Stochastik und Statistik für Ingenieure Vorlesung 4

Größe: px
Ab Seite anzeigen:

Download "Stochastik und Statistik für Ingenieure Vorlesung 4"

Transkript

1 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Stochastik und Statistik für Ingenieure Vorlesung Oktober 2012

2 Quantile einer stetigen Zufallsgröße Die reelle Zahl x q mit 0 < q < 1 heißt q Quantil der stetigen Zufallsgröße X, wenn die Werte von X mit einer Wahrscheinlichkeit q links von x q liegen, d.h. x q ist eine Lösung der Gleichung xq f X (x) dx = q bzw. F X (x q ) = q. q Quantile können auch für diskrete und andere Zufallsgrößen betrachtet werden. Wichtige Quantile sind: das 0.5 Quantil, es heißt Median von X; das 0.25 bzw Quantil, dies sind die sogenannten Quartile von X (das untere bzw. das obere); ( die α, (1 α), 1 α 2 spielen bei statistischen Fragen eine große Rolle. ) Quantile für kleine Werte α, sie Prof. Dr. Hans-Jörg Starkloff (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 4 1

3 Beispiel Exponentialverteilung Eine Zufallsgröße X heißt exponentialverteilt mit Parameter λ > 0, falls für die Verteilungsfunktion F X bzw. die Verteilungsdichte f X gilt: { { 0, x < 0, 0, x < 0, F X (x) = f 1 exp( λx), x 0, X (x) = λ exp( λx), x 0. Verteilungsfunktion (λ = 2) Dichtefunktion (λ = 2) Prof. Dr. Hans-Jörg Starkloff (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 4 2

4 Quantile für Exponentialverteilung Es sei X exponentialverteilt mit Parameter λ = 2, d.h. { 0, x 0, F X (x) = P (X < x) = 1 exp( 2x), x > 0. Dann gilt für das q Quantil x q (mit 0 < q < 1): F X (x q ) = 1 exp( 2x q ) = q, also x q = 1 ln (1 q). 2 q x q Verteilungsfunktion Dichtefunktion Prof. Dr. Hans-Jörg Starkloff (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 4 3

5 3.3 Wichtige diskrete Wahrscheinlichkeitsverteilungen Diskrete Gleichverteilung Zufallsgröße X mit endlich vielen möglichen Werten x 1, x 2,..., x n (x i x j, i j). Zugehörige Wahrscheinlichkeiten: p i = P (X = x i ) = 1, i = 1, 2,..., n. n Im Spezialfall x 1 = 1, x 2 = 2,... x n = n gelten EX = n Anwendung: Laplace-Experiment. und VarX = n Bezeichnung: X U({x 1, x 2,..., x n }).. Prof. Dr. Hans-Jörg Starkloff (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 4 4

6 3.3.2 Bernoulli-Verteilung Zufallsgröße X mit 2 möglichen Werten x 1 = 1, x 2 = 0. Zugehörige Wahrscheinlichkeiten: P (X = 1) = p, P (X = 0) = 1 p. Es gelten EX = p und VarX = p(1 p). Bezeichnung: X B(p). Anwendung: Bernoulli-Experiment: Experiment mit zwei möglichen Versuchsausgängen, die durch die Ereignisse A bzw. A c beschrieben werden. Das Ereignis A tritt dabei mit einer Wahrscheinlichkeit p = P (A) ein. Tritt das Ereignis A ein, dann ist die Zufallsgröße X gleich 1, sonst gleich 0. Eigenschaft: Die Summe unabhängiger und identisch verteilter bernoulliverteilter Zufallsgrößen ist binomialverteilt (mit den Parametern n und p bei n Summanden). Prof. Dr. Hans-Jörg Starkloff (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 4 5

7 3.3.3 Binomialverteilung Parameter: n N, 0 p 1. Zufallsgröße X mit möglichen Werten x 0 = 0, x 1 = 1,..., x n = n. Zugehörige Wahrscheinlichkeiten: ( ) n p i = P (X = i) = p i (1 p) n i, i = 0, 1,..., n. i Es gelten EX = np und VarX = np(1 p). Bezeichnung: X Bin(n, p). Eigenschaft: X 1 Bin(n 1, p), X 2 Bin(n 2, p), unabhängig X 1 + X 2 Bin(n 1 + n 2, p). Prof. Dr. Hans-Jörg Starkloff (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 4 6

