Image Mosaicing. Michael Koop Hans-Ulrich Klein. Sommersemester ImageMosaicing

Größe: px
Ab Seite anzeigen:

Download "Image Mosaicing. Michael Koop Hans-Ulrich Klein. Sommersemester 2004. ImageMosaicing"

Transkript

1 Image Mosaicing Michael Koop Hans-Ulrich Klein Sommersemester 2004 ImageMosaicing

2 Vortragsinhalt 1. Einführung 2. Vorgehensweise zur Erstellung von Mosaikbildern 3. Zylindrische Panoramabilder 4. Feature-basierte Mosaikbilder ImageMosaicing 1

3 1. Einsatz von Mosaikbildern In der Wissenschaft werden aus vielen einzelnen Bildern ein hochauflösendes Bild erzeugt. Zur Veranschaulichung der Umgebung werden zylindrische Panoramabilder verwendet. Endurance Crater, Mars, aufgenommen am von Opportunity. 360 Grad Panorama neben dem Krater Bonneville, aufgenommen ImageMosaicing 2

4 Einsatz von Mosaikbildern Mosaikbilder ermöglichen Kompression und Indizierung von Videos ImageMosaicing 3

5 Einsatz von Mosaikbildern Als Environment Maps werden Mosaikbilder für viele Einsatzgebiete genutzt Simulatoren 3D Spiele ImageMosaicing 4

6 Einsatz von Mosaikbildern... und natürlich von Photographen für weitwinklige Aufnahmen. ImageMosaicing 5

7 2. Vorgehensweise zur Erstellung von Mosaikbildern Die verschiedenen Verfahren zur Erstellung von Mosaikbildern müssen dieselben grundlegenden Probleme lösen und besitzen daher einen ähnlichen Ablauf: 1. Vorverarbeitung 2. Bildregistrierung 3. Behandlung der Bildübergänge ImageMosaicing 6

8 Vorverarbeitung Vorverarbeitung der Quellbilder mit Verfahren der Bildverarbeitung (z.b. schlechte Belichtung Histogrammausgleich) Auswahl überlappender Bilder zur Registrierung bei zylindrischen oder sphärischen Panoramabildern: Projektion auf ein geometrisches Objekt ImageMosaicing 7

9 Bildregistrierung Problem: Finde die Koordinatentransformation f, welche die Punkte des Bildes G optimal auf die Punkte des Bildes F abbildet. Beim Erstellen von Mosaikbildern ist f optimal, wenn f die Differenz zwischen F und G minimiert. Ein mögliches Differenzmaß ist die L 2 -Norm: L 2 ( f ) = ( y )1 (F(x,y) G( f (x,y))) 2 2 x Kameramodell beschränkt den Suchraum intensitäten-basierte und feature-basierte Algorithmen ImageMosaicing 8

10 Bildübergänge Welchen Wert erhält der Pixel P im Mosaikbild, wenn an der Stelle P mehr als ein Quellbild registriert ist? einfaches Übereinanderlegen führt zu sichtbaren Diskontinuitäten der Intensitätswerte an den Grenzen der Quellbilder Idee: Alle an der Stelle P registrierten Quellbilder mit unterschiedlichen Gewichten einfließen lassen, so dass kontinuierliche Bildübergänge entstehen ImageMosaicing 9

11 3. Zylindrische Panoramabilder Zylindrische Panoramabilder können eine Sicht darstellen und werden daher in der Computergrafik oft als Environment Maps verwendet. Aufgrund des restriktiven Kameramodells sind sie relativ leicht zu erstellen: 1. Projektion auf einen Zylinder 2. Registrierung durch Translation 3. Zusammenfügen der Bilder ImageMosaicing 10

12 Zylindrische Projektion θ = arctan X Z υ = Y X 2 + Z 2 ImageMosaicing 11

13 Zylindrische Projektion unter Verwendung der Brennweite P B = (x h x,y h y, f ) = ( f X/Z, fy /Z, f ) ImageMosaicing 12

14 Zylindrische Koordinaten Bild-Koordinaten Damit die transformierten Bilder leicht gespeichert und weiterverarbeitet werden können, werden sie in einer Ebene ausgerollt. x = θ y = υ ImageMosaicing 13

15 Implementierung der Zylindrischen Projektion Brennweite f in Pixeln muss bekannt sein Auflösung der Bilder sollte beibehalten werden Radius = f setzen Interpolation Ursprung des Bildkoordinatensystems beachten ImageMosaicing 14

16 Bildregistrierung nach Lucas und Kanade F(x), G(x) h G(x) F(x) G F x F (x) h F(x + h) F(x) h G(x) F(x) F (x) F(x + h) F(x) + hf (x) = G(x) F(x) h (F (x) 0) (h 0) ImageMosaicing 15

17 Der Registrierungsalgorithmus im eindimensionalen Fall Ziel: Minimierung der Fehlerfunktion E E = (F(x + h) G(x)) 2 x (F(x) + hf (x) G(x)) 2 x 0 = E h h x (F(x) + hf (x) G(x)) 2 = 2F (x)(f(x) + hf (x) G(x)) x h x F (x)(g(x) F(x)) x F (x) 2 ImageMosaicing 16

18 Der Registrierungsalgorithmus im eindimensionalen Fall Schätze h iterativ und verwende die k-te Schätzung, um die k + 1-te Schätzung zu verbessern. h 0 = 0 h k+1 = h k + x F (x + h k )(G(x) F(x + h k )) x F (x + h k ) 2 ImageMosaicing 17

19 Der Registrierungsalgorithmus im zweidimensionalen Fall Der Algorithmus lässt sich direkt auf den zweidimensionalen Fall übertragen. Mit h = (h x,h y ) T und = ( x 1, x 2 ) ergibt sich: E = (F(x + h) G(x)) 2 (F(x) + F h G(x)) 2 x x 0 = E h h (F(x) + F h G(x)) 2 x [ ] 1 [ ] h F T F F T (G(x) F(x)) x x ImageMosaicing 18

