Brennweite und Hauptebenen eines Linsensystems

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Brennweite und Hauptebenen eines Linsensystems"

Transkript

1 1 Augabenstellung Seite Die Brennweite und die Lagen der Hauptebenen eines sind nach der Methode von Abbe zu bestimmen, die geundenen Ergebnisse in einer maßstabsgerechten Skizze darzustellen. 1. Die Brennweite einer dünnen Zerstreuungslinse ist durch Kombination mit einer dünnen Sammellinse nach der Besselschen Methode zu bestimmen. Literatur: eschke, D. (Hrsg.) Walcher, W. Eichler, H. J. Kroneldt, H.-D. Sahm, J. alisches Praktikum B.. Teubner Stuttgart, Leipzig, Wiesbaden 1., durchges. Aulage 001, S , S Praktikum der B.. Teubner Stuttgart, Leipzig, Wiesbaden 8. Aulage 004, S Das Neue alische rundpraktikum Springer Berlin, Heidelberg, New York. Aulage 006, S rundlagen Linsen sind rotationssymmetrische, durchsichtige Körper mit einer Brechzahl verschieden von der der Umgebung und im einachsten alle von sphärischen und ebenen lächen begrenzt. Sie können von einem Punkt des egenstandes ausgehende Lichtstrahlen in einem Punkt des Bildraumes wieder vereinigen (optische Abbildung, reell oder virtuell). Charakteristische Kenngröße ist die Brennweite bzw. ' Sie bestimmt den Abstand der Brennpunkte und ' von den zugehörigen Hauptpunkten H bzw. H '. Die Brennpunkte sind als Vereinigungspunkte parallel zur Linsenachse verlauender Lichtstrahlen deiniert. Als dünn bezeichnet man Linsen, deren Brennweite groß gegen die Linsendicke ist. Beide lichtbrechenden renzlächen denkt man sich jetzt als eine einzige Ebene, die auch die Hauptpunkte enthält. ür sie gilt die Abbildungsgleichung = + (1) g b mit g - egenstandsweite und b - Bildweite. Stellt man zwei dünne Linsen in geringem Abstand voneinander au, dann addieren sich die Kehrwerte der Brennweiten und 1 zum Kehrwert der esamtbrennweite: = +. () ges 1 Den Kehrwert der Brennweite nennt man deshalb auch Brechkrat D (Einheit Dioptrie, dpt)..1 Abbe-Methode m alle von dicken Linsen oder Linsensystemen erolgt die Bildkonstruktion mit Hile von Hauptebenen (Abb. 1). Die Hauptebenen mit den zugehörigen Brennweiten werden in diesem alle so konstruiert, dass die einachen Regeln der Bildkonstruktion die geometrische Optik

2 Seite erhalten bleiben, wenn man vereinbart, dass alle Strahlen zwischen den Hauptebenen parallel zur optischen Achse verlauen. L ( + ) H A H ' ' ' g h h ' b g * b* B Abb. 1: Strahlengang ein Linsensystem bei Verwendung von Hauptebenen ( H - gegenstandsseitiger Hauptpunkt mit zugehöriger Hauptebene, - gegenstandsseitiger Brennpunkt, H ' - bildseitiger Hauptpunkt mit zugehöriger Hauptebene, ' - bildseitiger Brennpunkt) Da das in Augabe 1.1 verwendete System die Lage der Hauptpunkte H und H ' nicht bekannt ist, können g und b bei einer optischen Abbildung nicht direkt gemessen werden. Man bestimmt zunächst die Enternungen g * und b * von einer beliebigen, am Linsensystem angebrachten Ablesemarke A. Mit dem Abbildungsmaßstab γ= B b = g (3) ( B - Bildgröße und - egenstandsgröße) sowie l. (1) erhält man leichungen zur Bestimmung der Systembrennweite und der Lage der Hauptebenen: g* = g+ h = 1+ 1/ γ + h b* = b+ h' = '1 +γ + h' Man beachte die Vorzeichenestlegungen aller angegebenen Strecken!. Bessel-Methode Die zu untersuchende Zerstreuungslinse kann kein reelles Bild von einem egenstand erzeugen. Sie wird deshalb mit einer Sammellinse geeigneter Brennweite so kombiniert, dass sich nach l. () eine positive esamtbrennweite ergibt. ür Sammellinse und resultierendes Linsensystem seien die Dicken klein gegen die Brennweiten, so dass die Näherungen dünne Linsen anwendbar sind. Stellt man das Linsensystem oder die Sammellinse zwischen einen leuchtenden egenstand und einen im Abstand s augestellten Schirm S, dann gibt es s > 4 wegen der Umkehrbarkeit der Lichtwege zwei symmetrische Linsenstellungen und, bei denen eine reelle Abbildung des egenstandes au dem Schirm erzielt wird (Abb. ). Hierbei können die Strecken s und e mit hoher enauigkeit gemessen werden, was die egenstandsweite g und die Bildweite b nicht zutrit. (4)

3 Seite 3 s e B B g g = b b b = g Abb. : Versuchsanordnung zur Bestimmung der Brennweite mit der Bessel-Methode Mit e= b g, s = b+ g sowie der Abbildungsgleichung (1) erhält man s e =. (5) 4s Bestimmt man au diese Weise zunächst die Brennweite des Systems aus Sammel- und Zerstreuungslinse und danach die der Sammellinse S, dann ist die Brennweite der Zerstreuungslinse Z nach l. () leicht berechenbar. 3 Messanleitung und Auswertung 3.1 Abbe-Methode Au einer optischen Bank (Dreieckschiene mit augeklebtem Lineal) stecken die optischen Elemente in verschiebbaren Reitern mit Markierungen zum Ablesen der Position. Vor den Kondensor der Lichtwurlampe wird den ersten Versuchsteil ein Halter mit eingebautem lasmaßstab gestellt. Die Oberläche mit dem gravierten Maßstab ist so im Halter platziert, dass sie sich, in Lichtrichtung gesehen, an derselben Position wie die Ablesemarke des Reiters beindet. Das zu vermessende Linsensystem (otoobjektiv) stellt man mit der großen Önung Richtung Auangschirm in der Nähe der Lampe au und justiert seine Höhe nach der optischen Achse (Lampe/lasmaßstab). Der Enternungsring ist au die Stellung zu drehen und dar während der Messung nicht mehr verstellt werden. Der Schirm mit Millimeterteilung wird zunächst an das Ende der Schiene (1600 mm ) gestellt und seine korrekte Ausrichtung senkrecht zur optischen Achse kontrolliert. Durch Verschieben des stellt man ein schares Bild ein, das nunmehr vergrößert ist und die Bestimmung des Abbildungsmaßstabs erlaubt. m weiteren Verlau des Versuches schiebt man den Schirm in mindestens 10 verschiedene Positionen, korrigiert die optische Abbildung und notiert in einer Messwerttabelle die rößen, B, die Stellung der Ablesemarke des au der