8 Binomialverteilungen Prof. Dr. Hans-Jörg Starkloff (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 4 7

9 Typische Situation für Binomialverteilung Grundmodell: Folge gleichartiger Versuche mit fester Anzahl dieser Versuche. Typische Situation: Der Zufallsversuch besteht aus einer endlichen Anzahl n von unabhängigen und gleichartigen Teilversuchen. Bei jedem Teilversuch kann ein bestimmtes Ereignis mit einer Wahrscheinlichkeit p eintreten oder (mit Wahrscheinlichkeit 1 p) nicht. Mit der Zufallsgröße X zählt man die Anzahl der Teilversuche, bei denen das interessierende Ereignis eingetreten ist. X ist also die zufällige Anzahl der eingetretenen Ereignisse unter obigen Bedingungen. Anwendung: z.b. Qualitätskontrolle mit Zurücklegen (Anzahl von Ausschussteilen in Produktion bei gleichbleibenden Produktionsbedingungen, d.h. fester Ausschussquote). Prof. Dr. Hans-Jörg Starkloff (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 4 8

10 Beispielaufgabe Binomialverteilung Ein idealer Würfel wird 20 mal geworfen. Wie groß ist die Wahrscheinlichkeit dafür, dass mindestens zwei mal eine Sechs geworfen wird? Zufallsgröße X Anzahl der geworfenen Sechsen bei 20 Würfen dieses Würfels. Die Zufallsgröße X ist binomialverteilt. Die Wahrscheinlichkeit für das Werfen einer Sechs bei einem Würfelwurf beträgt 1/6, dies ist der Parameter p. Der Parameter n beschreibt die Anzahl der Wiederholungen des Einzelversuchs, also hier n = 20. Gesucht ist P (X 2). Berechnung: P (X 2) = 1 P (X < 2) = 1 (P (X = 0) + P (X = 1)) ( ) ( ) ( ) 5 20 ( ) ( ) ( ) 5 19 = = Prof. Dr. Hans-Jörg Starkloff (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 4 9

11 3.3.4 Hypergeometrische Verteilung Parameter: N, M, n N, M N, n N. Zufallsgröße X mit Anzahlen (natürlichen Zahlen) i N 0 möglichen Werten, so dass als max{0, n (N M)} i min{m, n}. Zugehörige Wahrscheinlichkeiten: p i = P (X = i) = ( M )( N M i n i ) ( N n). Es gelten EX = n M N VarX = n M N und ( 1 M ) ( 1 n 1 ). N N 1 Prof. Dr. Hans-Jörg Starkloff (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 4 10

12 Hypergeometrische Verteilungen Prof. Dr. Hans-Jörg Starkloff (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 4 11

13 Typische Situation für die hypergeometrische Verteilung Grundmodell: Urnenmodell. Anwendungssituationen sind u.a. zufällige Auswahlen, Anordnungen etc. ohne Zurücklegen (ohne Wiederholung) und ohne Berücksichtigung der Reihenfolge. Anwendung: Qualitätskontrolle eines Loses vom Umfang N ohne Zurücklegen der n kontrollierten Stücke. Eine typische Situation ist z.b.: Vorhanden sind N Dinge, darunter M besondere. Es werden rein zufällig n Dinge aus allen ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge ausgewählt. Mit einer hypergeometrisch verteilten Zufallsgröße X beschreibt man dann die zufällige Anzahl der besonderen Dinge unter den n ausgewählten (z.b. die Anzahl der richtigen Zahlen bei einem Tipp im Lottospiel). Bei sehr großen N, M mit p M N geht die hypergeometrische Verteilung in die Binomialverteilung Bin(n, p) über. Prof. Dr. Hans-Jörg Starkloff (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 4 12

14 Beispielaufgabe hypergeometrische Verteilung Es wurde folgender Prüfplan vereinbart: Der Abnehmer übernimmt alle 50 gelieferten Schaltkreise, wenn in einer Stichprobe von 10 Schaltkreisen höchstens ein nicht voll funktionsfähiger Schaltkreis enthalten ist. Ansonsten wird die gesamte Lieferung verworfen. Berechnen Sie bei diesem Prüfplan die Wahrscheinlichkeit dafür, dass die 50 Schaltkreise a) abgenommen werden, obwohl diese 12 nicht voll funktionsfähige Schaltkreise enthalten, b) zurückgewiesen werden, obwohl nur 3 nicht voll funktionsfähige Schaltkreise enthalten sind! Zufallsgröße X Anzahl der nicht voll funktionsfähigen Schaltkreise in der Stichprobe. Die Zufallsgröße X ist hypergeometrisch verteilt. Prof. Dr. Hans-Jörg Starkloff (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 4 13