20 Probleme und Verbesserungen lokale Minima Vorregistrierung nötig Eine oder beide partiellen Ableitungen haben an jedem Pixel den Wert 0. beschränkt auf Translation Erweiterungen existieren Iteration konvergiert schneller mit geschickter Gewichtung der einzelnen Schätzungen ImageMosaicing 19

21 Implementierung 1. Eingabe: Zwei zu registrierende Bilder F und G + eine initiale Schätzung der Verschiebung h (besser: hierarchisches Verfahren z.b. nach Bergen et. al) 2. Konvertierung zu Grauwertbildern 3. Gauss-Glättung (Wahl von σ?) 4. Berechnung der partiellen Ableitungsbilder F x und F y mit Sobel-Masken 5. Durchführung der vorgstellten Iteration zur Schätzung von h mit der Abbruchbedingung h i h i 1 < S ImageMosaicing 20

22 Implementierung h pre = (420; 6) T h opt = (428; 1) T σ = 2 S = 0,2 Iteration h T i (h i h i 1 ) T 0 (1, 537; 1, 430) - 1 (3, 236; 2, 948) (1, 699; 1, 518) 2 (5, 038; 4, 299) (1, 802; 1, 351) 3 (6, 589; 5, 116) (1, 551; 0, 817) 4 (7, 482; 5, 376) (0, 893; 0, 260) 5 (7, 919; 5, 437) (0, 437; 0, 061) 6 (8, 052; 5, 419) (0, 133; 0, 018) ImageMosaicing 21

23 Behandlung der Bildübergänge Weise dem Mosaikbild I M an der Stelle (x,y) das gewichtete Mittel der an der Stelle (x,y) registrierten Quellbilder I i zu: I M (x,y) = m i=0 w i (x,y)i i (x,y) m i=0 w i (x,y) w i (x,y) = 1, i, (x,y) führt nur bei gleichmäßiger Beleuchtung und präziser Registrierung zu guten Ergebnissen besser: w i (x,y) = w ix (x)w iy (y) Wobei w ix (x) und w iy (y) zwei Dreiecksfunktionen mit dem Wert 0 am rechten und linken Bildrand bzw. oberen und unteren Bildrand sind. Je näher ein Pixel am Bildrand liegt, desto schwächer wird er gewichtet. ImageMosaicing 22

24 Beispielbilder ImageMosaicing 23

25 4. Feature-basierte Mosaikbilder Bildregistrierung anhand einzelner Merkmale Ziel: Transformation von Bildern in das Koordinatensystem eines Basisbildes Bestimmung der Transformationsmatrix durch Bildmerkmale Einsatz für Mosaikbilder von planen Szenen 3D Szenen nur beschränkt behandelbar ImageMosaicing 24

26 Perspektivische Verzerrung Bei der Photographie einer Ebene aus verschiedenen Winkeln entstehen perspektivische Verzerrungen Eigenschaften einer perspektivischen Verzerrung: eigentlich parallele Geraden treffen sich in einem Fluchtpunkt nahe Objekte erscheinen größer als entferte Objekte Punkte die vor einer persp. Verzerrung auf einer Geraden lagen befinden sich danach immer noch auf einer Geraden Eine perspektivische (Rück)-Transformation kann durch eine Matrixmultiplikation realisiert werden. Diese soll bestimmt werden. ImageMosaicing 25

27 Homogene Koordinaten Die Transformation soll durch eine Matrixmultiplikation realisiert werden. Dazu werden die kartesischen Koordinaten um eine Dimension erweitert. Ein 2D Punkt (P) wird durch drei Koordinaten (P ) beschrieben : P = ( x y ) P = xz yz z Im allgemeinen wird z = 1 gewählt. ImageMosaicing 26

28 Bestimmung der Transformationsmatrix Eine Matrix zur perspektivischen Transformation hat folgende Gestalt: M = m 00 m 01 m 01 m 10 m 11 m 12 m 20 m 21 m 22 Wobei nur die ersten acht Parameter entscheident sind. Der neunte Parameter ergibt sich, da die Multiplikation der Transformationsmatrix mit einem Skalar die selbe Transformation beschreibt. Die Parameter werden meist so gewählt, dass m 22 = 1 gilt. ImageMosaicing 27

29 Bestimmung der Transformationsmatrix Die acht Parameter der Transformationsmatrix sollen gefunden werden. Dies kann durch vier korrespondierende Punkte geschehen: Jeder Punkt hat zwei Freiheitsgerade, die x-koordinate und die y-koordinate. Es muss gelten, dass die Koordinaten eines Punktes im zu registrierendem Bild multipliziert mit der Transformationsmatrix die Koordinaten des korrespondierenden Punktes im Basisbild ergibt: x z y z z = m 00 m 01 m 02 m 10 m 11 m 12 m 20 m 21 1 x y 1 Oder in nicht-homogenen Koordinaten: x = m 00x + m 01 y + m 02 m 20 x + m 21 y + 1 y = m 10x + m 11 y + m 12 m 20 x + m 21 y + 1 ImageMosaicing 28

30 Bestimmung der Transformationsmatrix Mit einigen Umformaungen ergibt sich: x = m 00 x + m 01 y + m 02 m 20 xx m 21 yx y = m 10 x + m 11 y + m 12 m 20 xy m 21 yy Nach dem Hinzufügen einiger fetter Nullen : x = m 00 x + m 01 y + m m m m 12 m 20 xx m 21 yx y = 0 m m m 02 + m 10 x + m 11 y + m 12 m 20 xy m 21 yy ImageMosaicing 29

31 Bestimmung der Transformationsmatrix Dies kann man jetzt wieder als lineares Gleichungssystem schreiben. x 1 y x 1 x 1 x 1 y x 1 y 1 1 x 1 y 1 y 1 y 1 x 2 y x 2 x 2 x 2 y x 2 y 2 1 x 2 y 2 y 2 y 2 x 3 y x 3 x 3 x 3 y x 3 y 3 1 x 3 y 3 y 3 y 3 x 4 y x 4 x 4 x 4 y x 4 y 4 1 x 4 y 4 y 4 y 4 a b c d e f g h = x 1 y 1 x 2 y 2 x 3 y 3 x 4 y 4 Dieses Gleichungssystem kann gelöst werden und ergibt dann die acht gesuchten Parameter. ImageMosaicing 30