4 Seite 4 Schiene sowie die Abstände g * und b * zwischen den Ablesemarken an den entsprechenden Reiterüßen. Position des Schirms au der optischen Bank: ( ) mm in Schritten von 50 mm Achten Sie au sorgältiges Ablesen der Objektivposition, da diese sich anangs nur sehr wenig ändert, halbe Millimeter können noch geschätzt werden! Der Blendenring sollte au die größte Lichtstärke (3,5) eingestellt sein. Zur Erleichterung der Scharstellung kann eine Einstellhile (Keilsystem mit Schlitz) in den Strahlengang gebracht werden, dessen Bild bei richtiger Position des Objektivs einen durchgängigen Strich ergibt. Aus den gemessenen Werten und B werden nach l. (3) jeweils γ und 1/ γ berechnet und mit in die Tabelle eingetragen. ür die egenstands- und die Bildseite indet man die gesuchten rößen Brennweite und Hauptebenenabstand von der Ablesemarke gemäß l. (4) leicht mit Hile von Ausgleichsgeraden. Hierzu trägt man g * über 1+ 1/ γ und in einem weiteren Diagramm b * über 1+γ au. Der Regressionskoeizient (Anstieg) lieert die Brennweite und das Absolutglied den gesuchten Hauptebenenabstand. Das Praktikumsprogramm PhysPract berechnet darüber hinaus diese Ergebnisse noch die zugehörigen Unsicherheiten (Standardabweichungen). Die ermittelten Lagen der Hauptebenen und die zugehörigen Brennpunkte sind relativ zur Position der Ablesemarke in einer maßstabsgetreuen Skizze darzustellen. Das Linsensystem (Objektivumriss) ist durch einen rechteckigen Rahmen mit darzustellen. 3. Bessel-Methode Bei der Bessel-Methode wird als leuchtender egenstand eine kreuzörmige Doppelblende benutzt. Sammellinse und Zerstreuungslinse sind dicht hintereinander in einer Halterung mit Schieber eingebaut. ür die Sammellinse allein und das System Sammellinse + Zerstreuungslinse sind die Enternungen e 10 verschiedene Abstände s zwischen Blende und Schirm zu bestimmen. Hierzu sucht man zunächst durch sukzessive Verkleinerung von s den kürzest möglichen Abstand ( > 4 ), der noch zwei unterschiedlich große Abbildungen erlaubt. m weiteren Verlau des Versuches wird dann s weiter erhöht und e dazu bestimmt. Eine am Halter angebrachte risblende sollte zur Verbesserung der Bildqualität au einen Durchmesser von etwa ( ) mm verkleinert werden. Schrittweite von s die Sammellinse: s = 10 mm Schrittweite von s das Linsensystem: s = 0 mm Anstelle des Auangschirmes kann alternativ auch ein Horizontalmikroskop eingesetzt werden. Es ermöglicht eine genauere Messung der Verschiebegröße e, die Ablesedierenz der in Reitermitte angebrachten Marke zur Beobachtungsebene des Mikroskops muss aber in einem Vorexperiment noch ermittelt werden. Anstelle der Doppelkreuzblende ist jetzt das am Messplatz vorhandene Diapositiv (Märchenmotiv) einzusetzen, zur Vermeidung von Blendungen wird ein rünilter ( λ= 550 nm ) zwischen Lampe und egenstand gestellt. Aus den gemessenen Wertepaaren s und e sind nach l. (5) die entsprechenden Brennweiten zu berechnen. Die Mittelwerte der Brennweiten der Sammellinse S und des esamtsystems sind mit abgeschätzten Unsicherheiten (Standardabweichungen) anzugeben. Aus beiden Werten

5 Seite 5 ist nach l. () die Brennweite der Zerstreuungslinse zu berechnen. ür dieses Ergebnis ist die kombinierte Unsicherheit anzugeben. 4 Ergänzungsexperimente zur Bessel-Methode (Studierende der Technischen ) 4.1 Augabenstellung Die Annahme dünner Linsen die Messaugabe 1. ist zu überprüen. Dazu werden die Versuchsergebnisse die Sammellinse und das System Sammel- /Zerstreuungslinse nochmals unter Einbeziehung eines nicht verschwindenden Hauptebenenabstands d ausgewertet, zu dessen Ermittlung ein Autokollimations-Verahren anzuwenden ist. 4. rundlagen Wenn der Hauptebenenabstand der nach der Bessel-Methode zu untersuchenden Linse (dick, steht ortan auch das Linsensystem) nicht mehr vernachlässigbar ist, dann ührt die Auswertung nach l. (5) zu systematischen Messabweichungen. Die olgende, gegenüber Abb. modiizierte Skizze verdeutlicht die Verhältnisse: s e B B g g b = b d b = g Abb. 3: Bessel-Methode mit Berücksichtigung eines Hauptebenenabstands d Man sieht soort, dass die Messgröße e genau so bestimmt wird wie bei dünnen Linsen, der gemessene Abstand s zwischen egenstand und Auangschirm jedoch um den Hauptebenenabstand d zu korrigieren ist. Damit erhält man die Brennweite: = ( ) 4( s d) s d e. (6) Da d noch unbekannt ist, muss ein weiteres Messverahren eingesetzt werden. Der vorliegende Versuchsaubau ermöglicht die Bestimmung des Hauptebenenabstands durch Autokollimation. Darunter versteht man ein optisches System, bei dem sich der egenstand und seine Abbildung in ein und derselben Ebene beinden. Möglich wird dies durch einen Planspiegel, der kurz hinter der Linse augestellt wird (Abb. 4).

6 Seite 6 Beindet sich der egenstand in der Brennebene vor der Linse, dann erolgt eine Abbildung ins Unendliche, nach Relexion am Spiegel erscheint das Bild in der egenstandsebene wieder schar. Notiert wird zunächst der Abstand a 1 zwischen einer am Linsenhalter angebrachten Ablesemarke A und dem egenstand. B a a 1 H A h d h ' H ' ' Planspiegel Abb. 4: Autokollimations-Verahren Eingesetzt in l. (6) erhält man und daraus Nach Drehung der Linse um 180 und Wiederholung des Verahrens beinden sich die jetzt vertauschten Hauptebenen an derselben Stelle, nur die (angedeutete) Position der Ablesemarke hat sich geändert. Man sieht an der nebenstehenden Skizze, dass die Summe der beiden Strecken a 1 und a genau dem Abstand a zwischen den Brennpunkten der Linse entspricht: a1+ a = + h+ ' + h' = + d = a. (7) 4 s a + = s a + e (8) 1 = s a e. (9) 4.3 Messanleitung und Auswertung Als egenstand den Autokollimations-Versuch wird die Kreuzblende bzw. das Diapositiv gegen ein halb abgedecktes Diarähmchen mit einem Streienmuster ausgetauscht. Der Planspiegel lässt sich unter Zuhilenahme des au den egenstand zurückrelektierten Lichtes senkrecht zur optischen Achse einstellen. Achtung: Die Spiegeloberläche bitte nicht mit den ingern berühren, sie kann nur schlecht wieder gereinigt werden! Nun stellt man die Linse nah am Spiegel au, justiert ihre Höhe und verschiebt beide Reiter gemeinsam, bis das Bild des egenstandes au der abgedeckten Hälte des Diarähmchens schar erscheint. Der so gewonnene Abstand a 1 wird notiert. Die Messung wird danach mit der um 180 verdrehten Linse zur Bestimmung von a durchgeührt und beide Prozeduren mehrach wiederholt. Die genaue Position des Planspiegels ist das Autokollimations-Verahren unkritisch, dieser sollte aber nicht zu weit von der Linse enternt stehen, weil ansonsten das entworene Bild zu sehr abgeblendet wird. Achten Sie darau, dass eine der Autokollimation ähnliche Abbildung möglich ist, wenn die Zerstreuungslinse mit ihrer konkaven Oberläche zum egenstand zeigt. Sie benötigt den Planspiegel nicht und kann somit leicht erkannt werden. Die im Durchührungsteil 3. gewonnenen Daten die Sammellinse und ihre Kombination mit der Zerstreuungslinse werden mittels l. (9) nochmals ausgewertet, wobei den okusabstand

