Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007

Größe: px
Ab Seite anzeigen:

Download "Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007"

Transkript

1 Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007 Prof. Dr. F. Liese Dipl.-Math. M. Helwich Serie 8 Termin: 1. Juni 2007 Aufgabe 1 (4 Punkte) Es seien X 1 und X 2 unabhängige Zufallsvariable, die jeweils eine Poissonverteilung mit den Parametern λ 1 bzw. λ 2 besitzen. Weisen Sie mit Hilfe der Faltungsformel für diskrete Verteilungen nach, dass X 1 + X 2 eine Poissonverteilung mit dem Parameter λ 1 + λ 2 besitzt. Lösung: Eine Zufallsgröße K besitzt eine Poissonverteilung mit Parameter λ, wenn die Einzelwahrscheinlichkeiten P (K k) gegeben sind durch Demnach gilt für die Zufallsgrößem X 1 und X 2 P (K k) λk k! e λ, k 0, 1,... P (X 1 k) λk 1 k! e λ 1 und P (X 2 k) λk 2 k! e λ 2, k 0, 1,... Die Verteilung der Summe beider Zufallsgrößen berechnet sich dann für k 0, 1,... unter Verwendung der Unabhängigkeit wie folgt: P (X 1 + X 2 k) P (X 1 i, X 2 j) i+jk P (X 1 i, X 2 k i) i0 P (X 1 i) P (X 2 k i) i0 i0 λ i 1 e (λ 1+λ 2 ) e (λ 1+λ 2 ) k! λ k i i! e λ 1 2 (k i)! e λ 2 λ i 1 λk i 2 i! (k i)! ( ) k λ i 1 λ k i 2 i (λ 1 + λ 2 ) k e (λ 1+λ 2 ), k! da nach dem binomischen Satz (λ 1 + λ 2 ) k k ( k ) i0 i λ i 1 λ k i 2. Nach obigen Angaben ist klar, dass (λ 1 +λ 2 ) k k! e (λ 1+λ 2 ) der Einzelwahrscheinlichkeit einer Poissonverteilung mit Parameter λ 1 + λ 2 entspricht. i0 i0 Aufgabe 2 (4 Punkte) Um eine hohe Auslastung von Plätzen in Flugzeugen zu garantieren, werden von den Fluggesellschaften Flugzeuge systematisch überbucht, weil bekannt ist, dass nicht alle gebuchten Reisenden ihren Flug auch antreten. Es sei gegeben, dass die Passagiere einen Flug mit Wahrscheinlichkeit 1 p 0. antreten. Für ein Flugzeug mit 100 Passagieren werden 103 Tickets verkauft. Wie groß ist die Wahrscheinlichkeit dafür, dass Passagiere nicht befördert werden können? 1

2 Hinweis: Verwenden Sie für die Binomialverteilung die Näherung durch die Poissonverteilung, d.h. ( n k) p k (1 p) n k λk k! e λ, für λ np. Lösung: Wir betrachten ein Binomialexperiment mit n 103 Versuchen. Die Anzahl der Erfolge K sei definiert als Anzahl der nicht zum Flug angetretenen Passagiere, wobei dann die Erfolgswahrscheinlichkeit gegeben ist als p Gesucht ist die Wahrscheinlichkeit, dass zumindest ein Passagier nicht befördert werden kann, welches genau dann der Fall ist, wenn weniger als 3 Passagiere nicht zum Flug erscheinen. Dabei sollen die Einzelwahrscheinlichkeiten der Binomialverteilung durch die Einzelwahrscheinlichkeiten der Poissonverteilung mit Parameter λ n p angenähert werden. Es ist also exakt beziehungsweise näherungsweise P (K < 3) P (K 2) b 103,0.01 (0) + b 103,0.01 (1) + b 103,0.01 (2) , P (K < 3) P (K 2) e e ! 1! 2! e 1.03 Aufgabe 3 (4 Punkte) Eine Zufallsvariable X besitzt eine Exponentialverteilung mit dem Parameter λ > 0, falls X eine stetige Zufallsvariable mit folgender Dichte ist: f X (t) 0, für t < 0 λ exp λt}, für t 0. Zwei unabhängig arbeitende Bauteile seien a) in Reihe, b) parallel geschaltet. Die Zeiten bis zum Ausfall des ersten bzw. des zweiten Bauteils, X 1 bzw. X 2, mögen jeweils eine Exponentialverteilung mit den Parametern λ 1 1 bzw. λ 2 2 besitzen. Berechnen Sie die Wahrscheinlichkeit dafür, dass das System nicht vor dem Zeitpunkt 1.5 ausfällt. Hinweis: Berechnen Sie zunächst die Verteilungsfunktionen von Min(X 1, X 2 ) und Max(X 1, X 2 )! Lösung: Seien U Min(X 1, X 2 ) und V Max(X 1, X 2 ). Dann gilt mit der Unabhängigkeit von X 1 und X 2 P (U < t) P (Min(X 1, X 2 ) < t) 1 P (Min(X 1, X 2 ) t) 1 P (X 1 t, X 2 t) 1 (P (X 1 t) P (X 2 t)) 1 ( e 1t) ( e 2t) 1 e 3t 2