32 Probleme Es dürfen keine drei Punkte auf einer Geraden liegen Die meisten Verfahren zur Merkmalsextraktion werden mehr als vier Punkte pro Bild ergeben. (Dazu später mehr) ImageMosaicing 31

33 Vorgehensweise bei mehr als vier Punkten Wenn im Basisbild n 1 Punkte gefunden wurden und im zu registrierendem Bild n 2 Punkte, dann können mit dem eben vorgestellten Verfahren 4! ( )( n1 n2 4 Transformationsmatritzen gefunden werden. Jede 4-elementige Teilmenge der Punkte im Basisbild bestimmt mit jeder 4-elementigen Teilmenge der Punkte im zu registrierendem Bild eine Transformationsmatrix (durch weitere Annahmen kann diese Anzahl reduziert werden). Vorgehensweise: Berechnung und Bewertung aller möglichen Transformationen. Die Beste wird dann genutzt. 4 ) ImageMosaicing 32

34 Bewertung einer Transformationsmatrix für jede Transformationsmatrix H i : 1. berechne für jeden detektierten Punkt im zu registrierendem Bild mittels H i dessen transformierten Koordinaten 2. berechne für jeden detektierten Punkt ein Korrelationsmaß/ eine Bewertung zwischen den Intensitätswert des Punktes im zu registrierendem Bild und dem Intensitätswert des Punktes mir den berechneten Koordinaten im Basisbild 3. berechne die Summe über alle Punkte von diesem Maß Die beste Transformation ist diejenige mit der größten Korrelation, bzw. kleinstem Abstand. (z.b. quadratischer Abstand, Earth Mover...) ImageMosaicing 33

35 Weitere Möglichkeit bei 4 oder mehr Punkten Eine zweite Möglichkeit mit mehr als vier detektierten Merkmalen umzugehen nutzt einen ähnlichen Ansatz wie zur Bewertung oben: Die Parameter der Transformation werden gleichzeitig geschätzt. Dazu wird ein Fehlerterm aufgestellt, der minimiert werden muss. min n i=1 mit ε i = (x i x i) 2 + (y i y i) 2 wobei n die Anzahl der detektierten Punkte ist, x i der durch x = m 00x + m 01 y + m 02 y = m 10x + m 11 y + m 12 m 20 x + m 21 y + 1 m 20 x + m 21 y + 1 bestimmte Punkt und x i der detektierte Punkt im zu registrierenden Bild. Zur Lösung dieser Minimierung wird ein iteratives Verfahren vorgeschlagen, der Levenberg-Marquardt Algorithmus. ε 2 i ImageMosaicing 34

36 Beispielbilder ImageMosaicing 35

37 Merkmalextraktion Bestimmung von interessanten Punkten weit verbreitetes Problem in der Bildanalyse gut geeignet sind Ecken, da diese translationsinvariant sind manuelle Eingabe bspw. Algorithmus SUSAN ImageMosaicing 36

38 manuelle Eingabe einfach zu realisieren sofort klar welche Punkte korrespondieren in unserer Implementierung genutzt ImageMosaicing 37

39 Smallest Univalue Segment Assimilating Nucleus Idee: Vergleich jeden Pixel mit seinen Nachbarpixeln und bestimme dabei die Anzahl der Pixel mit einer ähnlichem Intensität An einer Ecke sind die wenigsten Nachbarpixel dem gerade betrachtetem Pixel ähnlich. ImageMosaicing 38

40 Smallest Univalue Segment Assimilating Nucleus Berechne für jeden Nucleus mit jedem benachbarten Pixel einen Vergleichswert c(p act, p 0 ) = { 1 wenn I(pact ) I(p 0 ) t 0 wenn I(p act ) I(p 0 ) t addiere diese Vergleichswerte für jeden Nucleus zu n(p 0 ) Bestimme eine Eckenstärke R(p 0 ) = { g n(p0 ) wenn n(p 0 ) g 0 wenn n(p 0 ) g Je kleiner n(p 0 ), umso größer die Eckenstärke. Schwellwert g bestimmt die Eckenform und ist bei Ecken < n max 2, ImageMosaicing 39

41 SUSAN Verbesserungen durch andere Vergleichswertberechnung wirkliche Betrachtung von Regionen Es gibt eine Vielzahl von weiteren Methoden zur Merkmalsextraktion. ImageMosaicing 40

3. Analyse der Kamerabewegung Video - Inhaltsanalyse

3. Analyse der Kamerabewegung Video - Inhaltsanalyse 3. Analyse der Kamerabewegung Video - Inhaltsanalyse Stephan Kopf Bewegungen in Videos Objektbewegungen (object motion) Kameraoperationen bzw. Kamerabewegungen (camera motion) Semantische Informationen

Mehr

How To Create A Panorama Image From A Photoelectric Image From An Image From The Camera (I)

How To Create A Panorama Image From A Photoelectric Image From An Image From The Camera (I) Chapter 3 Image Registration Distributed Algorithms for Einführung (I) Definition: Image Registration Gegeben: 2 Bilder der gleichen Szene aber aufgenommen aus unterschiedlichen Perspektiven Gesucht: Transformation,

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12 Mathematik für Wirtschaftswissenschaftler im WS /3 Lösungen zu den Übungsaufgaben Blatt Aufgabe 5 Welche der folgenden Matrizen sind positiv bzw negativ definit? A 8, B 3 7 7 8 9 3, C 7 4 3 3 8 3 3 π 3