7 Seite 7 a der Mittelwert aller Summen a1+ a zu verwenden ist. Zur Überprüung der Ergebnisse wird jeweils eine graische Darstellung empohlen. l. (9) kann auch so augeschrieben werden: e = s a 4. Trägt man also in einem Diagramm e über ( s a ) au, dann sollte eine berechnete Ausgleichsgerade den Anstieg Eins haben und die Beträge von Absolutglied oder der Nullstelle dem Wert 4 entsprechen. 5 Anhang Als Beispiel zur Konstruktion von Hauptebenen sei olgendes Linsensystem, bestehend aus einer Zerstreuungs- und einer Sammellinse, gegeben: Linse L 1 : 1 = 40 mm Linse L : = + 35 mm Abstand der Mittelebenen der beiden dünnen Linsen: d = 0 mm Abb. 5 zeigt die Konstruktion der bildseitigen Hauptebene H ' : L ( + ) H ' 1' 1 ' ' 1 d Abb. 5: Konstruktion der bildseitigen Hauptebene H ' und des zugehörigen Brennpunktes Ein Parallelstrahl trit von der egenstandsseite au Linse L 1, er wird zum Brennpunktstrahl von 1' (Zerstreuungslinse) und ällt au Linse L. Sein weiterer Verlau lässt sich inden, wenn man bedenkt, dass ein Parallelstrahlenbündel in der Brennebene einer Linse vereinigt wird. Ein parallel zum Strahlenverlau zwischen den Linsen gezeichneter Mittelpunktstrahl durch Linse L markiert somit in der Brennebene durch ' den Punkt, durch den auch der gesuchte Strahl verlauen muss. Damit hat man den Verlau eines Parallelstrahls nach Passieren des geunden. Der Schnittpunkt zwischen ursprünglicher Parallelstrahlrichtung und auslauendem Strahl markiert dann die bildseitige Hauptebene H ', der Schnittpunkt zwischen auslauendem Strahl und optischer Achse den zugehörigen Brennpunkt '. Analog dazu lässt man zur Konstruktion der gegenstandsseitigen Hauptebene H und des gegenstandsseitigen Brennpunkts einen Parallelstrahl von der Bildseite her einallen und verolgt '

8 Seite 8 dessen Verlau durch das Linsensystem (Abb. 6). An der Sammellinse L wird der parallel zur optischen Achse einallende Strahl zum Brennpunktstrahl durch, trit jedoch vorher au die Linse L 1 und wird von der optischen Achse weggebrochen. Den tatsächlichen Verlau nach dieser Brechung indet man analog zur Konstruktion in Abb. 5, wenn man einen Mittelpunktstrahl durch L 1 parallel zum Strahlenverlau des gesuchten Strahls zwischen den beiden Linsen konstruiert. Diese beiden Strahlen eines Parallelstrahlenbündels müssen links von L 1 so verlauen, als kämen sie aus einem gemeinsamen Ursprung in der gegenstandsseitigen Brennebene von L 1. Man indet diesen Punkt als Schnittpunkt zwischen Mittelpunktstrahl und Brennebene und kann nun den Verlau des gesuchten Strahls links von L 1 konstruieren. Der Schnittpunkt zwischen den Extrapolationen des einallenden Parallelstrahls und des ausallenden Strahls ergibt die gegenstandsseitige Hauptebene H, der Schnittpunkt zwischen ausallendem Strahl und optischer Achse den gegenstandsseitigen Brennpunkt. L + H 1' 1 ' Abb. 6: Konstruktion der gegenstandsseitigen Hauptebene H und des zugehörigen Brennpunktes Wie man sieht, sind die zu beiden Hauptebenen gehörenden Brennweiten gleich, die Hauptebenen liegen im gezeichneten Beispiel nicht innerhalb des. Zur Überprüung ist in den Abbildungen 7 und 8 die Bildentstehung mit Hile der geundenen Hauptebenen und mit Hile der beiden Linsen gezeichnet (Maßstab 1: verkleinert) und ührt trotz völlig unterschiedlicher Strahlengänge zum gleichen Ergebnis. Die Vereinachung inolge der Verwendung von Hauptebenen in Abb. 7 ist oensichtlich.

9 Seite 9 ' L H H ' Abb. 7: Bildentstehung bei Verwendung der geundenen Hauptebenen und Brennweite 1' 1 ' L Abb. 8: Bildentstehung bei Verwendung der vorgegebenen Linsen

Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode

Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode Physikalische Grundlagen Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode Linsen sind durchsichtige Körper, die von zwei im

Mehr

Brennweite und Hauptebenen eines Linsensystems

Brennweite und Hauptebenen eines Linsensystems 1. Aufgabenstellung Seite 1 1.1. Die Brennweite und die Lagen der Hauptebenen eines sind nach der Methode von Abbe zu bestimmen, die gefundenen Ergebnisse in einer maßstabsgerechten Skizze darzustellen.

Mehr

Theoretische Grundlagen Physikalisches Praktikum. Versuch 5: Linsen (Brennweitenbestimmung)

Theoretische Grundlagen Physikalisches Praktikum. Versuch 5: Linsen (Brennweitenbestimmung) Theoretische Grundlagen hysikalisches raktikum Versuch 5: Linsen (Brennweitenbestimmung) Allgemeine Eigenschaften von Linsen sie bestehen aus einem lichtdurchlässigem Material sie weisen eine oder zwei

Mehr

O01. Linsen und Linsensysteme

O01. Linsen und Linsensysteme O0 Linsen und Linsensysteme In optischen Systemen spielen Linsen eine zentrale Rolle. In diesem Versuch werden Verahren zur Bestimmun der Brennweite und der Hauptebenen von Linsen und Linsensystemen vorestellt..

Mehr

Linsen und Linsensysteme

Linsen und Linsensysteme 1 Ziele Linsen und Linsensysteme Sie werden hier die Brennweiten von Linsen und Linsensystemen bestimmen und dabei lernen, wie Brillen, Teleobjektive und andere optische Geräte funktionieren. Sie werden

Mehr

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. O0 Optik: Abbildung mit dünnen Linsen (Pr_PhI_O0_Linsen_6, 5.06.04). Name Matr.