3 und P (V < t) P (Max(X 1, X 2 ) < t) P (X 1 < t, X 2 < t) P (X 1 < t) P (X 2 < t) ( 1 e 1t ) (1 e 2t) 1 e 1t e 2t + e 3t. Die Lebensdauer eines Systems zweier Bauteile in Reihe ergibt sich als Minimum beider Lebensdauern und die Lebensdauer eines Systems zweier Bauteile parallel ergibt sich als Maximum beider Lebensdauern. Somit erhalten wir für a) P (U > 1.5) 1 P (U < 1.5) 1 ( 1 e 3 1.5) 1 ( 1 e 4.5) und b) P (V > 1.5) 1 P (V < 1.5) 1 ( 1 e e e 3 1.5) Aufgabe 4 (4 Punkte) Ein spezielles radioaktives Material hat eine Halbwertszeit von 100 Jahren. Wieviel Material ist prozentual nach 150 Jahren zerfallen. Hinweis: Betrachten Sie den Zerfallszeitpunkt X eines Atoms als eine exponentiell verteilte Zufallsvariable mit dem Median 100. Bestimmen Sie zunächst λ und dann die Wahrscheinlichkeit P (X < 150). Lösung: Dem Hinweis entsprechend berechnen wir aus dem gegebenen Median m 100 den Parameter λ einer exponentialverteilten Zufallsgröße. Es gilt folgende Gleichheit: F X (m) F X (100) 1 e λ Daraus ergibt sich λ ln(1) ln(2) 100 ln(2) Die gesuchte Wahrscheinlichkeit ist dann P (X < 150) 1 e Aufgabe 5 (4 Punkte) Die ausfallfreie Arbeitszeit T (in Jahren) von Bauelementen einer bestimmten Sorte habe die Dichtefunktion 0 für t 0 f T (t) t e t für t > 0. a) Man berechne die Verteilungsfunktion und den Median. b) Man berechne folgende Wahrscheinlichkeiten: der Ausfall erfolgt vor dem Zeitpunkt 1; der Ausfall erfolgt nach dem Zeitpunkt 5; der Ausfall erfolgt zwischen den Zeitpunkten 0.5 und 2.5. c) Ein Gerät enthält zwei derartige Bauelemente, die unabhängig voneinander arbeiten. Wie groß ist die Wahrscheinlichkeit dafür, dass wenigstens eines dieser Geräte mindestens ein halbes Jahr lang ausfallfrei arbeitet? Lösung: Wir beginnen mit der Berechnung der Verteilungsfunktion und des Medians. 3

4 a) Für die Verteilungsfunktion erhalten wir mit der Regel u v u v u v F T (t) t t 0 f T (x) dx x e x dx ( x e x e x) t 0 t e t e t e t (t + 1). Damit ergibt sich der Median als Lösung der Gleichung F T (m) 1 e m (m + 1) 1 2. Diese wird von Maple näherungsweise angegeben mit m b) Die gesuchten Wahrscheinlichkeiten sind: P (T < 1) 1 e 1 (1 + 1) 1 2 e P (T > 5) 1 P (T 5) 1 P (T < 5) 1 ( 1 e t (t + 1) ) und P (0.5 T < 2.5) P (T < 2.5) P (T < 0.5) c) Die Arbeitszeit beider Bauteile sei bezeichnet mit T 1 bzw. T 2, wobei beide Zufallsgrößen die obige Verteilung besitzen. Gesucht ist hier die Wahrscheinlichkeit, dass das Maximum beider Arbeitszeiten größer ist als ein halbes Jahr. Die Unabhängigkeit verwendend erhalten wir P (Max(T 1, T 2 ) > 0.5) 1 P (Max(T 1, T 2 ) < 0.5) 1 P (T 1 < 0.5, T 2 < 0.5) 1 (P (T 1 < 0.5) P (T 2 < 0.5)) 1 ( (1 e 0.5 ( )) ((1 e 0.5 ( ) ) 1 ( (1 e 0.5 ( ) ) Übungsaufgaben sind verfügbar unter: helwich/uebungen.html 4