Mehr

3. Analyse der Kamerabewegung Video - Inhaltsanalyse

3. Analyse der Kamerabewegung Video - Inhaltsanalyse 3. Analyse der Kamerabewegung Video - Inhaltsanalyse Stephan Kopf Bewegungen in Videos Objektbewegungen (object motion) Kameraoperationen bzw. Kamerabewegungen (camera motion) Semantische Informationen

Mehr

Bildverarbeitung: 3D-Geometrie. D. Schlesinger () Bildverarbeitung: 3D-Geometrie 1 / 13

Bildverarbeitung: 3D-Geometrie. D. Schlesinger () Bildverarbeitung: 3D-Geometrie 1 / 13 Bildverarbeitung: 3D-Geometrie D. Schlesinger () Bildverarbeitung: 3D-Geometrie 1 / 13 Lochkamera Modell C Projektionszentrum, Optische Achse, Bildebene, P Hauptpunkt (optische Achse kreuzt die Bildebene),

Mehr

Entwicklung einer robusten Methode zur Berechnung von Stereokorrespondenzen

Entwicklung einer robusten Methode zur Berechnung von Stereokorrespondenzen Entwicklung einer robusten Methode zur Berechnung von Stereokorrespondenzen Seminar - Wintersemester 2010/2011 Fakultät Technik und Informatik Department Informatik Gregory Föll Übersicht Rückblick Stereo

Mehr

Das Wort Vektor kommt aus dem lateinischen und heißt so viel wie "Träger" oder "Fahrer".

Das Wort Vektor kommt aus dem lateinischen und heißt so viel wie Träger oder Fahrer. Was ist ein Vektor? Das Wort Vektor kommt aus dem lateinischen und heißt so viel wie "Träger" oder "Fahrer". Vektoren sind Listen von Zahlen. Man kann einen Vektor darstellen, indem man seine Komponenten

Mehr

Serie 3. z = f(x, y) = 9 (x 2) 2 (y 3) 2 z 2 = 9 (x 2) 2 (y 3) 2, z 0 9 = (x 2) 2 + (y 3) 2 + z 2, z 0.

Serie 3. z = f(x, y) = 9 (x 2) 2 (y 3) 2 z 2 = 9 (x 2) 2 (y 3) 2, z 0 9 = (x 2) 2 + (y 3) 2 + z 2, z 0. Analysis D-BAUG Dr Cornelia Busch FS 2016 Serie 3 1 a) Zeigen Sie, dass der Graph von f(x, y) = 9 (x 2) 2 (y 3) 2 eine Halbkugel beschreibt und bestimmen Sie ihren Radius und ihr Zentrum z = f(x, y) =

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

4. Segmentierung von Objekten Video - Inhaltsanalyse

4. Segmentierung von Objekten Video - Inhaltsanalyse 4. Segmentierung von Objekten Video - Inhaltsanalyse Stephan Kopf Inhalt Vorgehensweise Berechnung der Kamerabewegungen zwischen beliebigen Bildern Transformation eines Bildes Hintergrundbilder / Panoramabilder

Mehr

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren Aufgabe Gegeben seien die Punkte A(,,, B(,,, C(,,. (a Geben Sie die Hesse-Normalform der Ebene E, welche die drei Punkte A, B und C enthält, an. (b Bestimmen Sie den Abstand des Punktes P (,, 5 zur Ebene

Mehr

geschlossene Schachtel mit einem kleinen Loch

geschlossene Schachtel mit einem kleinen Loch Kameramodellierung Lochkamera Kamerakonstante Kamerazentrum geschlossene Schachtel mit einem kleinen Loch ideale Kamera: Loch hat keine Ausdehnung die Strahlen sind ein Büschel von Geraden Abbildung erfolgt

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 3 Anwendungen der Differentialrechnung 3.1 Lokale Maxima und Minima Definition 16: Sei f : D R eine Funktion von n Veränderlichen. Ein Punkt x heißt lokale oder relative Maximalstelle bzw. Minimalstelle

Mehr

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 11 Blatt 2

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 11 Blatt 2 Höhere Mathematik III WS 5/6 Lösungshinweis Aufgabe G 11 Blatt Die zu optimierende Zielfunktion ist der Abstand zum Ursprung. Ein bekannter Trick (Vereinfachung der Rechnung) besteht darin, das Quadrat

Mehr

18.2 Implizit definierte Funktionen

18.2 Implizit definierte Funktionen 18.2 Implizit definierte Funktionen Ziel: Untersuche Lösungsmengen von nichtlinearen Gleichungssystemen g(x) = 0 mit g : D R m, D R n, d.h. betrachte m Gleichungen für n Unbekannte mit m < n, d.h. wir

Mehr

KAPITEL 6. Nichtlineare Ausgleichsrechnung

KAPITEL 6. Nichtlineare Ausgleichsrechnung KAPITEL 6 Nichtlineare Ausgleichsrechnung Beispiel 61 Gedämpfte Schwingung: u + b m u + D m u = 0, Lösungen haben die Form: u(t) = u 0 e δt sin(ω d t + ϕ 0 ) Modell einer gedämpften Schwingung y(t; x 1,

Mehr

Qualitätsüberwachung von automatisch verfolgten Merkmalen in Bildsequenzen

Qualitätsüberwachung von automatisch verfolgten Merkmalen in Bildsequenzen Qualitätsüberwachung von automatisch verfolgten Merkmalen in Bildsequenzen J. Shi und C. Tomasi Good features to Track (CVPR94 Seattle, Juni 1994) Dozent: Dr. Felix v. Hundelshausen Referenten: Philipp

Mehr

Lineare Gleichungen mit 2 Variablen

Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen sind sehr eng verwandt mit linearen Funktionen. Die Funktionsgleichung einer linearen Funktion f(x) = m x+q m: Steigung, q: y Achsenabschnitt

Mehr

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man:

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man: AM3: Differenzial- und Integralrechnung im R n 1 Begriffe f : x 1 f 1 (x 1, x 2,..., x n ) x 2... f 2 (x 1, x 2,..., x n )... x n f m (x 1, x 2,..., x n ) }{{}}{{} R n R m aus Platzgründen schreibt man:

Mehr

Rechnen mit Vektoren, analytische Geometrie

Rechnen mit Vektoren, analytische Geometrie Dr. Alfred Eisler Rechnen mit Vektoren, analytische Geometrie Themenbereich Vektorrechnung, analytische Geometrie Inhalte Eingabe von Vektoren Rechnen mit Vektoren Normalvektoren im R 2 Vektorielles Produkt

Mehr

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle.