Mehr

Brennweite von Linsen

Brennweite von Linsen Brennweite von Linsen Einführung Brennweite von Linsen In diesem Laborversuch soll die Brennweite einer Sammellinse vermessen werden. Linsen sind optische Bauelemente, die ein Bild eines Gegenstandes an

Mehr

Optische Abbildung (OPA)

Optische Abbildung (OPA) Seite 1 Themengebiet: Optik Autor: unbekannt geändert: M. Saß (30.03.06) 1 Stichworte Geometrische Optik, Lichtstrahl, dünne und dicke Linsen, Linsensysteme, Abbildungsgleichung, Bildkonstruktion 2 Literatur

Mehr

Physikalisches Praktikum I. Optische Abbildung mit Linsen

Physikalisches Praktikum I. Optische Abbildung mit Linsen Fachbereich Physik Physikalisches Praktikum I Name: Optische Abbildung mit Linsen Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: ruppennummer: Endtestat: Dieser Fragebogen muss

Mehr

Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik. von Sören Senkovic & Nils Romaker

Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik. von Sören Senkovic & Nils Romaker Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik von Sören Senkovic & Nils Romaker 1 Inhaltsverzeichnis Theoretischer Teil............................................... 3 Grundlagen..................................................

Mehr

O1 Linsen. Versuchsprotokoll von Markus Prieske und Sergej Uschakow (Gruppe 22mo) Münster, 27. April 2009

O1 Linsen. Versuchsprotokoll von Markus Prieske und Sergej Uschakow (Gruppe 22mo) Münster, 27. April 2009 Versuchsprotokoll von Markus Prieske und Sergej Uschakow (Gruppe 22mo) Münster, 27. April 2009 Email: Markus@prieske-goch.de; Uschakow@gmx.de Inhaltsverzeichnis 1 Einleitung 3 2 Theorie 3 2.1 Linsentypen.......................................

Mehr

BL Brennweite von Linsen

BL Brennweite von Linsen BL Brennweite von Linsen Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik................... 2 2.2 Dünne Linse........................

Mehr

Praktikum I BL Brennweite von Linsen

Praktikum I BL Brennweite von Linsen Praktikum I BL Brennweite von Linsen Hanno Rein, Florian Jessen Betreuer: Gunnar Ritt 5. Januar 2004 Motivation Linsen spielen in unserem alltäglichen Leben eine große Rolle. Ohne sie wäre es uns nicht

Mehr

Protokoll O 4 - Brennweite von Linsen

Protokoll O 4 - Brennweite von Linsen Protokoll O 4 - Brennweite von Linsen Martin Braunschweig 27.05.2004 Andreas Bück 1 Aufgabenstellung Die Brennweite dünner Linsen ist nach unterschiedlichen Verfahren zu bestimmen, Abbildungsfehler sind

Mehr

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 1 Bestimmung der Brennweite 11 Naives Verfahren zur Bestimmung der Brennweite Es soll nur mit Maÿstab und Schirm die

Mehr

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis Physikalisches Anfängerpraktikum Gruppe Mo-6 Wintersemester 2005/06 Julian Merkert (229929) Versuch: P-40 Geometrische Optik - Vorbereitung - Vorbemerkung Die Wellennatur des Lichts ist bei den folgenden

Mehr

Brennweite von Linsen und Linsensystemen

Brennweite von Linsen und Linsensystemen - D1.1 - Versuch D1: Literatur: Stichworte: Brennweite von Linsen und Linsensystemen Demtröder, Experimentalphysik Bd. II Halliday, Physik Tipler, Physik Walcher, Praktikum der Physik Westphal, Physikalisches

Mehr

O10 Linsensysteme. Physikalische Grundlagen. Grundbegriffe Hauptebenen Abbildungsgleichung Abbildungsmaßstab Bildkonstruktion

O10 Linsensysteme. Physikalische Grundlagen. Grundbegriffe Hauptebenen Abbildungsgleichung Abbildungsmaßstab Bildkonstruktion Physikalische Grundlagen Grundbegriffe Hauptebenen Abbildungsgleichung Abbildungsmaßstab Bildkonstruktion 1. Definition der Hauptebenen Bei dünnen Linsen kann die zweifache Brechung (Vorder- und Rückseite

Mehr

3.7 Linsengesetze 339

3.7 Linsengesetze 339 3.7 Linsengesetze 339 3.7. Linsengesetze Ziel Ziel des Versuches ist ein besseres Verständnis der optischen Abbildung durch Linsen, insbesondere durch zusammengesetzte Linsensysteme. Wesentlich ist dabei

Mehr

Versuchsziel. Literatur. Grundlagen. Physik-Labor Fachbereich Elektrotechnik und Informatik Fachbereich Mechatronik und Maschinenbau

Versuchsziel. Literatur. Grundlagen. Physik-Labor Fachbereich Elektrotechnik und Informatik Fachbereich Mechatronik und Maschinenbau Physik-Labor Fachbereich Elektrotechnik und Inormatik Fachbereich Mechatronik und Maschinenbau O Physikalisches Praktikum Brennweite von Linsen Versuchsziel Es sollen die Grundlaen der eometrischen Optik

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte Das komplette Material finden Sie hier: School-Scout.de Thema:

Mehr

Dünne Linsen und Spiegel

Dünne Linsen und Spiegel Versuch 005 Dünne Linsen und Spieel Ral Erleach Auaen. Charakterisieren der drei eeenen Linsen mittels Bildweiten-, Bessel- und Autokollimationsverahren.. Bestätien der Linsenleichun. 3. Bestimmen des

Mehr

Versuch 17: Geometrische Optik/ Mikroskop

Versuch 17: Geometrische Optik/ Mikroskop Versuch 17: Geometrische Optik/ Mikroskop Mit diesem Versuch soll die Funktionsweise von Linsen und Linsensystemen und deren Eigenschaften untersucht werden. Dabei werden das Mikroskop und Abbildungsfehler

Mehr

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011 Praktikum Physik Protokoll zum Versuch: Geometrische Optik Durchgeführt am 24.11.2011 Gruppe X Name1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das

Mehr

Auflösungsvermögen bei leuchtenden Objekten

Auflösungsvermögen bei leuchtenden Objekten Version: 27. Juli 2004 Auflösungsvermögen bei leuchtenden Objekten Stichworte Geometrische Optik, Wellennatur des Lichts, Interferenz, Kohärenz, Huygenssches Prinzip, Beugung, Auflösungsvermögen, Abbé-Theorie

Mehr

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!)