5 Es seien hier noch zwei weitere Aufgaben für die Übungen besprochen. ZA 1: Die Lebensdauer X des Bauteils eines Autos möge eine Gleichverteilung in [0 km, km ] besitzen. Es ist bekannt, dass das Bauteil bis a) km bzw. b) km gearbeitet hat. Berechnen Sie die Wahrscheinlichkeit, dass es in den nächsten km ausfällt! Welche Werte würden sich ergeben, wenn X eine Exponentialverteilung mit dem Parameter λ ln 10 hätte? Lösung: Zunächst sei X auf [0, ] gleichverteilt. Die Verteilungsfunktion ist dementsprechend F X (t) t [0, ](t) + 1 ( , ) (t). a) Wir berechnen P ( X < X ) P ( X < ) P (X ) 1/15 10/ sowie b) P ( X < X ) P ( X < 0 000) P (X ) 1/15 7/ Nun sei X exponentialverteilt mit Parameter λ 1 F X (t) 1 exp( x ln 10 ). Daher gilt im Fall a) und im Fall b) ln 10 P ( X < ) P ( X < X ) P (X ) F X(60 000) F X (50 000) 1 F X (50 000). Die Verteilungsfunktion ist dann exp( 5 ln 10 ) exp( 6 ln 10 ) exp( 5 ln 10 ( ) 1 exp ln 10 ) P ( X < 0 000) P ( X < X ) P (X ) F X(0 000) F X (80 000) 1 F X (80 000) exp( 8 ln 10 ) exp( ln 10 ) exp( 8 ln 10 ( ) 1 exp ln 10 ) Dies ist die so genannte Eigenschaft der Gedächtnislosigkeit der Exponentialverteilung. 5

6 ZA 2: X habe die Verteilungsfunktion F X (t). Ermitteln Sie die Verteilungsfunktion für die folgenden Zufallsvariablen: a) Y 1 a X + b mit a > 0, b) Y 2 X 2, c) Y 3 min(x, 2) und d) Y 4 max(x, 4)! Lösung: a) Wir berechnen die Verteilungsfunktion F Y1 (x) P (Y 1 < x) wie folgt: F Y1 (x) P (Y 1 < x) P (a X + b < x) P (a X < x b) ( P X < x b ) a ( ) x b F X. a b) Für x 0 ist offenbar F Y2 (x) P (X 2 < x) 0. Für x > 0 ist F Y2 (x) P (Y 2 < x) P (X 2 < x) P ( X < x) P ( x < X < x) P (X < x) P (X x) F X ( x) F X ( x + 0) also F Y2 (x) 0, x 0, F X ( x) F X ( x + 0), x < 0. c) Da stets Min(X, 2) 2 gilt, ist F Y3 (x) 1 für x > 2. Sei x 2 F Y3 (x) P (min(x, 2) < x) P (X < 2, Min(X, 2) < x) + P (X 2, Min(X, 2) < x) P (X < x) + 0 F X (x), folglich F Y3 (x) F X (x), x 2, 1, x > 2. d) Da stets Max(X, 4) 4 gilt, ist F Y4 (x) 0 für x 4. Sei x > 4 F Y4 (x) P (Max(X, 4) < x) P (X < 4, Max(X, 4) < x) + P (X 4, Max(X, 4) < x) P (X < 4) + P (4 X < x) F X (x), folglich F Y4 (x) 0, x 4, F X (x), x > 4. 6

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter

Mehr

Stochastik und Statistik für Ingenieure Vorlesung 4

Stochastik und Statistik für Ingenieure Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Stochastik und Statistik für Ingenieure Vorlesung 4 30. Oktober 2012 Quantile einer stetigen Zufallsgröße Die reelle Zahl