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle. 10 Funktionen mit mehreren Variablen www.mathematik-fuer-ingenieure.de 2010 und, Esslingen Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung

Mehr

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Technische Universität München Zentrum Mathematik Michael Strobel Geometriekalküle WS 217/18 http://www-m1.ma.tum.de/geometriekalkuelews1718 Lösungen zu Aufgabenblatt 7 (29. Februar 217) Aufgabe 1. Abstand

Mehr

3.1 Motivation. - Mit (mehreren) Koordinatentransformationen wird das Objektsystem in das Gerätesystem transformiert.

3.1 Motivation. - Mit (mehreren) Koordinatentransformationen wird das Objektsystem in das Gerätesystem transformiert. 3.1 Motivation Wichtige Grundlage der Bildwiedergabe auf dem Bildschirm oder anderen Ausgabegeräten sind Koordinatensysteme und Koordinatentransformationen im IR 2 und IR 3. Im allgemeinen unterscheidet

Mehr

Differentialrechnung bei Funktionen mehreren Variablen

Differentialrechnung bei Funktionen mehreren Variablen Kap. 6 Differentialrechnung bei Funktionen mehreren Variablen Im folgenden geht es um Funktionen des Typsf :R n R X... Y =f(x,...,x n ) X n Eine Weiterentwicklung der Differentialrechnung für solche Funktionen

Mehr

5.10. Mehrdimensionale Extrema und Sattelpunkte

5.10. Mehrdimensionale Extrema und Sattelpunkte 5.1. Mehrdimensionale Extrema und Sattelpunkte Zur Erinnerung: Eine Funktion f von einer Teilmenge A des R n nach R hat im Punkt a ein (strenges) globales Maximum, falls f( x ) f( a ) (bzw. f( x ) < f(

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler. (a) Bestimmen Sie die kartesische Form von Wintersemester 7/8 (..8) z = ( + i)( i) + ( + i). (b) Bestimmen Sie sämtliche komplexen Lösungen

Mehr

7.11. Extrema unter Nebenbedingungen

7.11. Extrema unter Nebenbedingungen 7.11. Extrema unter Nebenbedingungen Randextrema Wir haben schon bemerkt, daß die üblichen Tests mit Hilfe von (eventuell höheren) Ableitungen nur Kriterien für (lokale) Extrema im Inneren des Definitionsgebietes

Mehr

Übungen zum Ferienkurs Analysis II

Übungen zum Ferienkurs Analysis II Übungen zum Ferienkurs Analysis II Differenzierbarkeit und Taylor-Entwicklung Übungen, die mit einem Stern markiert sind, werden als besonders wichtig erachtet.. Jacobi-Matrix Man bestimme die Jacobi-Matrix

Mehr

Prof. Steinwart Höhere Mathematik I/II Musterlösung A =

Prof. Steinwart Höhere Mathematik I/II Musterlösung A = Prof. Steinwart Höhere Mathematik I/II Musterlösung 7..7 Aufgabe ( Punkte) (a) Bestimmen Sie die Eigenwerte und Eigenräume der Matrix A mit 3 3 A = 3 Ist die Matrix A diagonalisierbar? (b) Die Matrix A

Mehr

Kurzzusammenstellung der in der Vorlesung behandelten impliziten Gleichungen und deren Ableitungen

Kurzzusammenstellung der in der Vorlesung behandelten impliziten Gleichungen und deren Ableitungen Kurzzusammenstellung der in der Vorlesung behandelten impliziten Gleichungen und deren Ableitungen Einleitung: Funktion mit einer Veränderlichen Als Einleitung haben wir folgende Funktion besprochen: y

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt

Mehr

Bildregistrierung in der Medizin. Fethi KAYA - Yusuf ÖZBEK

Bildregistrierung in der Medizin. Fethi KAYA - Yusuf ÖZBEK Bildregistrierung in der Medizin Fethi KAYA - Yusuf ÖZBEK 30.05.2011 1 Inhalt 1. Einführung zur Registrierung 2. Registrierungsalgorithmen 3. Transformationen 4. Mutual Information 5. Demo 2 1- Registrierung

Mehr

Überprüfung der 2.Ableitung

Überprüfung der 2.Ableitung Übungen zum Thema: Extrempunkte ganzrationaler Funktionen Lösungsmethode: Überprüfung der.ableitung Version: Ungeprüfte Testversion vom 8.9.7 / 1. h 1. Finde lokale Extrema der unten aufgeführten ganzrationalen

Mehr

Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen

Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Rekonstruktion kontinuierlicher Daten Interpolation multivariater Daten Ulrich Rüde Lehrstuhl für Systemsimulation Sommersemester

Mehr

Einführung in die medizinische Bildverarbeitung WS 12/13

Einführung in die medizinische Bildverarbeitung WS 12/13 Einführung in die medizinische Bildverarbeitung WS 12/13 Stephan Gimbel Kurze Wiederholung Prozess einer räumliche Transformation zu finden um ein Bild auf ein anderes Bild abzubilden Eingabe: Fixed und

Mehr

Inhaltsverzeichnis. 1 Hardwaregrundlagen

Inhaltsverzeichnis. 1 Hardwaregrundlagen Inhaltsverzeichnis 1 Hardwaregrundlagen 2.1 Koordinatentransformationen 2.2 Transformationen in der Ebene 2.3 Transformationen im Raum 3 Repräsentation und Modellierung von Objekten 4 Rasterung 5 Visibilität

Mehr

1.4 Gradient, Divergenz und Rotation

1.4 Gradient, Divergenz und Rotation .4 Gradient, Divergenz und Rotation 5.4 Gradient, Divergenz und Rotation Die Begriffe Gradient, Divergenz und Rotation erfordern die partiellen Ableitung aus Abschnitt.. sowie das Konzept des Differentialoperators.