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!) C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!) 4. Physikalische Grundlagen 4. Strahlengang Zur Erklärung des physikalischen Lichtverhaltens wird das Licht als Lichtstrahl betrachtet. Als

Mehr

Stiftsschule Engelberg Physik / Modul Optik 2./3. OG Schuljahr 2016/2017

Stiftsschule Engelberg Physik / Modul Optik 2./3. OG Schuljahr 2016/2017 4 Linsen 4.1 Linsenformen Optische Linsen sind durchsichtige Körper, welche (im einfachsten Fall) auf beiden Seiten von Kugelflächen oder auf der einen Seite von einer Kugelfläche, auf der anderen Seite

Mehr

Versuch 22 Mikroskop

Versuch 22 Mikroskop Physikalisches Praktikum Versuch 22 Mikroskop Praktikanten: Johannes Dörr Gruppe: 14 mail@johannesdoerr.de physik.johannesdoerr.de Datum: 28.09.2006 Katharina Rabe Assistent: Sebastian Geburt kathinka1984@yahoo.de

Mehr

Hochschule Heilbronn Technik Wirtschaft Informatik Heilbronn University Institut für math.-naturw. Grundlagen

Hochschule Heilbronn Technik Wirtschaft Informatik Heilbronn University Institut für math.-naturw. Grundlagen Versuch : Optische Abbildung mit dünnen Linsen, Brennweitenbestimmung 1. Aufgabenstellung Beobachtung des virtuellen und reellen Bildes Bestimmung der Brennweite einer dünnen Sammellinse aus der Abbildungsgleichung

Mehr

Versuch 50. Brennweite von Linsen

Versuch 50. Brennweite von Linsen Physikalisches Praktikum für Anfänger Versuch 50 Brennweite von Linsen Aufgabe Bestimmung der Brennweite durch die Bessel-Methode, durch Messung von Gegenstandsweite und Bildweite, durch Messung des Vergrößerungsmaßstabs

Mehr

Bestimmung der Brennweite dünner Linsen mit Hilfe der Linsenformel Versuchsprotokoll

Bestimmung der Brennweite dünner Linsen mit Hilfe der Linsenformel Versuchsprotokoll Bestimmung der Brennweite dünner Linsen mit Hilfe der Linsenformel Tobias Krähling email: Homepage: 0.04.007 Version:. Inhaltsverzeichnis. Aufgabenstellung.....................................................

Mehr

Medium Luft zueinander, wenn diese Linse ein reelles, gleich großes und umgekehrtes Bild eines Medium Luft zueinander, wenn diese Linse ein reelles, verkleinertes und umgekehrtes Bild eines Medium Luft

Mehr

Geometrische Optik Die Linsen

Geometrische Optik Die Linsen 1/1 29.09.00,19:40Erstellt von Oliver Stamm Geometrische Optik Die Linsen 1. Einleitung 1.1. Die Ausgangslage zum Experiment 2. Theorie 2.1. Begriffe und Variablen 3. Experiment 3.1.

Mehr

Protokoll. Mikroskopie. zum Modul: Physikalisches Grundpraktikum 2. bei. Prof. Dr. Heyne Sebastian Baum

Protokoll. Mikroskopie. zum Modul: Physikalisches Grundpraktikum 2. bei. Prof. Dr. Heyne Sebastian Baum Protokoll Mikroskopie zum Modul: Physikalisches Grundpraktikum 2 bei Prof. Dr. Heyne Sebastian Baum am Fachbereich Physik Freien Universität Berlin Ludwig Schuster (ludwig.schuster@fu-berlin.de) Florian

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #21 26/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Brechkraft Brechkraft D ist das Charakteristikum einer Linse D = 1 f! Einheit: Beispiel:! [ D]

Mehr

Geometrische Optik. Lichtbrechung

Geometrische Optik. Lichtbrechung Geometrische Optik Bei der Beschreibung des optischen Systems des Mikroskops bedient man sich der Gaußschen Abbildungstheorie. Begriffe wie Strahlengang im Mikroskop, Vergrößerung oder auch das Verständnis

Mehr

1 Grundlagen der geometrischen Optik 1.1 Vorzeichenkonvention (nach DIN 1335) Die Lichtrichtung verläuft von links nach rechts (+z-achse).

1 Grundlagen der geometrischen Optik 1.1 Vorzeichenkonvention (nach DIN 1335) Die Lichtrichtung verläuft von links nach rechts (+z-achse). Physikalisches Praktikum II Abbildung mit Linsen (LIN) Stichworte: Geometrische Optik, Snellius'sches Brechungsgesetz, Abbildung eines Punktes durch Lichtstrahlen, Brennpunkte, auptpunkte, auptebene, reelle

Mehr

PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe

PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe 1.9.08 PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe Versuch: O 2 - Linsensysteme Literatur Eichler, Krohnfeld, Sahm: Das neue physikalische Grundpraktikum, Kap. Linsen, aus dem Netz der Universität http://dx.doi.org/10.1007/3-540-29968-8_33

Mehr

Linsen und Augenmodell (O1)

Linsen und Augenmodell (O1) Linsen und Augenmodell (O) Ziel des Versuches Im ersten Versuchsteil werden Brennweiten von dünnen Sammel- und Zerstreuungslinsen mit zwei Verfahren, dem Besselverfahren und der Autokollimation, bestimmt.

Mehr

Lichtbrechung an Linsen

Lichtbrechung an Linsen Sammellinsen Lichtbrechung an Linsen Fällt ein paralleles Lichtbündel auf eine Sammellinse, so werden die Lichtstrahlen so gebrochen, dass sie durch einen Brennpunkt der Linse verlaufen. Der Abstand zwischen

Mehr

Geometrische Optik mit ausführlicher Fehlerrechnung

Geometrische Optik mit ausführlicher Fehlerrechnung Protokoll zum Versuch Geometrische Optik mit ausführlicher Fehlerrechnung Kirstin Hübner Armin Burgmeier Gruppe 15 13. Oktober 2008 1 Brennweitenbestimmung 1.1 Kontrollieren der Brennweite Wir haben die

Mehr

Geradlinige Ausbreitung des Lichts im homogenen und isotropen Medium, Reflexionsgesetz, Brechungsgesetz.

Geradlinige Ausbreitung des Lichts im homogenen und isotropen Medium, Reflexionsgesetz, Brechungsgesetz. O1 Geometrische Optik Stoffgebiet: Abbildung durch Linsen, Abbildungsgleichung, Bildkonstruktion, Linsensysteme, optische Instrumente ( Beleuchtungs- und Abbildungsstrahlengang im Projektionsapparat )

Mehr

Brennweite und Abbildungsfehler von Linsen

Brennweite und Abbildungsfehler von Linsen c Doris Samm 2015 1 Brennweite und Abbildungsfehler von Linsen 1 Der Versuch im Überblick Wir sehen mit unseren Augen. Manchmal funktioniert das gut: Wir sehen alles gestochen scharf. Manchmal erscheinen

Mehr

Kapitel 1 Optik: Bildkonstruktion. Spiegel P` B P G. Ebener Spiegel: Konstruktion des Bildes von G.

Kapitel 1 Optik: Bildkonstruktion. Spiegel P` B P G. Ebener Spiegel: Konstruktion des Bildes von G. Optik: Bildkonstruktion Spiegel P G P` B X-Achse Ebener Spiegel: g = b g b G = B Konstruktion des Bildes von G. 1. Zeichne Strahl senkrecht von der Pfeilspitze zum Spiegel (Strahl wird in sich selbst reflektiert)

Mehr

Sammellinse Zerstreuungslinse Abb. 6 - Linsen

Sammellinse Zerstreuungslinse Abb. 6 - Linsen PS - PTIK P. Rendulić 2007 LINSEN 3 LINSEN 3. Linsenarten Eine Linse ist ein rotationssymmetrischer Körper der meist aus las oder transparentem Kunststo herestellt ist. Die Linse ist von zwei Kuellächen

Mehr

Geometrische Optik / Auge (Versuch AUG)

Geometrische Optik / Auge (Versuch AUG) Kapitel 1 Geometrische Optik / Auge (Versuch AUG) Name: Gruppe: Datum: Betreuer(in): Testat/Versuchsdurchführung: 1.1 Medizinischer Bezug und Ziel des Versuchs Grundkenntnisse in geometrischer Optik werden

Mehr

21.4 Linsen. Entscheidend für die Funktion einer Linse ist daher, dass die beiden Oberflächen zueinander gekrümmt sind. α 1. α 2. n 1.