Mehr

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007 Mathematik IV für Maschinenbau und Informatik Stochastik Universität Rostock, Institut für Mathematik Sommersemester 007 Prof. Dr. F. Liese Dipl.-Math. M. Helwich Serie Termin: 9. Juni 007 Aufgabe 3 Punkte

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

Eine Zufallsvariable X sei stetig gleichverteilt im Intervall [0,5]. Die Wahrscheinlichkeit P(2< x <4) ist dann

Eine Zufallsvariable X sei stetig gleichverteilt im Intervall [0,5]. Die Wahrscheinlichkeit P(2< x <4) ist dann 4. Übung Themenkomplex: Zufallsvariablen und ihre Verteilung Aufgabe 1 Für eine stetige Zufallsvariable gilt: a) P (x = t) > 0 b) P (x 1) = F (1) c) P (x = 1) = 0 d) P (x 1) = 1 F(1) e) P (x 1) = 1 F(1)

Mehr

Statistik für Ingenieure Vorlesung 5

Statistik für Ingenieure Vorlesung 5 Statistik für Ingenieure Vorlesung 5 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 28. November 2017 3.4 Wichtige stetige Verteilungen 3.4.1 Exponentialverteilung Parameter:

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Ü b u n g s b l a t t 11

Ü b u n g s b l a t t 11 Einführung in die Stochastik Sommersemester 07 Dr Walter Oevel 8 007 Ü b u n g s b l a t t Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden Lösungen von -Aufgaben sind

Mehr

Statistik II für Wirtschaftswissenschaftler

Statistik II für Wirtschaftswissenschaftler Fachbereich Mathematik 20.04.2017 Dr. Hefter & Dr. Herzwurm Übungsblatt 0 Keine Abgabe. Gegeben seien die Mengen A 1 =, A 2 = {1}, A 3 = {1, 1}, A 4 = {1, 3}, A 5 = {1, 2, 4}, A 6 = {1, 2, 3, 4}. a) Bestimmen

Mehr

Übung Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung mit

Übung Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung mit Übung 2 24..23 Ü b u n g 2 Aufgabe Die Poissonverteilung P(λ) hat die Wahrscheinlichkeitsfunktion p(x) = λx e λ (x ) x! Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung

Mehr

Statistik für Ingenieure Vorlesung 3

Statistik für Ingenieure Vorlesung 3 Statistik für Ingenieure Vorlesung 3 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 14. November 2017 3. Zufallsgrößen 3.1 Zufallsgrößen und ihre Verteilung Häufig sind

Mehr

Zentralübung zur Vorlesung Diskrete Wahrscheinlichkeitstheorie

Zentralübung zur Vorlesung Diskrete Wahrscheinlichkeitstheorie SS 2014 Zentralübung zur Vorlesung Diskrete Wahrscheinlichkeitstheorie Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2014ss/dwt/uebung/ 5. Juni 2014 ZÜ DWT ZÜ VI Übersicht:

Mehr

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Stefan Etschberger für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2017 Normalverteilung Eine Zufallsvariable X mit einer Dichtefunktion f(x) =

Mehr

Zufallsvariable: Verteilungen & Kennzahlen

Zufallsvariable: Verteilungen & Kennzahlen Mathematik II für Biologen 12. Juni 2015 Zufallsvariable Kennzahlen: Erwartungswert Kennzahlen: Varianz Kennzahlen: Erwartungstreue Verteilungsfunktion Beispiel: Exponentialverteilung Kennzahlen: Erwartungswert

Mehr

Aufgabe Punkte

Aufgabe Punkte Institut für Mathematik Freie Universität Berlin Carsten Hartmann, Stefanie Winkelmann Musterlösung für die Nachklausur zur Vorlesung Stochastik I im WiSe 20/202 Name: Matr.-Nr.: Studiengang: Mathematik

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

Satz 104 (Skalierung exponentialverteilter Variablen)

Satz 104 (Skalierung exponentialverteilter Variablen) 2.3.1 Eigenschaften der Exponentialverteilung Satz 104 (Skalierung exponentialverteilter Variablen) Sei X eine exponentialverteilte Zufallsvariable mit dem Parameter λ. Für a > 0 ist die Zufallsvariable