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Klausur HM II/III F 2003 HM II/III : 1

Klausur HM II/III F 2003 HM II/III : 1 Klausur HM II/III F 3 HM II/III : Aufgabe : (7 Punkte) Untersuchen Sie die Funktion f : R R gegeben durch x 3 y 3 f(x, y) x + y sin, (x, y) (, ) x + y, (x, y) (, ) auf Stetigkeit und Differenzierbarkeit.

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 7. Juni 201 *Aufgabe 1. Gegeben seien fx, y = xy 2 8e x+y und P = 1, 2. Der Gradient von f ist genau an der Stelle P Null. a Untersuchen Sie mit Hilfe der Hesse-Matrix,

Mehr

1. Filterung im Ortsbereich 1.1 Grundbegriffe 1.2 Lineare Filter 1.3 Nicht-Lineare Filter 1.4 Separabele Filter 1.

1. Filterung im Ortsbereich 1.1 Grundbegriffe 1.2 Lineare Filter 1.3 Nicht-Lineare Filter 1.4 Separabele Filter 1. . Filterung im Ortsbereich. Grundbegriffe. Lineare Filter.3 Nicht-Lineare Filter.4 Separabele Filter.5 Implementierung. Filterung im Frequenzbereich. Fouriertransformation. Hoch-, Tief- und Bandpassfilter.3

Mehr

2 Funktionen in mehreren Variablen: Differentiation

2 Funktionen in mehreren Variablen: Differentiation Satz 2. (Richtungsableitung) Für jede auf der offenen Menge D R n total differenzierbaren Funktion f (insbesondere für f C 1 (D, R) und für jeden Vektor v R n, v 0, gilt: n v f(x) = f(x) v = f xi (x)v

Mehr

Parallele Algorithmen in der Bildverarbeitung

Parallele Algorithmen in der Bildverarbeitung Seminar über Algorithmen - SoSe 2009 Parallele Algorithmen in der Bildverarbeitung von Christopher Keiner 1 Allgemeines 1.1 Einleitung Parallele Algorithmen gewinnen immer stärker an Bedeutung. Es existieren

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 26/7 (2.3.27). (a) Bestimmen Sie die kartesische Form von z = 5i 2i und z 2 = ( ) 9 3 2 2 i. (b) Bestimmen Sie sämtliche

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Grundlagen: Bildbearbeitung / Objekterkennung. Julia Peterwitz zum Seminar: Videobasierte Erkennung und Analyse menschlicher Aktionen

Grundlagen: Bildbearbeitung / Objekterkennung. Julia Peterwitz zum Seminar: Videobasierte Erkennung und Analyse menschlicher Aktionen Grundlagen: Bildbearbeitung / Objekterkennung Julia Peterwitz zum Seminar: Videobasierte Erkennung und Analyse menschlicher Aktionen Videoerkennung! Warum? Live-Übertragung von Veranstaltungen Überwachung

Mehr

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5 11. Lineare Funktionen Übungsaufgaben: 11.1 Zeichne jeweils den Graphen der zugehörigen Geraden a. y = 0,5x 0,25 b. y = 0,1x + 2 c. y = 2x 2 d. 2x + 4y 5 = 0 e. y = x f. y = 0,2x g. y = 1,5x + 5 h. y =

Mehr

z 2 + 2z + 10 = 0 = 2 ± 36 2 Aufgabe 2 (Lineares Gleichungssystem) Sei die reelle 3 4 Matrix

z 2 + 2z + 10 = 0 = 2 ± 36 2 Aufgabe 2 (Lineares Gleichungssystem) Sei die reelle 3 4 Matrix Mathematik für Wirtschaftswissenschaftler im WS 03/04 Lösungsvorschläge zur Klausur im WS 03/04 Aufgabe (Komplexe Zahlen (4 Punkte a Berechnen Sie das Produkt der beiden komplexen Zahlen + i und 3 + 4i

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt 9 19.12.2012 Aufgabe 35: Thema: Differenzierbarkeit a) Was bedeutet für eine Funktion f : R n R, dass f an der Stelle x 0 R n differenzierbar ist?

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 009 Dienstag 3.6 $Id: quadrat.tex,v.4 009/06/3 4:55:47 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6.3 Quadratische Funktionen und die Hauptachsentransformation

Mehr

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016 Verständnisfragen-Teil ( Punkte) Jeder der Verständnisfragenblöcke besteht aus Verständnisfragen. Werden alle Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block Punkte.

Mehr

Übungsaufgaben zur Linearen Funktion

Übungsaufgaben zur Linearen Funktion Übungsaufgaben zur Linearen Funktion Aufgabe 1 Bestimmen Sie den Schnittpunkt der beiden Geraden mit den Funktionsgleichungen f 1 (x) = 3x + 7 und f (x) = x 13! Aufgabe Bestimmen Sie den Schnittpunkt der

Mehr

D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18

D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18 D-MAVT/D-MATL FS 7 Dr. Andreas Steiger Analysis IILösung - Serie8. Klicken Sie die falsche Aussage an. a) Der Operator div ) ordnet einem Vektorfeld v ein Skalarfeld div v zu. v b) div v = x, v y, v )

Mehr

Schattenwurf mit Perspective Shadow Maps

Schattenwurf mit Perspective Shadow Maps 16. April 2010 Xpiriax Software Wer wir sind und was wir machen Hobby-Entwicklerteam, zur Zeit 6 Personen gegründet Anfang 2008 Schwerpunkte: Spiele- & 3D-Engine-Programmierung Ziele: Erfahrung, Arbeitsproben,

Mehr

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem Implizite Funktionen Ist für eine stetig differenzierbare Funktion f : R n R m R n f (x, y ) = (0,..., 0) t, det f x (x, y ) 0, so lässt sich das Gleichungssystem f k (x 1,..., x n, y 1,..., y m ) = 0,