21.4 Linsen. Entscheidend für die Funktion einer Linse ist daher, dass die beiden Oberflächen zueinander gekrümmt sind. α 1. α 2. n 1. 21.4 Linsen Eine Linse ist ein optisches erät, dessen unktion au dem Brechungsgesetz beruht. Dadurch erährt der Lichtstrahl eine Richtungsänderung beim Ein- und Austritt. Die Oberlächen von Linsen sind

Mehr

Protokoll zum 5.Versuchstag: Brechungsgesetz und Dispersion

Protokoll zum 5.Versuchstag: Brechungsgesetz und Dispersion Samstag, 17. Januar 2015 Praktikum "Physik für Biologen und Zweifach-Bachelor Chemie" Protokoll zum 5.Versuchstag: Brechungsgesetz und Dispersion von Olaf Olafson Tutor: --- Einführung: Der fünfte Versuchstag

Mehr

1 mm 20mm ) =2.86 Damit ist NA = sin α = 0.05. α=arctan ( 1.22 633 nm 0.05. 1) Berechnung eines beugungslimitierten Flecks

1 mm 20mm ) =2.86 Damit ist NA = sin α = 0.05. α=arctan ( 1.22 633 nm 0.05. 1) Berechnung eines beugungslimitierten Flecks 1) Berechnung eines beugungslimitierten Flecks a) Berechnen Sie die Größe eines beugungslimitierten Flecks, der durch Fokussieren des Strahls eines He-Ne Lasers (633 nm) mit 2 mm Durchmesser entsteht.

Mehr

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Pro. Dr. H.-Ch. Mertins, MSc. M. Gilbert O0 Optik: Abbildung mit dünnen Linsen (Pr_PhI_O0_Linsen_6, 30.8.009). Name Matr. Nr. Gruppe Team.

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartment E3 WS 20/2 Übungen zu Physik für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung 9.0.2,

Mehr

Physikalisches Anfaengerpraktikum. Optische Abbildung

Physikalisches Anfaengerpraktikum. Optische Abbildung Physikalisches Anfaengerpraktikum Optische Abbildung Ausarbeitung von Marcel Engelhardt & David Weisgerber (Gruppe 37) Mittwoch, 02. März 2005 email: Marcel.Engelhardt@mytum.de Weisgerber@mytum.de Versuchsaufbau

Mehr

GEOMETRISCHE OPTIK VORBEREITUNG

GEOMETRISCHE OPTIK VORBEREITUNG Mtknr.: 5380 GEOMETRISCHE OPTIK VORBEREITUNG 0. Vorbemerkungen. S.. Brennweitenbestimmung.. Brennweite mit Lineal.. S.3/4. Besselverahren. S.4/5.3 Abbéverahren.. S.5/6. Aubau optischer Instrumente.. Keplersches

Mehr

MODELOPTIC Best.- Nr. MD02973

MODELOPTIC Best.- Nr. MD02973 MODELOPTIC Best.- Nr. MD02973 1. Beschreibung Bei MODELOPTIC handelt es sich um eine optische Bank mit deren Hilfe Sie die Funktionsweise der folgenden 3 Geräte demonstrieren können: Mikroskop, Fernrohr,

Mehr

Praktikum Optische Technologien Anleitung zum Versuch Dicke Linsen

Praktikum Optische Technologien Anleitung zum Versuch Dicke Linsen Fachbereich Energietechnik Lehrgebiet für Lasertechnik und Optische Technologien Prof. Dr. F.-M. Rateike Praktikum Optische Technologien Anleitung zum Versuch Dicke Linsen August 204 Praktikum Optische

Mehr

1.1 Auflösungsvermögen von Spektralapparaten

1.1 Auflösungsvermögen von Spektralapparaten Physikalisches Praktikum für Anfänger - Teil Gruppe Optik. Auflösungsvermögen von Spektralapparaten Einleitung - Motivation Die Untersuchung der Lichtemission bzw. Lichtabsorption von Molekülen und Atomen

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Geometrische Optik (GO) Frühjahrssemester 2016. Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Geometrische Optik (GO) Frühjahrssemester 2016. Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum ür Oberstuenlehrpersonen Geometrische Optik (GO) Frühjahrssemester 2016 Physik-Institut der Universität Zürich Inhaltsverzeichnis 7 Geometrische Optik (GO) 7.1 7.1 Einleitung........................................

Mehr

Versuch P1-31,40,41 Geometrische Optik. Vorbereitung. Von Jan Oertlin. 2. Dezember 2009

Versuch P1-31,40,41 Geometrische Optik. Vorbereitung. Von Jan Oertlin. 2. Dezember 2009 Versuch P1-31,40,41 Geometrische Optik Vorbereitung Von Jan Oertlin 2. Dezember 2009 Inhaltsverzeichnis 1. Brennweitenbestimmung...2 1.1. Kontrolle der Brennweite...2 1.2. Genaue Bestimmung der Brennweite

Mehr

Physikalisches Praktikum 3. Semester

Physikalisches Praktikum 3. Semester Torsten Leddig 18.Januar 2005 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Optische Systeme - 1 Ziel Kennenlernen grundlegender optischer Baugruppen Aufgaben Einige einfache

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Pro. Dr. L. Oberauer Wintersemester 200/20 6. Übungsblatt - 29.November 200 Musterlösung Franziska Konitzer (ranziska.konitzer@tum.de) Augabe ( ) (6 Punkte) Um die Brennweite

Mehr

Physikalisches Grundpraktikum

Physikalisches Grundpraktikum Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Praktikum für Mediziner O Lichtbrechung und Linsengesetze Name: Versuchsgruppe: Datum: Mitarbeiter der Versuchsgruppe:

Mehr

36. Linsen und optische Instrumente

36. Linsen und optische Instrumente 36. Linsen und optische Instrumente 36.. Brechung an Kugellächen Linsen besitzen aus ertigungstechnischen Gründen meist Kugellächen (Ausnahmen sind Spitzenobjektive, z. B. ür Projektionslithographie).

Mehr

4 Optische Linsen. Als optische Achse bezeichnet man die Gerade die senkrecht zur Symmetrieachse der Linse steht und durch deren Mittelpunkt geht.