Mehr

Lösungen zu Übungsaufgaben Blatt 9

Lösungen zu Übungsaufgaben Blatt 9 Diskrete Zufallsgrößen Zu Aufgabe Die zufällige Anzahl X von Ausfällen eines Servers pro Jahr genüge folgender Verteilung: ai 0 3 4 5 6 >6 pi /0 /0 3/0 /0 /0 /0 /0 0 Ein Ausfall des Servers verursacht

Mehr

6. Kontinuierliche Zufallsgrößen. Beispiel 1: Die Exponentialverteilungen Sei λ > 0. Setzen

6. Kontinuierliche Zufallsgrößen. Beispiel 1: Die Exponentialverteilungen Sei λ > 0. Setzen 6. Kontinuierliche Zufallsgrößen Definition: Eine Z. G. ξ ist absolut stetig mit (Wahrscheinlichkeits-) Dichte f : R R, wenn gilt: P ( a ξ < b ) = b a f(x) dx (a < b) allgem. Eigenschaften einer Dichte

Mehr

Statistik (Ch/Ph) Schwerpunkte und Aufgaben

Statistik (Ch/Ph) Schwerpunkte und Aufgaben 1 Kombinatorik 1.1 Aufgaben Statistik (Ch/Ph) Schwerpunkte und Aufgaben Eine Münze wird fünfmal geworfen. Es wird notiert, ob Zahl oder Wappen erscheint. Wieviel verschiedene Versuchsprotokolle sind möglich?

Mehr

Qualität und Zuverlässigkeit - Statistik Master MB Aufgaben zum Kapitel 2: Zufallsgröÿen und ihre Verteilungen

Qualität und Zuverlässigkeit - Statistik Master MB Aufgaben zum Kapitel 2: Zufallsgröÿen und ihre Verteilungen Fachbereich Grundlagenwissenschaften Prof. Dr. Viola Weiÿ Sommersemester 08 Qualität und Zuverlässigkeit - Statistik Master MB Aufgaben zum Kapitel : Zufallsgröÿen und ihre Verteilungen. Bei einer Klausur

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 5. Vorlesung Verteilungsfunktion (VF) Definition 9 Die Verteilungsfunktion (VF) einer Zufallsgröße X ist F : R R definiert als F (x) := P({ω Ω : X (ω) x}) = P( X x ) für jedes x R. Satz 9 - Eigenschaften

Mehr

1. Grundbegri e der Stochastik

1. Grundbegri e der Stochastik Wiederholung von Grundwissen der Stochastik. Grundbegri e der Stochastik Menge der Ereignisse. Die Elemente! der Menge heißen Elementarereignisse und sind unzerlegbare Ereignisse. Das Ereignis A tritt

Mehr

2 Verteilungen. Zoltán Zomotor. Versionsstand: 1. April 2015, 10:29. Die nummerierten Felder bitte während der Vorlesung ausfüllen. Inhaltsverzeichnis

2 Verteilungen. Zoltán Zomotor. Versionsstand: 1. April 2015, 10:29. Die nummerierten Felder bitte während der Vorlesung ausfüllen. Inhaltsverzeichnis 2 Verteilungen Zoltán Zomotor Versionsstand: 1. April 2015, 10:29 Die nummerierten Felder bitte während der Vorlesung ausfüllen. This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

Diskrete Strukturen II

Diskrete Strukturen II SS 2004 Diskrete Strukturen II Ernst W. Mayr Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2004ss/ds/index.html.de 18. Juni 2004 Exponentialverteilung als Grenzwert der geometrischen

Mehr

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 23. Bemerkung Integralbegriffe für Funktionen f : R d R (i) Lebesgue-Integral (Vorlesung Analysis IV). Spezialfall: (ii) Uneigentliches Riemann-Integral

Mehr

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ),

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ), 2.5 Parameter einer Verteilung 2.5. Erwartungswert X eine Zufallsvariable, g : R R stetig. Der Erwartungswert E[g(X)] von g(x) ist definiert durch: E[g(X)] := k g(x k )w(x = x k ), falls X diskret ist

Mehr

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI Lösungen zu Übungsblatt 9 Höhere Mathematik/Stochastik Anpassung von Verteilungen Zu Aufgabe ) a) Zeichnen des Histogranmmes: Um das Histogramm zu zeichnen, benötigen wir die Höhe der Balken. Die Höhe

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/52 Biostatistik, Sommer 2017 Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 02.06.2017 2/52 Inhalt 1 Wahrscheinlichkeit Bayes sche Formel 2 Diskrete Stetige 3/52 Wahrscheinlichkeit Bayes

Mehr

1. Grundbegri e. T n i=1 A i = A 1 \ A 2 \ : : : \ A n alle A i treten ein. na = A das zu A komplementäre Ereignis; tritt ein, wenn A nicht eintritt.