15 3.3.5 Geometrische Verteilung Parameter: 0 < p < 1. Zufallsgröße X mit möglichen Werten k = 1, 2, 3,.... Zugehörige Wahrscheinlichkeiten: Es gelten p k = P (X = k) = p(1 p) k 1, k = 1, 2, 3,.... EX = 1 und VarX = 1 p p p 2. Bezeichnung: X Geo(p). Grundmodell: Folge gleichartiger Versuche mit zufälliger Anzahl der Versuche. Anwendung: Gleichartige unabhängige Teilversuche, bei denen jeweils Erfolg mit Wahrscheinlichkeit p oder Misserfolg mit Wahrscheinlichkeit 1 p eintreten können, werden so lange durchgeführt, bis zum ersten Mal Erfolg eingetreten ist. Der Wert von X ist gleich der Anzahl der durchgeführten Teilversuche. Prof. Dr. Hans-Jörg Starkloff (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 4 14

16 Geometrische Verteilungen, Beispielaufgabe Beispielaufgabe: Ein Relais falle mit einer Wahrscheinlichkeit von bei einem Schaltvorgang zufällig aus, wobei diese Ausfälle unabhängig voneiander eintreten sollen. Wie groß ist die Wahrscheinlichkeit dafür, dass erstmalig ein Ausfall beim tausendsten Schaltvorgang passiert? Prof. Dr. Hans-Jörg Starkloff (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 4 15

17 Verallgemeinerungen der geometrischen Verteilung Mitunter zählt man in der Situation zur geometrischen Verteilung nur die Anzahl der Versuche, bevor der erste Erfolg eintritt, also die Anzahl der Misserfolge vor dem ersten Erfolg. Die möglichen Werte der Zufallsgröße sind dann k = 0, 1, 2,... und sie ist dann reduziert geometrisch verteilt. Werden in derselben Situation die Teilversuche solange wiederholt, bis der r te Erfolg eingetreten ist (r N), besitzt die zufällige Anzahl X der durchgeführten Teilversuche eine negative Binomialverteilung mit den Parametern r und p. Dann gelten ( ) k 1 P (X = k) = p r (1 p) k r, k = r, r + 1,..., r 1 EX = r r(1 p) und VarX = p p 2. Bei der geometrischen und der negativen Binomialverteilung wird in Statistikprogrammen oft die Anzahl der Fehlversuche und nicht die Anzahl der Versuche als Zufallgröße betrachtet. Prof. Dr. Hans-Jörg Starkloff (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 4 16

18 3.3.6 Poissonverteilung Parameter: λ > 0 (die Intensität der Poissonverteilung). Zufallsgröße X mit möglichen Werten k = 0, 1, 2,.... Zugehörige Wahrscheinlichkeiten: Es gelten p k = P (X = k) = λk k! e λ, k = 0, 1, 2,.... Bezeichnung: X Poi(λ). EX = λ und VarX = λ. Eigenschaft: X 1 Poi(λ 1 ), X 2 Poi(λ 2 ), unabhängig X 1 + X 2 Poi(λ 1 + λ 2 ). Prof. Dr. Hans-Jörg Starkloff (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 4 17

19 Poissonverteilungen Prof. Dr. Hans-Jörg Starkloff (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 4 18

20 Anwendungen der Poissonverteilung Anwendung: Häufig beschreiben poissonverteilte Zufallsgrößen die Anzahl von bestimmten Ereignissen ( Poissonereignisse, z.b. Schadensfälle) in festen Zeitintervallen, wenn die Ereignisse zu zufälligen Zeitpunkten eintreten (auch analog an zufälligen Orten oder ähnliches) und das Folgende gilt. Die Wahrscheinlichkeit für das Eintreten einer bestimmten Anzahl dieser Poissonereignisse hängt nur von der Länge des betrachteten Zeitintervalls ab, nicht wann dieses beginnt oder endet (Stationarität). Die zufälligen Anzahlen der eingetretenen Poissonereignisse sind für sich nicht überschneidende Zeitintervalle stochastisch unabhängig (Nachwirkungsfreiheit). Die betrachteten Poissonereignisse treten einzeln ein, nicht gleichzeitig, die zufälligen Anzahlen ändern sich somit von Moment zu Moment höchstens um den Wert 1 (Ordinarität). Beispiele: Anzahl von Telefonanrufen, Anzahl von emittierten Teilchen in Physik (radioaktiver Zerfall), Anzahl von Unfällen, Anzahl von Schadensfällen, Anzahl von Niveauüberschreitungen. Prof. Dr. Hans-Jörg Starkloff (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 4 19

21 Poissonverteilung und Binomialverteilung Ist eine zufällige Zählgröße X binomialverteilt, der Parameter n aber groß und der Parameter p klein (Faustregel: np 10 und gleichzeitig n 1500p, sogenannte seltenen Ereignisse ), dann kann man die Wahrscheinlichkeiten näherungsweise mit Hilfe einer Poissonverteilung mit Parameter λ = np berechnen, d.h. P (X = k) = ( n k )p k (1 p) n k λk k! e λ (dies folgt aus dem Grenzwertsatz von Poisson). Prof. Dr. Hans-Jörg Starkloff (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 4 20