4 Optische Linsen. Als optische Achse bezeichnet man die Gerade die senkrecht zur Symmetrieachse der Linse steht und durch deren Mittelpunkt geht. 4 Optische Linsen 4.1 Linsenarten Eine Linse ist ein rotationssymmetrischer Körper der meist aus Glas oder transparentem Kunststoff hergestellt ist. Die Linse ist von zwei Kugelflächen begrenzt (Kugelflächen

Mehr

Instrumenten- Optik. Mikroskop

Instrumenten- Optik. Mikroskop Instrumenten- Optik Mikroskop Gewerblich-Industrielle Berufsschule Bern Augenoptikerinnen und Augenoptiker Der mechanische Aufbau Die einzelnen mechanischen Bauteile eines Mikroskops bezeichnen und deren

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #22 01/12/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Sammellinse Hauptstrahlen durch einen Sammellinse: Achsenparallele Strahlen verlaufen nach der

Mehr

Versuchsvorbereitung: P1-42, 44: Lichtgeschwindigkeitsmessung

Versuchsvorbereitung: P1-42, 44: Lichtgeschwindigkeitsmessung Praktikum Klassische Physik I Versuchsvorbereitung: P1-42, 44: Lichtgeschwindigkeitsmessung Christian Buntin Gruppe Mo-11 Karlsruhe, 30. November 2009 Inhaltsverzeichnis 1 Drehspiegelmethode 2 1.1 Vorbereitung...............................

Mehr

Abriss der Geometrischen Optik

Abriss der Geometrischen Optik Abriss der Geometrischen Optik Rudolf Lehn Peter Breitfeld * Störck-Gymnasium Bad Saulgau 4. August 20 Inhaltsverzeichnis I Reflexionsprobleme 3 Reflexion des Lichts 3 2 Bilder am ebenen Spiegel 3 3 Gekrümmte

Mehr

Versuch P1-31,40,41 Geometrische Optik. Auswertung. Von Ingo Medebach und Jan Oertlin. 9. Dezember 2009

Versuch P1-31,40,41 Geometrische Optik. Auswertung. Von Ingo Medebach und Jan Oertlin. 9. Dezember 2009 Versuch P1-31,40,41 Geometrische Optik Auswertung Von Ingo Medebach und Jan Oertlin 9. Dezember 2009 Inhaltsverzeichnis 1. Brennweitenbestimmung...2 1.1. Kontrolle der Brennweite...2 1.2. Genaue Bestimmung

Mehr

Geometrische Optik. Ausserdem gilt sin ϕ = y R. Einsetzen in die Gleichung für die Brennweite ergibt unmittelbar: 1 2 1 sin 2 ϕ

Geometrische Optik. Ausserdem gilt sin ϕ = y R. Einsetzen in die Gleichung für die Brennweite ergibt unmittelbar: 1 2 1 sin 2 ϕ Geometrische Optik GO: 2 Leiten Sie für einen Hohlspiegel die Abhängigkeit der Brennweite vom Achsabstand des einfallenden Strahls her (f = f(y))! Musterlösung: Für die Brennweite des Hohlspiegels gilt:

Mehr

Brennweitenmessung. Fakultät für Maschinenbau Institut für Lichttechnik und Technische Optik Fachgebiet Technische Optik

Brennweitenmessung. Fakultät für Maschinenbau Institut für Lichttechnik und Technische Optik Fachgebiet Technische Optik Fakultät für Maschinenbau Institut für Lichttechnik und Technische Optik Fachgebiet Technische Optik Praktikum Optische Messtechnik Brennweitenmessung Gliederung Seite 1. Versuchsziel.... Versuchsaufbau...

Mehr

Versuch O02: Fernrohr, Mikroskop und Teleobjektiv

Versuch O02: Fernrohr, Mikroskop und Teleobjektiv Versuch O02: Fernrohr, Mikroskop und Teleobjektiv 5. März 2014 I Lernziele Strahlengang beim Refraktor ( Linsenfernrohr ) Strahlengang beim Mikroskop Strahlengang beim Teleobjektiv sowie Einblick in dessen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 7. Übungsblatt - 6.Dezember 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (8 Punkte) Optische

Mehr

Aufgabensammlung mit Lösungen zum Applet optische Bank

Aufgabensammlung mit Lösungen zum Applet optische Bank Aufgabensammlung mit Lösungen zum Applet optische Bank (LMZ, Bereich Medienbildung, OStR Gröber) http://webphysics.davidson.edu/applets/optics4/default.html I. Aufgaben für Mittelstufe 1. Abbilden mit

Mehr

4. Optische Abbildung durch Linsen

4. Optische Abbildung durch Linsen DL 4. Optische Aildung durch Linsen 4.1 Einleitung Optische Linsen und Linsensysteme ilden die Grundlage zahlreicher ildgeender Apparate, die in Wissenschat und Technik wie auch im täglichen Leen Anwendung

Mehr

Physik - Optik. Physik. Graz, 2012. Sonja Draxler

Physik - Optik. Physik. Graz, 2012. Sonja Draxler Wir unterscheiden: Geometrische Optik: Licht folgt dem geometrischen Strahlengang! Brechung, Spiegel, Brechung, Regenbogen, Dispersion, Linsen, Brillen, optische Geräte Wellenoptik: Beugung, Interferenz,

Mehr

Versuch 12 : Brennweitenbestimmung von Linsen - Aufbau eines Mikroskops

Versuch 12 : Brennweitenbestimmung von Linsen - Aufbau eines Mikroskops Testat Brennweitenbestimmung von Linsen - Aufbau eines Mikroskops Mo Di Mi Do Fr Datum: Versuch: 12 Abgabe: Fachrichtung Sem. : Brennweitenbestimmung von Linsen - Aufbau eines Mikroskops In diesem Versuch

Mehr

Versuch 18 Das Mikroskop

Versuch 18 Das Mikroskop Grundpraktikum der Fakultät für Physik Georg August Universität Göttingen Versuch 18 Das Mikroskop Praktikant: Joscha Knolle Ole Schumann E-Mail: joscha@zimmer209.eu Durchgeführt am: 08.03.2013 Abgabe:

Mehr

Linsengesetze und optische Instrumente

Linsengesetze und optische Instrumente INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum ür Studierende der Ingenieurswissenschaten Universität Hamburg, Jungiusstraße Linsengesetze und optische Instrumente Grundlagen Das Ziel des Versuchs

Mehr

HS D. Hochschule Düsseldorf Fachbereich EI. Physikalisches Praktikum. V 501 : Optische Abbildungen (OA)

HS D. Hochschule Düsseldorf Fachbereich EI. Physikalisches Praktikum. V 501 : Optische Abbildungen (OA) Gruppe : Namen, Matrikel Nr.: HS D Hochschule Düsseldorf Versuchstag: Vorgelegt: Testat : V 501 : Optische Abbildungen (OA) Zusammenfassung: 1 von 13 Gruppe : HS D Korrigiert am: Hochschule Düsseldorf

Mehr

Versuch D 1: Brennweite von Linsen und Linsensystemen

Versuch D 1: Brennweite von Linsen und Linsensystemen - D1.1 - - D1.2 - Versuch D 1: Brennweite von Linsen und Linsensystemen 1 g 1 b 1 f (1) 1. Literatur: Bergmann-Schäfer, Experimentalphysik, Bd.III, Optik Walcher, Praktikum der Physik Westphal, Physikalisches

Mehr

V 501 : Optische Abbildung

V 501 : Optische Abbildung Gruppe : Namen, Matrikel Nr.: Versuchstag: Vorgelegt: Hochschule Düsseldorf Testat : V 501 : Optische Abbildung Zusammenfassung: 1 von 13 Gruppe : Korrigiert am: Hochschule Düsseldorf 1. Korrektur 2. Korrektur

Mehr

Geometrische Optik, optische Abbildung und Aberrationen

Geometrische Optik, optische Abbildung und Aberrationen 60 Carl von Ossietzky Universität Oldenburg - Fakultät V- Institut ür Physik Modul Grundpraktikum Physik Teil II Geometrische Optik, optische Abbildung und Aberrationen Stichworte: Linsenmacher-Gleichung,

Mehr

Elektrischer Widerstand

Elektrischer Widerstand In diesem Versuch sollen Sie die Grundbegriffe und Grundlagen der Elektrizitätslehre wiederholen und anwenden. Sie werden unterschiedlichen Verfahren zur Messung ohmscher Widerstände kennen lernen, ihren

Mehr

Optische Abbildung mit Linsen

Optische Abbildung mit Linsen O14 Name: Optische Abbildung mit Linsen Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig (keine

Mehr

Abb. 2 In der Physik ist der natürliche Sehwinkel der Winkel des Objektes in der "normalen Sehweite" s 0 = 25 cm.