1. Grundbegri e. T n i=1 A i = A 1 \ A 2 \ : : : \ A n alle A i treten ein. na = A das zu A komplementäre Ereignis; tritt ein, wenn A nicht eintritt. . Grundbegri e Menge der Ereignisse. Die Elemente! der Menge heißen Elementarereignisse und sind unzerlegbare Ereignisse. Das Ereignis A tritt ein, wenn ein! A eintritt. ist auch das sichere Ereignis,

Mehr

2. Stochastische Prozesse.

2. Stochastische Prozesse. SS 2006 Arbeitsblatt 2 / S. 1 von 7 2. Stochastische Prozesse. Warteschlangen treten als Erscheinungsformen von in der Zeit ablaufenden Prozessen auf, von denen wie oben erwähnt mindestens einer nicht

Mehr

Referenten: Gina Spieler, Beatrice Bressau, Laura Uhlmann Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn

Referenten: Gina Spieler, Beatrice Bressau, Laura Uhlmann Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn 8.5 Eindimensionale stetige Zufallsvariablen Eine Zufallsvariable X heißt stetig, wenn es eine Funktion f(x) gibt, sodass die Verteilungsfunktion von X folgende Gestalt hat: x F(x) = f(t)dt f(x) heißt

Mehr

Zentralübung Diskrete Wahrscheinlichkeitstheorie (zur Vorlesung Prof. Mayr)

Zentralübung Diskrete Wahrscheinlichkeitstheorie (zur Vorlesung Prof. Mayr) SS 2011 Zentralübung Diskrete Wahrscheinlichkeitstheorie (zur Vorlesung Prof. Mayr) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2011ss/dwt/uebung/ 30. Juni 2011 ZÜ

Mehr

Stochastik Musterlösung 4

Stochastik Musterlösung 4 ETH Zürich HS 218 RW, D-MATL, D-MAVT Prof. Marloes H. Maathuis Koordinator Dr. Marvin S. Müller Stochastik Musterlösung 4 1. Die Zufallsvariable, die die Anzahl eingehender Telefonanrufe in einer Telefonzentrale

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Unabhängigkeit Prof. Dr. Achim Klenke http://www.aklenke.de 6. Vorlesung: 02.12.2011 1/30 Inhalt 1 Wahrscheinlichkeit 2 2/30 Wahrscheinlichkeit

Mehr

2. Übung zur Vorlesung Statistik 2

2. Übung zur Vorlesung Statistik 2 2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 10. Übung SS 18: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 10. Übung SS 18: Woche vom Übungsaufgaben 10. Übung SS 18: Woche vom 18. 6. 22. 6. 2016 Stochastik IV: ZG (diskret + stetig); Momente von ZG Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

Zufallsvariablen. f(x) dx = 1. Die stetige Zufallsvariable X wird also durch seine Dichtefunktion beschrieben. P(c < X < d) =

Zufallsvariablen. f(x) dx = 1. Die stetige Zufallsvariable X wird also durch seine Dichtefunktion beschrieben. P(c < X < d) = Diskrete Sei X stetig auf (a,b), wobei a, b unendlich sein können, a x 0 < x 1 b P(X = x 0 ) = 0, P(x 0 < X < x 1 ) > 0 (wenn f > 0). Die Funktion f heißt Dichtefunktion (von X) falls: 1. f(x) 0, a < x

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis Vorbemerkungen 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 6 Bedingte

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 6. Vorlesung - 2018 Diskrete ZG eine diskrete ZG X wird vollständig durch ihre Wahrscheinlichkeitsverteilung beschrieben ( ) x1 x X 2... x i... = p 1 p 2... p i... P(X (a, b]) = und die Verteilungsfunktion

Mehr

Modelle für Daten mit kontinuierlichen Wertebereich Verteilungen mit (Wahrscheinlichkeits-)Dichte. Normalverteilung N (µ, σ 2 ) mit Dichte