22 Übungsaufgaben Poissonverteilung An einer Tankstelle kommen werktags zwischen 16:00 und 18:00 Uhr durchschnittlich 4 Fahrzeuge pro Minute an. Wie groß ist die Wahrscheinlichkeit dafür, dass während einer Minute im betrachteten Zeitbereich mindestens 3 Fahrzeuge ankommen, wenn man davon ausgeht, dass die zufällige Anzahl der ankommenden Fahrzeuge poissonverteilt ist? Es werden 50 Erzeugnisse aus einer Lieferung mit einer Ausschusswahrscheinlichkeit von 0.01 untersucht. Wie groß ist die Wahrscheinlichkeit dafür, dass sich höchstens ein fehlerhaftes Erzeugnis unter den 50 Erzeugnissen befindet? Prof. Dr. Hans-Jörg Starkloff (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 4 21

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können.

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. 2 Zufallsvariable 2.1 Einführung Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. Eine Zufallsvariable X ordnet jedem elementaren Versuchsausgang

Mehr

Statistik für Ingenieure Vorlesung 2

Statistik für Ingenieure Vorlesung 2 Statistik für Ingenieure Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 24. Oktober 2016 2.4 Bedingte Wahrscheinlichkeiten Häufig ist es nützlich, Bedingungen

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

Diskrete Verteilungen

Diskrete Verteilungen KAPITEL 6 Disrete Verteilungen Nun werden wir verschiedene Beispiele von disreten Zufallsvariablen betrachten. 1. Gleichverteilung Definition 6.1. Eine Zufallsvariable X : Ω R heißt gleichverteilt (oder

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen:

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 Diskrete Verteilungen 1 Kapitel 5: Diskrete Verteilungen A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 0.6 x 0.4 5 x (i) P x (x)

Mehr

2. Übung zur Vorlesung Statistik 2

2. Übung zur Vorlesung Statistik 2 2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 5 Hilfsmittel aus der Kombinatorik 7 Bedingte

Mehr

(8 + 2 Punkte) = = 0.75

(8 + 2 Punkte) = = 0.75 Aufgabe 1 (8 + 2 Punkte) Von 20 Teilnehmern einer Bergwanderung geben 8 Personen an Knieschmerzen zu haben. 6 Teilnehmer leiden an Sonnenbrand. 8 Teilnehmer blieben unversehrt. a) Wie groß ist die Wahrscheinlichkeit,

Mehr

Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6

Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6 1 Lösungen ausgewählter Übungsaufgaben zum Buch Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6 Aufgaben zu Kapitel 5 Zu Abschnitt 5.1 Ü5.1.1 Finden Sie eine maximum-likelihood-schätzung

Mehr

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec Binomialverteilung Jakob Bernoulli (1654-1705) Ars Conjectandi Klassisches Verteilungsmodell für die Berechnung der Wahrscheinlichkeit für die Häufigkeit des Eintretens von Ereignissen in bestimmten noch

Mehr

Stochastik. 1. Wahrscheinlichkeitsräume

Stochastik. 1. Wahrscheinlichkeitsräume Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

falls rote Kugel im 1. Zug gezogen Die Ziehungen sind daher nicht unabhängig voneinander. Damit liegt kein Bernoulli-Prozess

falls rote Kugel im 1. Zug gezogen Die Ziehungen sind daher nicht unabhängig voneinander. Damit liegt kein Bernoulli-Prozess 6.4 Hypergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln sind nicht rot. Wir entnehmen n Kugeln, d.h. Stichproben vom Umfang n.

Mehr

Statistik I für Betriebswirte Vorlesung 2

Statistik I für Betriebswirte Vorlesung 2 Statistik I für Betriebswirte Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 11. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Exponentialverteilung

Exponentialverteilung Exponentialverteilung Dauer von kontinuierlichen Vorgängen (Wartezeiten; Funktionszeiten technischer Geräte) Grenzübergang von der geometrischen Verteilung Pro Zeiteinheit sei die Eintrittswahrscheinlichkeit

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen 6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher: Diskrete Zufallsvariablen,

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

Klausur Stochastik und Statistik 18. September 2012

Klausur Stochastik und Statistik 18. September 2012 Klausur Stochastik und Statistik 18. September 2012 Prof. Dr. Matthias Schmid Institut für Statistik, LMU München Wichtig: ˆ Überprüfen Sie, ob Ihr Klausurexemplar vollständig ist. Die Klausur besteht

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Unabhängigkeit von Ereignissen A, B unabhängig:

