärmekapazität 9. Thermodynamik 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala 93 9.3 Thermische h Ausdehnung 9.4 Wärmekapazität 9. Thermodynamik Aufgabe: - Temperaturverhalten von Gasen,

Mehr

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 10/09/15

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 10/09/15 Physikdepartment Ferienkurs zur Experimentalphysik 4 Daniel Jost 10/09/15 Inhaltsverzeichnis Technische Universität München 1 Kurze Einführung in die Thermodynamik 1 1.1 Hauptsätze der Thermodynamik.......................

Mehr

Ferienkurs Experimentalphysik II Elektro- und Thermodynamik. Thermodynamik Teil II. 12. September 2011 Michael Mittermair

Ferienkurs Experimentalphysik II Elektro- und Thermodynamik. Thermodynamik Teil II. 12. September 2011 Michael Mittermair Ferienkurs Experimentalphysik II Elektro- und Thermodynamik Thermodynamik Teil II 12. September 2011 Michael Mittermair Inhaltsverzeichnis 1 Allgemeines 3 1.1 Kategorisierung von Systemen..................

Mehr

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités)

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für die Temperatur Prinzip

Mehr

Thermodynamik und Statistische Physik

Thermodynamik und Statistische Physik Thermoynamik un Statistische Physik (Kompenium Herausgegeben von Jeffrey Kelling Felix Lemke Stefan Majewsky Stan: 14. Februar 2009 1 Inhaltsverzeichnis Statistische Operatoren 3 Zustäne 3 Darstellung

Mehr

Physikalische Chemie 0 Klausur, 22. Oktober 2011

Physikalische Chemie 0 Klausur, 22. Oktober 2011 Physikalische Chemie 0 Klausur, 22. Oktober 2011 Bitte beantworten Sie die Fragen direkt auf dem Blatt. Auf jedem Blatt bitte Name, Matrikelnummer und Platznummer angeben. Zu jeder der 25 Fragen werden

Mehr

Übungen zu Theoretische Physik IV

Übungen zu Theoretische Physik IV Physikalisches Institut Übungsblatt 4 Universität Bonn 02. November 2012 Theoretische Physik WS 12/13 Übungen zu Theoretische Physik IV Priv.-Doz. Dr. Stefan Förste http://www.th.physik.uni-bonn.de/people/forste/exercises/ws1213/tp4

Mehr