Modelle für Daten mit kontinuierlichen Wertebereich Verteilungen mit (Wahrscheinlichkeits-)Dichte. Normalverteilung N (µ, σ 2 ) mit Dichte Statistik II für Wirtschaftswissenschaftler Folie 6.1 Modelle für Daten mit kontinuierlichen Wertebereich Verteilungen mit (Wahrscheinlichkeits-)Dichte I) Werte in (, ), Parameter µ (, ), σ 2 > 0 Normalverteilung

Mehr

Musterlösung zur Klausur im Fach Fortgeschrittene Statistik am Gesamtpunktzahl: 60

Musterlösung zur Klausur im Fach Fortgeschrittene Statistik am Gesamtpunktzahl: 60 WESTFÄLISCHE WILHELMS - UNIVERSITÄT MÜNSTER Wirtschaftswissenschaftliche Faktultät Prof. Dr. Bernd Wilfling Professur für VWL, insbesondere Empirische Wirtschaftsforschung Musterlösung zur Klausur im Fach

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Wahrscheinlichkeitstheorie (Klausuraufgaben) Marcel Bliem Marco Boßle Jörg Hörner Mathematik Online Herbst 2010 Bliem/Boßle/Hörner (MO) PV-Kurs HM 3 1 / 7

Mehr

Satz 105 (Gedächtnislosigkeit) Beweis: Sei X exponentialverteilt mit Parameter λ. Dann gilt Pr[X > x + y X > y] = Pr[X > y] Pr[X > x + y] = Pr[X > y]

Satz 105 (Gedächtnislosigkeit) Beweis: Sei X exponentialverteilt mit Parameter λ. Dann gilt Pr[X > x + y X > y] = Pr[X > y] Pr[X > x + y] = Pr[X > y] Gedächtnislosigkeit Satz 105 (Gedächtnislosigkeit) Eine (positive) kontinuierliche Zufallsvariable X mit Wertebereich R + ist genau dann exponentialverteilt, wenn für alle x, y > 0 gilt, dass Pr[X > x

Mehr

8 Die Exponentialverteilung

8 Die Exponentialverteilung 8 Die Exponentialverteilung 8.1 Einführung Modelle Zuverlässigkeitsmodelle Lebensdauermodelle Bedienungsmodelle. 277 W.Kössler, Humboldt-Universität zu Berlin Def. 26 (Exponentialverteilung) Sei X eine

Mehr

5 Binomial- und Poissonverteilung

5 Binomial- und Poissonverteilung 45 5 Binomial- und Poissonverteilung In diesem Kapitel untersuchen wir zwei wichtige diskrete Verteilungen d.h. Verteilungen von diskreten Zufallsvariablen): die Binomial- und die Poissonverteilung. 5.1

Mehr

Kapitel VII - Funktion und Transformation von Zufallsvariablen

Kapitel VII - Funktion und Transformation von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VII - Funktion und Transformation von Zufallsvariablen Markus Höchstötter Lehrstuhl

Mehr

Mathematica: u=5;s=1;plot[exp[-0.5((x-u)/s)^2],{x,0,10}] 76

Mathematica: u=5;s=1;plot[exp[-0.5((x-u)/s)^2],{x,0,10}] 76 4. Normalverteilung Gauß'sche Glockenkurve: P(a X b) = b 1 x 1 a e dx 1 0.8 0.6 0.4 0. 4 6 8 10 Mathematica: u=5;s=1;plot[exp[-0.5((x-u)/s)^],{x,0,10}] 76 Zentraler Grenzwertsatz: Es sei X 1, X,... eine

Mehr

W-Rechnung und Statistik für Ingenieure Übung 8

W-Rechnung und Statistik für Ingenieure Übung 8 W-Rechnung und Statistik für Ingenieure Übung 8 Aufgabe 1 : Motivation Anhand von Daten soll eine Aussage über die voraussichtliche Verteilung zukünftiger Daten gemacht werden, z.b. die Wahrscheinlichkeit

Mehr

Finanzmathematische Modelle und Simulation

Finanzmathematische Modelle und Simulation Finanzmathematische Modelle und Simulation WS 9/1 Rebecca Henkelmann In meiner Ausarbeitung Grundbegriffe der Stochastik I, geht es darum die folgenden Begriffe für die nächsten Kapitel einzuführen. Auf