Mehr

Motivation. Benötigtes Schulwissen. Übungsaufgaben. Wirtschaftswissenschaftliches Zentrum 10 Universität Basel. Statistik

Motivation. Benötigtes Schulwissen. Übungsaufgaben. Wirtschaftswissenschaftliches Zentrum 10 Universität Basel. Statistik Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Statistik Dr. Thomas Zehrt Ausblick Motivation Wir werfen einen Würfel 000-mal und wir möchten die Wahrscheinlichkeit P bestimmen, dass zwischen

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 15.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Aufgabenstellung und Ergebnisse Dr. Martin Becker Hinweise für die

Mehr

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc. Abiturvorbereitung Stochastik neue friedländer gesamtschule Klasse 12 GB 24.02.2014 Holger Wuschke B.Sc. Siedler von Catan, Rühlow 2014 Organisatorisches 0. Begriffe in der Stochastik (1) Ein Zufallsexperiment

Mehr

4 Diskrete Wahrscheinlichkeitsverteilungen

4 Diskrete Wahrscheinlichkeitsverteilungen 4 Diskrete Wahrscheinlichkeitsverteilungen 4.1 Wahrscheinlichkeitsräume, Ereignisse und Unabhängigkeit Definition: Ein diskreter Wahrscheinlichkeitsraum ist ein Paar (Ω, Pr), wobei Ω eine endliche oder

Mehr

Diskrete Wahrscheinlichkeitstheorie - Probeklausur

Diskrete Wahrscheinlichkeitstheorie - Probeklausur Diskrete Wahrscheinlichkeitstheorie - robeklausur Sommersemester 2007 - Lösung Name: Vorname: Matrikelnr.: Studiengang: Hinweise Sie sollten insgesamt Blätter erhalten haben. Tragen Sie bitte Ihre Antworten

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 6. Vorlesung Dr. Jochen Köhler 4.03.011 1 Statistik und Wahrscheinlichkeitsrechnung Nächste Woche KEINE Vorlesung!!!

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 6. Ausgewählte Verteilungen (Distributions) * diskret: Bernoulli, Binomial, Geometrisch, Poisson * stetig: Uniform, Exponential, Normal, χ 2,

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

Weihnachtszettel zur Vorlesung. Stochastik I. Wintersemester 2011/2012

Weihnachtszettel zur Vorlesung. Stochastik I. Wintersemester 2011/2012 Weihnachtszettel zur Vorlesung Stochastik I Wintersemester 0/0 Aufgabe. Der Weihnachtsmann hat vergessen die Weihnachtsgeschenke mit Namen zu beschriften und muss sie daher zufällig verteilen. Dabei enthält

Mehr

2 Aufgaben aus [Teschl, Band 2]

2 Aufgaben aus [Teschl, Band 2] 20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 10. November 2010 1 Bedingte Wahrscheinlichkeit Satz von der totalen Wahrscheinlichkeit Bayessche Formel 2 Grundprinzipien

Mehr

WAHRSCHEINLICHKEITSTHEORIE. 1. Elementare Kombinatorik Wir betrachten die Frage wieviele Möglichkeiten es gibt, aus n unterschiedlichen

WAHRSCHEINLICHKEITSTHEORIE. 1. Elementare Kombinatorik Wir betrachten die Frage wieviele Möglichkeiten es gibt, aus n unterschiedlichen WAHRSCHEINLICHKEITSTHEORIE 1. Elementare Kombinatori Wir betrachten die Frage wieviele Möglicheiten es gibt, aus n unterschiedlichen Objeten auszuwählen. Dabei müssen wir sowohl unterscheiden ob ein Objet

Mehr

Hypergeometrische Verteilung

Hypergeometrische Verteilung Hypergeometrische Verteilung Typischer Anwendungsfall: Ziehen ohne Zurücklegen Durch den Ziehungsprozess wird die Wahrscheinlichkeit des auch hier zu Grunde liegenden Bernoulli-Experimentes verändert.

Mehr

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. .3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil

Mehr

Statistik für Naturwissenschaftler Woche 04-06: Wahrscheinlichkeitsrechnung (mit R Unterstützung)

Statistik für Naturwissenschaftler Woche 04-06: Wahrscheinlichkeitsrechnung (mit R Unterstützung) Woche 04-06: Wahrscheinlichkeitsrechnung (mit R Unterstützung) Ass.-Prof. Dr. Fachbereich Mathematik Universität Salzburg www.trutschnig.net Salzburg, April 2016 Münzwurf und Würfeln Beispiel (Münzwurf

Mehr

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26)

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26) Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26 Ein Wahrscheinlichkeitsraum (Ω, P ist eine Menge Ω (Menge aller möglichen Ausgänge eines Zufallsexperiments: Ergebnismenge versehen mit einer Abbildung