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (5 Punkte) Gegeben sei eine lineare Abbildung α: R 4 R 3 : x Ax mit. . Weiter sei b = A =

Stroppel Musterlösung , 180min. Aufgabe 1 (5 Punkte) Gegeben sei eine lineare Abbildung α: R 4 R 3 : x Ax mit. . Weiter sei b = A = Stroppel Musterlösung 4. 9., 8min Aufgabe 5 Punkte Gegeben sei eine lineare Abbildung α: R 4 R 3 : x Ax mit 4 A =. Weiter sei b = 3 gegeben. Entscheiden Sie jeweils, ob die durch gekennzeichneten freien

Mehr

Iterative Methods for Improving Mesh Parameterizations

Iterative Methods for Improving Mesh Parameterizations Iterative Methods for Improving Mesh Parameterizations Autoren: Shen Dong & Michael Garland, SMI 07 Nicola Sheldrick Seminar Computergrafik April 6, 2010 Nicola Sheldrick (Seminar Computergrafik)Iterative

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 11

Technische Universität München Zentrum Mathematik. Übungsblatt 11 Technische Universität München Zentrum Mathematik Mathematik Elektrotechnik Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 11 Hausaufgaben Aufgabe 11.1 Berechnen Sie jeweils die Jacobi-Matrix folgender

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 7, 30.11.2011 Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 7, 30.11.2011 Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 7, 30.11.2011 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

Effizienz von Algorithmen

Effizienz von Algorithmen Effizienz von Algorithmen Letzte Bearbeitung: Jan 211 Ein wichtiger Aspekt bei Algorithmen sind seine "Kosten". Wir wollen uns hier ausschließlich mit der Laufzeit des gewählten Algorithmus beschäftigen.

Mehr

EVC Repetitorium Blender

EVC Repetitorium Blender EVC Repetitorium Blender Michael Hecher Felix Kreuzer Institute of Computer Graphics and Algorithms Vienna University of Technology INSTITUTE OF COMPUTER GRAPHICS AND ALGORITHMS Filter Transformationen

Mehr

VHDL - Grundlagen des Pointrenderings

VHDL - Grundlagen des Pointrenderings VHDL - Grundlagen des Pointrenderings Marc Reichenbach, Timo Nieszner Informatik 3 / Rechnerarchitektur Universität Erlangen Nürnberg 2013 1 / 25 Rendern von Dreiecksnetzen Quelle: Inf9, CG-Slides grobmaschiges

Mehr

Kapitel 2: Mathematische Grundlagen

Kapitel 2: Mathematische Grundlagen [ Computeranimation ] Kapitel 2: Mathematische Grundlagen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 2. Mathematische Grundlagen

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 009 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

Der metrische Raum (X, d) ist gegeben. Zeigen Sie, dass auch

Der metrische Raum (X, d) ist gegeben. Zeigen Sie, dass auch TECHNISCHE UNIVERSITÄT BERLIN SS 07 Institut für Mathematik Stand: 3. Juli 007 Ferus / Garcke Lösungsskizzen zur Klausur vom 6.07.07 Analysis II. Aufgabe (5 Punkte Der metrische Raum (X, d ist gegeben.

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

8. Übungsblatt zur Mathematik I für Maschinenbau

8. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 8. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS / 6..-.. Aufgabe G (Matrixinversion mit Gauß-Algorithmus

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Wiederholung Eine Menge von Vektoren a 1, a 2,, a k heisst linear unabhängig, wenn eine Linearkombination c 1 a 1 + c 2 a 2 + + c k a k = k c i a i (1) i=1 nur dann Null sein

Mehr

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren Kapitel 3 Vektoren 31 Skalare, Vektoren, Tensoren Viele physikalische Größen lassen sich bei bekannter Maßeinheit durch Angabe ihres Betrages als reelle Zahl vollständig angeben Solche Größen nennt man

Mehr

Suche nach korrespondierenden Pixeln

Suche nach korrespondierenden Pixeln Suche nach korrespondierenden Pixeln Seminar Algorithmen zur Erzeugung von Panoramabildern Philip Mildner, Gliederung 1. Motivation 2. Anforderungen 3. Moravec Detektor 4. Harris Detektor 5. Scale Invariant

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man:

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man: AM3: Differenzial- und Integralrechnung im R n 1 Begriffe f : x 1 f 1 x 1, x 2,..., x n ) x 2... f 2 x 1, x 2,..., x n )... x n f m x 1, x 2,..., x n ) }{{}}{{} R n R m aus Platzgründen schreibt man: f

Mehr

bzw. eine obere Dreiecksmatrix die Gestalt (U: upper)

bzw. eine obere Dreiecksmatrix die Gestalt (U: upper) bzw. eine obere Dreiecksmatrix die Gestalt (U: upper) U = u 11 u 12 u 1n 1 u nn 0 u 22 u 2n 1 u 2n 0......... 0 0 u n 1n 1 u n 1n 0 0 0 u nn Eine nicht notwendig quadratische Matrix A = (a ij ) heißt obere

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

Prof. J. Zhang zhang@informatik.uni-hamburg.de. Universität Hamburg. AB Technische Aspekte Multimodaler Systeme. 16. Dezember 2003

Prof. J. Zhang zhang@informatik.uni-hamburg.de. Universität Hamburg. AB Technische Aspekte Multimodaler Systeme. 16. Dezember 2003 zhang@informatik.uni-hamburg.de Universität Hamburg AB Technische Aspekte Multimodaler Systeme zhang@informatik.uni-hamburg.de Inhaltsverzeichnis 5. Sichtsysteme in der Robotik....................307 Industrielle

Mehr

Nichtlineare Ausgleichsrechnung

Nichtlineare Ausgleichsrechnung 10. Großübung Nichtlineare Ausgleichsrechnung Allgemeines Problem: Wir betrachten ein nichtlineares System F : R n R m mit (m > n, d.h. das System ist überbestimmt und F i (x g(t i ; x g i! 0 i 1,.., m.