Abb. 2 In der Physik ist der natürliche Sehwinkel der Winkel des Objektes in der normalen Sehweite s 0 = 25 cm. Mikroskop 1. ZIEL In diesem Versuch sollen Sie sich mit dem Strahlengang in einem Mikroskop vertraut machen und verstehen, wie es zu einer Vergrößerung kommt. Sie werden ein Messokular kalibrieren, um

Mehr

Polarisation des Lichts

Polarisation des Lichts PeP Vom Kerzenlicht zum Laser Versuchsanleitung Versuch 4: Polarisation des Lichts Polarisation des Lichts Themenkomplex I: Polarisation und Reflexion Theoretische Grundlagen 1.Polarisation und Reflexion

Mehr

Staatliches Seminar für Didaktik und Lehrerbildung (Realschulen) in Reutlingen. Dokumentation für den

Staatliches Seminar für Didaktik und Lehrerbildung (Realschulen) in Reutlingen. Dokumentation für den Staatliches Seminar für Didaktik und Lehrerbildung (Realschulen) in Reutlingen Dokumentation für den Der Mensch biologisch, chemisch und physikalisch betrachtet am 20.07.2011 Thema: Ausgearbeitet von:

Mehr

GEOMETRISCHE OPTIK I. Schulversuchspraktikum WS 2002 / 2003. Jetzinger Anamaria Mat.Nr. 9755276

GEOMETRISCHE OPTIK I. Schulversuchspraktikum WS 2002 / 2003. Jetzinger Anamaria Mat.Nr. 9755276 GEOMETRISCHE OPTIK I Schulversuchspraktikum WS 2002 / 2003 Jetzinger Anamaria Mat.Nr. 9755276 1. Mond und Sonnenfinsternis Inhaltsverzeichnis 1.1 Theoretische Grundlagen zur Mond und Sonnenfinsternis 1.1.1

Mehr

Praktikum Optische Technologien Anleitung zum Versuch Brennweitenbestimmung

Praktikum Optische Technologien Anleitung zum Versuch Brennweitenbestimmung Fachbereich Energietechnik Lehrgebiet für Lasertechnik und Optische Technologien Prof. Dr. F.-M. Rateike Praktikum Optische Technologien Anleitung zum Versuch Brennweitenbestimmung August 204 Brennweitenbestimmung

Mehr

Die Linsengleichung. Die Linsengleichung 1

Die Linsengleichung. Die Linsengleichung 1 Die Linsengleichung 1 Die Linsengleichung In diesem Projektvorschlag wird ein bereits aus der Unterstufenphysik bekannter Versuch mit mathematischen Mitteln beschrieben, nämlich die Abbildung durch eine

Mehr

Seminarunterlagen Optik. Versuchsanleitungen von Mag. Otto Dolinsek BG/BRG Lerchenfeld Klagenfurt

Seminarunterlagen Optik. Versuchsanleitungen von Mag. Otto Dolinsek BG/BRG Lerchenfeld Klagenfurt Seminarunterlagen Optik Versuchsanleitungen von BG/BRG Lerchenfeld Klagenfurt Kernschatten, Halbschatten Die Begriffe Kernschatten und Halbschatten sollen erarbeitet werden und die Unterschiede zwischen

Mehr

Bestimmung der Vergrößerung und der Brennweiten eines Mikroskops

Bestimmung der Vergrößerung und der Brennweiten eines Mikroskops Institut f. Experimentalphysik Technische Universität raz Petersgasse 16, A-8010 raz Laborübungen: Elektrizität und Optik 21. Mai 2010 Bestimmung der Vergrößerung und der Brennweiten eines Mikroskops Stichworte

Mehr

Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops

Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops 1 Beugung an palt und Gitter, Auflösungsvermögen des Mikroskops 1 Einleitung Das Mikroskop ist in Medizin, Technik und Naturwissenschaft ein wichtiges Werkzeug um Informationen über Objekte auf Mikrometerskala

Mehr

Demonstrationsexperimente WS 04/05 Thema: Optik: Linsengleichung Katrin Schaller

Demonstrationsexperimente WS 04/05 Thema: Optik: Linsengleichung Katrin Schaller Demonstrationsexperimente WS 04/05 Thema: Optik: Linsengleichung Katrin Schaller 1 1 Versuchsbeschreibung Anhand dieses Versuches soll die Erzeugung reeller Bilder behandelt werden und die Linsengleichung

Mehr

Michelson - Interferometer

Michelson - Interferometer Michelson - Interferometer Matthias Lütgens 9. April 2005 Partner: Christoph Mahnke Betreuer: Dr. Enenkel Datum der Versuchsdurchführung: 5. April 2005 0.1 Ziel Experimentelle Nutzung des Michelson-Interferometers

Mehr

Versuch P2: Optische Abbildungen und Mikroskop

Versuch P2: Optische Abbildungen und Mikroskop Physikalisches Praktikum für Pharmazeuten Gruppennummer Name Vortestat Endtestat Vorname Versuch A. Vorbereitungsteil (VOR der Versuchsdurchführung lesen!) 1. Kurzbeschreibung In diesem Versuch werden

Mehr

Protokoll zum Grundversuch Geometrische Optik

Protokoll zum Grundversuch Geometrische Optik Protokoll zum Grundversuch Geometrische Optik Fabian Schmid-Michels Nils Brüdigam Universität Bielefeld Wintersemester 2006/2007 Grundpraktikum I Tutorin: Jana Muenchenberger 01.02.2007 Inhaltsverzeichnis

Mehr

PROTOKOLL ZUM VERSUCH ABBÉSCHE THEORIE. Inhaltsverzeichnis

PROTOKOLL ZUM VERSUCH ABBÉSCHE THEORIE. Inhaltsverzeichnis PROTOKOLL ZUM VERSUCH ABBÉSCHE THEORIE CHRIS BÜNGER Betreuer: Dr. Enenkel Inhaltsverzeichnis 1. Versuchsbeschreibung 1 1.1. Ziel 1 1.2. Aufgaben 2 1.3. Amplituden- und Phasenobjekte 2 1.3.1. Amplitudenobjekte

Mehr