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet Kapitel 10 Zufall und Wahrscheinlichkeit 10.1. Grundbegriffe Wahrscheinlichkeitsrechnung Zufallsvorgang Klein-Omega ω Groß-Omega Ω Stellt Modelle bereit, die es erlauben zufallsabhängige Prozesse abzuschätzen

Mehr

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass f Z (z) = Pr[Z = z] = x W X Pr[X + Y = z X = x] Pr[X = x] = x W X Pr[Y = z x] Pr[X = x] = x W X f X (x) f Y (z x). Den Ausdruck

Mehr

Wiederholung der Hauptklausur STATISTIK

Wiederholung der Hauptklausur STATISTIK Name, Vorname: Matrikel-Nr. Die Klausur enthält zwei Typen von Aufgaben: Teil A besteht aus Fragen mit mehreren vorgegebenen Antwortvorschlägen, von denen mindestens eine Antwort richtig ist und von denen

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 9. Übung SS 16: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 9. Übung SS 16: Woche vom Übungsaufgaben 9. Übung SS 16: Woche vom 5. 6. 10. 6. 2016 Stochastik III: Totale Wkt., S.v.Bayes, Diskrete ZG Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

Ist P(T) = p die Trefferwahrscheinlichkeit eines Bernoulli-Experiments,

Ist P(T) = p die Trefferwahrscheinlichkeit eines Bernoulli-Experiments, . Binomialverteilung ==================================================================.1 Bernoulli-Experimente und Bernoullikette -----------------------------------------------------------------------------------------------------------------

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 12.02.2010 Fakultät für Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Ü b u n g s b l a t t 11

Ü b u n g s b l a t t 11 Einführung in die Stochastik Sommersemester 07 Dr Walter Oevel 8 007 Ü b u n g s b l a t t Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden Lösungen von -Aufgaben sind

Mehr

Anzahl der Möglichkeiten in der Werkstatthalle, 3 ohne eingebaute Alarmanlage: N N 2

Anzahl der Möglichkeiten in der Werkstatthalle, 3 ohne eingebaute Alarmanlage: N N 2 Abiturprüfung Berufliche Oberschule 003 Mathematik 13 Technik - B I - Lösung Teilaufgabe 1.0 Eine Kfz-Werkstatt für Autoelektronik baut in Fahrzeuge Alarmanlagen ein. Die Werkstatt verfügt über 11 Stellplätze,

Mehr

Lernzusammenfassung für die Klausur. Inhaltsverzeichnis. Stochastik im SS 2001 bei Professor Sturm

Lernzusammenfassung für die Klausur. Inhaltsverzeichnis. Stochastik im SS 2001 bei Professor Sturm Stochastik im SS 2001 bei Professor Sturm Lernzusammenfassung für die Klausur Hallo! In diesem Text habe ich die wichtigsten Dinge der Stochastikvorlesung zusammengefaÿt, jedenfalls soweit, wie ich bis

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am 5..201 von 10:00 bis 11:00 Uhr Bearbeiten Sie zwei der drei folgenden Aufgaben! Sätze aus der Vorlesung und den Übungen dürfen Sie ohne

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Abiturvorbereitung Wahrscheinlichkeitsrechnung S. 1 von 9 Wahrscheinlichkeitsrechnung Kombinatorik Formeln für Wahrscheinlichkeiten Bedingte Wahrscheinlichkeiten Zusammenfassung wichtiger Begriffe Übungsaufgaben

Mehr

Vorwort Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße Erwartungswert und Varianz...

Vorwort Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße Erwartungswert und Varianz... Inhaltsverzeichnis Vorwort... 2 Zum Einstieg... 3 1 Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße... 5 1.2 Erwartungswert und Varianz... 7 2 Wahrscheinlichkeitsverteilungen

Mehr

5 Erwartungswerte, Varianzen und Kovarianzen

5 Erwartungswerte, Varianzen und Kovarianzen 47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

Übungen zu Wahrscheinlichkeitstheorie und Statistik

Übungen zu Wahrscheinlichkeitstheorie und Statistik Übungen zu Wahrscheinlichkeitstheorie und Statistik SS 2012 (Vorlesung von Prof. Reinhard Bürger) 1) Man gebe für die folgenden Experimente Wahrscheinlichkeitsmodelle an: (a) Wurf mit einer homogenen Münze,

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11.