Mehr

Mustererkennung. Übersicht. Unüberwachtes Lernen. (Un-) Überwachtes Lernen Clustering im Allgemeinen k-means-verfahren Gaussian-Mixture Modelle

Mustererkennung. Übersicht. Unüberwachtes Lernen. (Un-) Überwachtes Lernen Clustering im Allgemeinen k-means-verfahren Gaussian-Mixture Modelle Mustererkennung Unüberwachtes Lernen R. Neubecker, WS 01 / 01 Übersicht (Un-) Überwachtes Lernen Clustering im Allgemeinen k-means-verfahren 1 Lernen Überwachtes Lernen Zum Training des Klassifikators

Mehr

Transformationen im 3D-Raum

Transformationen im 3D-Raum Thomas Jung Repräsentation von 3D-Oberflächen Aufbau von Szenen Transformationen im 3D-Raum Projektionstranformationen Anwendung in OpenGL Geometrietransformationen bilden die Basis für die Computergrafik

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

15ab 21bc 9b = 3b 5a 7c 3

15ab 21bc 9b = 3b 5a 7c 3 4 4.1 Einführung Haben alle Summanden einer algebraischen Summe einen gemeinsamen Faktor, so kann man diesen gemeinsamen Faktor ausklammern. Die Summe wird dadurch in ein Produkt umgewandelt. Tipp: Kontrolle

Mehr

PFLICHTTEIL FRANZ LEMMERMEYER

PFLICHTTEIL FRANZ LEMMERMEYER PFLICHTTEIL FRANZ LEMMERMEYER ( Bestimmen Sie die erste Ableitung der Funktion f(x mit f(x = (3x x + und Vereinfachen Sie so weit wie möglich. ( Bestimmen Sie diejenige Stammfunktion F (x von ( π f(x =

Mehr

(d) das zu Grunde liegende Problem gut konditioniert ist.

(d) das zu Grunde liegende Problem gut konditioniert ist. Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt

Mehr

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya Lineare Abhängigkeit und Unabhängigkeit -E Ma Lubov Vassilevskaya Eindimensionaler Raum Abb. -: Zwei nicht gleiche Vektoren auf der gleichen Gerade Jeden Vektor, der auf einer Geraden liegt, kann man durch

Mehr

Lösungshinweise zur Klausur

Lösungshinweise zur Klausur Höhere Mathematik 3 26. 2. 214 Lösungshinweise zur Klausur für Studierende der Fachrichtungen kyb,mecha,phys Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind. (i)

Mehr

Bildinterpolation in virtuellen 3-D-Szenen. Lars Groenhagen

Bildinterpolation in virtuellen 3-D-Szenen. Lars Groenhagen Bildinterpolation in virtuellen 3-D-Szenen Einleitung Seminarthema: Algorithmen zur Erzeugung von Panoramabildern Zylindrisches oder sphärisches Panorama: fester Standpunkt des Beobachters Wählbarer Standpunkt

Mehr

Angewandte Multivariate Statistik Prof. Dr. Ostap Okhrin

Angewandte Multivariate Statistik Prof. Dr. Ostap Okhrin Angewandte Multivariate Statistik Angewandte Multivariate Statistik Prof. Dr. Ostap Okhrin Ostap Okhrin 1 of 46 Angewandte Multivariate Statistik A Short Excursion into Matrix Algebra Elementare Operationen

Mehr

Simulationstechnik V

Simulationstechnik V Simulationstechnik V Vorlesung/Praktikum an der RWTH Aachen Numerische Simulation von Strömungsvorgängen B. Binninger Institut für Technische Verbrennung Templergraben 64 7. Teil Die Impulsgleichungen

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München WiSe 7 / 8 Institut für Informatik Univ.-Prof. Dr. Hans-Joachim Bungartz Michael Obersteiner Philipp Samfass Numerisches Programmieren, Übungen Musterlösung 8. Übungsblatt:

Mehr

Herleitung der Euler-Lagrange Gleichungen für Optical Flow Constraints

Herleitung der Euler-Lagrange Gleichungen für Optical Flow Constraints Herleitung der Euler-Lagrange Gleichungen für Optical Flow Constraints Benjamin Seppke 4. Juni 2010 1 Euler-Lagrange Gleichungen In dem Gebiet der Variationsrechnung ist die Euler-Lagrange Gleichung (oder

Mehr

Eindeutigkeit reduzierter Gröbnerbasen

Eindeutigkeit reduzierter Gröbnerbasen Eindeutigkeit reduzierter Gröbnerbasen Satz Existenz und Eindeutigkeit reduzierter Gröbnerbasen Jedes Ideal I F[x 1,..., x n ] besitzt eine eindeutige reduzierte Gröbnerbasis. Beweis: Existenz: Hilbert

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 6 Endliche Kameras Die Lochkamera Die Projektive Kamera Die projektive Kamera Spalten von P Zeilen von P Hauptpunkt und Hauptachse

Mehr

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2 Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Niedersachsen. Übungsbuch für den Grundkurs mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Niedersachsen. Übungsbuch für den Grundkurs mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Niedersachsen Übungsbuch für den Grundkurs mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis Von der Gleichung zur Kurve... 9 Aufstellen

Mehr

Ortskurvenerkennung. Christian Liedl, WS06/07 TUM

Ortskurvenerkennung. Christian Liedl, WS06/07 TUM Ortskurvenerkennung Christian Liedl, WS06/07 TUM Überblick Was sind Ortskurven Beispiele spezieller Ortskurven Kurvenerkennung Voraussetzung Erster Ansatz Modellierung Beispiel: Identifikation Ortskurve

Mehr

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden?

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden? Kapitel Lineare Abbildungen Verständnisfragen Sachfragen Was ist eine lineare Abbildung? Erläutern Sie den Zusammenhang zwischen Unterräumen, linearer Unabhängigkeit und linearen Abbildungen! 3 Was ist

Mehr