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11. Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer

Mehr

Zusätzliche Übungsaufgaben zur Stochastik

Zusätzliche Übungsaufgaben zur Stochastik Zusätzliche Übungsaufgaben zur Stochastik (Vorlesung Stochastik und Statistik für Ingenieure ) Hans-Jörg Starkloff, TU Bergakademie Freiberg, Institut für Stochastik 14. November 2012 1 Zufällige Ereignisse

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Marco Cattaneo Institut für Statistik Ludwig-Maximilians-Universität München Sommersemester 2011 1. Wahrscheinlichkeitsrechnung 2. Diskrete Zufallsvariable 3. Stetige Zufallsvariable 4. Grenzwertsätze

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Dr. C.J. Luchsinger 4 Ausgewählte Verteilungen * diskret: Bernoulli, Binomial, Geometrisch, Negativ-Binomial, Poisson * stetig: Uniform, (Negativ-)Exponential, Gamma, Normal,

Mehr

Übungsrunde 5, Gruppe 2 LVA , Übungsrunde 5, Gruppe 2, Markus Nemetz, TU Wien, 11/2006

Übungsrunde 5, Gruppe 2 LVA , Übungsrunde 5, Gruppe 2, Markus Nemetz, TU Wien, 11/2006 3.. Angabe Übungsrunde 5, Gruppe 2 LVA 07.369, Übungsrunde 5, Gruppe 2, 4.. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, /2006 Betrachten Sie einen Behälter, der Karten mit jeweils einer aufgedruckten

Mehr

Zusammenfassung Stochastik

Zusammenfassung Stochastik Zusammenfassung Stochastik Die relative Häufigkeit Ein Experiment, dessen Ausgang nicht vorhersagbar ist, heißt Zufallsexperiment (ZE). Ein Würfel wird 40-mal geworfen, mit folgendem Ergebnis Augenzahl

Mehr

Statistik II für Betriebswirte Vorlesung 2

Statistik II für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 2 21. Oktober 2014 Verbundene Stichproben Liegen zwei Stichproben vor, deren Werte einander

Mehr

1. Ziehg.: N M. falls nicht-rote K. in 1. Ziehg. gezogen

1. Ziehg.: N M. falls nicht-rote K. in 1. Ziehg. gezogen 6.4 Hyergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln nicht rot. Wir entnehmen n Kugeln, d.h. eine Stichrobe des Umfangs n. Dabei

Mehr

Institut für Stochastik, SoSe K L A U S U R , 13:

Institut für Stochastik, SoSe K L A U S U R , 13: Institut für Stochastik, SoSe 2014 Mathematische Statistik Paravicini/Heusel 1. K L A U S U R 12.7.2014, 13:00-16.00 Name: Geburtsdatum: Vorname: Matrikelnummer: Übungsgruppe bei: Studiengang & angestrebter

Mehr

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt

Mehr

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Georg Bol georg.bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Stetige Verteilungen Definition: Sei

Mehr

Spezielle stetige Verteilungen

Spezielle stetige Verteilungen Spezielle stetige Verteilungen schon bekannt: Die Exponentialverteilung mit Parameter k R, k > 0 hat die Dichte f (x) = ke kx für x 0 und die Verteilungsfunktion F (x) = 1 e kx für x 0. Eigenschaften Für

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen

Mehr

Verteilungen eindimensionaler stetiger Zufallsvariablen Einführung Stetige Verteilungen

Verteilungen eindimensionaler stetiger Zufallsvariablen Einführung Stetige Verteilungen Verteilungen eindimensionaler stetiger Zufallsvariablen Einführung Stetige Verteilungen Stetige Gleichverteilung Exponentialverteilung Normalverteilung Bibliografie: Prof. Dr. Kück Universität Rostock

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure

Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure Von Prof. Hubert Weber Fachhochschule Regensburg 3., überarbeitete und erweiterte Auflage Mit zahlreichen Bildern, Tabellen sowie

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 11. November 2010 1 Erwartungswert und Varianz Erwartungswert Varianz und Streuung Rechenregeln Binomialverteilung

Mehr

Statistik III. Walter Zucchini Fred Böker Andreas Stadie

Statistik III. Walter Zucchini Fred Böker Andreas Stadie Statistik III Walter Zucchini Fred Böker Andreas Stadie Inhaltsverzeichnis 1 Zufallsvariablen und ihre Verteilung 1 1.1 Diskrete Zufallsvariablen........................... 1 1.2 Stetige Zufallsvariablen............................

Mehr

Ergebnis Ergebnisraum Ω. Ereignis. Elementarereignis

Ergebnis Ergebnisraum Ω. Ereignis. Elementarereignis Stochastik Die Stochastik besteht aus zwei Teilgebieten, der Statistik und der Wahrscheinlichkeitsrechnung. Die Statistik beschreibt die Vergangenheit und verwendet Informationen, die (in realen Versuchen)

Mehr

1 1. Übung. Einleitung. 1.1 Urnenmodelle. 1.2 Beispiele. 1.3 Aufgaben

1 1. Übung. Einleitung. 1.1 Urnenmodelle. 1.2 Beispiele. 1.3 Aufgaben Einleitung Dieses sind die kompletten Präsenzaufgaben, die bei der Übung zur Vorlesung Einführung in die Stochastik im Sommersemester 2007 gerechnet wurden. Bei Rückfragen und Anmerkungen bitte an brune(at)upb.de

Mehr

Bei der genaueren Betrachtung fallen die folgenden Gemeinsamkeiten bzw. Unterschiede auf:

Bei der genaueren Betrachtung fallen die folgenden Gemeinsamkeiten bzw. Unterschiede auf: Kapitel 3 Stochastik 3. Wahrscheinlichkeitsräume Zufällige Prozesse und Wahrscheinlichkeitsräume Wahrscheinlichkeitsräume dienen zur Beschreibung von idealisierten Modellen für die Ergebnisse eines zufälligen

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Statistik im Versicherungs- und Finanzwesen

Statistik im Versicherungs- und Finanzwesen Springer Gabler PLUS Zusatzinformationen zu Medien von Springer Gabler Grimmer Statistik im Versicherungs- und Finanzwesen Eine anwendungsorientierte Einführung 2014 1. Auflage Übungsaufgaben zu Kapitel

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Wahrscheinlichkeitstheorie (Klausuraufgaben) Marcel Bliem Marco Boßle Jörg Hörner Mathematik Online Herbst 2010 Bliem/Boßle/Hörner (MO) PV-Kurs HM 3 1 / 7

Mehr

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt 0 Einführung Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests

Mehr

Hypergeometrische Verteilung

Hypergeometrische Verteilung Hypergeometrische Verteilung Aufgaben Aufgabe 1 Eine Firma produziert insgesamt 30 elektronische Bauteile des gleichen Typs. Aus langjähriger Erfahrung weiß man das davon jedes 70te defekt ist. Um die

Mehr

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen)

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen) Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜUNG. - LÖSUNGEN. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen Die Urne enthält 4 weiße und 8 rote Kugeln.

Mehr

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch 6 Stetige Verteilungen 1 Kapitel 6: Stetige Verteilungen A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch dargestellt. 0.2 6

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Noémie Becker & Dirk Metzler 31. Mai 2016 Inhaltsverzeichnis 1 Binomialverteilung 1 2 Normalverteilung 2 3 T-Verteilung

Mehr

Prüfungsteil 2, Aufgabe 8 Stochastik

Prüfungsteil 2, Aufgabe 8 Stochastik Prüfung Mathematik Nordrhein-Westfalen 2013 (LK) Aufgabe 7: (WTR) Abitur Mathematik: Prüfungsteil 2, Aufgabe 8 Nordrhein-Westfalen 2012 GK Aufgabe a (1) und (2) 1. SCHRITT: VERTEILUNG ANGEBEN Da die Anzahl

Mehr

Klausur Stochastik und Statistik 31. Juli 2012

Klausur Stochastik und Statistik 31. Juli 2012 Klausur Stochastik und Statistik 31. Juli 2012 Prof. Dr. Matthias Schmid Institut für Statistik, LMU München Wichtig: ˆ Überprüfen Sie, ob Ihr Klausurexemplar vollständig ist. Die Klausur besteht aus fünf

Mehr

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com September 016

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen? 1 Kombinatorik Aus einer Grundgesamtheit mit n Elementen wird eine Stichprobe k Elementen entnommen. Dabei kann die Stichprobe geordnet oder ungeordnet sein. "Geordnet" bedeutet, dass die Reihenfolge der

Mehr

Prüfungsteil 2, Aufgabe 8 Stochastik

Prüfungsteil 2, Aufgabe 8 Stochastik Prüfung Mathematik Nordrhein-Westfalen 2013 (LK) Aufgabe 8: (WTR) Abitur Mathematik: Prüfungsteil 2, Aufgabe 8 Nordrhein-Westfalen 2012 LK Aufgabe a (1) und (2) 1. SCHRITT: VERTEILUNG ANGEBEN Da die Anzahl

Mehr

Kapitel 5. Univariate Zufallsvariablen. 5.1 Diskrete Zufallsvariablen

Kapitel 5. Univariate Zufallsvariablen. 5.1 Diskrete Zufallsvariablen Kapitel 5 Univariate Zufallsvariablen Im ersten Teil dieses Skriptes haben wir uns mit Daten beschäftigt und gezeigt, wie man die Verteilung eines Merkmals beschreiben kann. Ist man nur an der Population

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 5. Erwartungswert E und Varianz V Literatur Kapitel 5 * Storrer: (37.9)-(37.12), (38.4), (40.6)-(40.9), (41.2) * Stahel: Kapitel 5 und 6 (nur

Mehr