Mehr

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7.1 Die Laplace-Verteilung Sei X eine gleich verteilte Zufallsvariable mit den Werten in der Menge Ω X = {x i R : i = 1,...,n}, d.h. f (x i = 1

Mehr

Wahrscheinlichkeitstheorie und Stochastische Prozesse Übungsblatt 2

Wahrscheinlichkeitstheorie und Stochastische Prozesse Übungsblatt 2 http://www.stat.tugraz.at/courses/exam/hw_205.pdf 1 Wahrscheinlichkeitstheorie und Stochastische Prozesse Übungsblatt 2 22. 11. 2005 Familienname Vorname Matrikelnummer Familienname Vorname Matrikelnummer

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

7.4 Charakteristische Funktionen

7.4 Charakteristische Funktionen 7.4 Charakteristische Funktionen Def. 25 Sei X Zufallsvariable mit Verteilungsfunktion F X und Dichte f X (falls X stetig) oder Wkt.funktion p i (falls X diskret). Die Funktion φ X (t) := Ee itx = eitx

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

Spezielle stetige Verteilungen

Spezielle stetige Verteilungen Spezielle stetige Verteilungen schon bekannt: Die Exponentialverteilung mit Parameter k R, k > 0 hat die Dichte f (x) = ke kx für x 0 und die Verteilungsfunktion F (x) = 1 e kx für x 0. Eigenschaften Für

Mehr

Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen

Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen

Mehr

Wiederholungsklausur DWT

Wiederholungsklausur DWT LÖSUNG Wiederholungsklausur DWT Sommersemester 2008 Hinweis: Alle Antworten sind zu begründen. Insbesondere sollte bei nicht-trivialen Umformungen kurz angegeben werden, weshalb diese Umformungen erlaubt

Mehr

Bem. 6 Die charakterische Funktion existiert.

Bem. 6 Die charakterische Funktion existiert. 4.4 Charakteristische Funktionen Def. 2.14 Sei X Zufallsvariable mit Verteilungsfunktion F X und Dichte f X (falls X stetig) oder Wkt.funktion p i (falls X diskret). Die Funktion φ X (t) := Ee itx = eitx

Mehr

Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6

Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6 1 Lösungen ausgewählter Übungsaufgaben zum Buch Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6 Aufgaben zu Kapitel 5 Zu Abschnitt 5.1 Ü5.1.1 Finden Sie eine maximum-likelihood-schätzung

Mehr

Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Stetige Verteilungen

Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Stetige Verteilungen Materialien zur Lösung der folgenden Aufgaben: - in Übung 3 beigefügte Tabelle Wahrscheinlichkeitsverteilungen diskreter und stetiger Zufallsgrößen - Übersicht - beigefügte Tabelle spezieller stetiger

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 240/476 c Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 240/476 c Ernst W. Mayr 1.4.4 Laplace-Prinzip in kontinuierlichen Wahrscheinlichkeitsräumen Das folgende Beispiel zeigt, dass im kontinuierlichen Fall die Bedeutung von gleichwahrscheinlich nicht immer ganz klar sein muss. Bertrand

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

Wahrscheinlichkeitstheorie Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen

Wahrscheinlichkeitstheorie Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen Wahrscheinlichkeitstheorie Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de

Mehr

Ausgewählte spezielle Verteilungen

Ausgewählte spezielle Verteilungen Ausgewählte spezielle Verteilungen In Anwendungen werden oft Zufallsvariablen betrachtet, deren Verteilung einem Standardmodell entspricht. Zu den wichtigsten dieser Modelle gehören: diskrete Verteilungen:

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 24. November 2010 1 Stetige Verteilungen Normalapproximation Gleichverteilung Exponentialverteilung Normalapproximation

Mehr

Aufgaben. d) Seien X und Y Poissonverteilt mit Parameter µ, X, Y P(µ). 2. Dann ist die Summe auch Poissonverteilt mit (X + Y ) P(2µ).

Aufgaben. d) Seien X und Y Poissonverteilt mit Parameter µ, X, Y P(µ). 2. Dann ist die Summe auch Poissonverteilt mit (X + Y ) P(2µ). Aufgaben 1. Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete Frage 1 Punkt und pro falsche Antwort 1/2 Punkt Abzug. Minimal erhält man für die gesamte

Mehr

i =1 i =2 i =3 x i y i 4 0 1

i =1 i =2 i =3 x i y i 4 0 1 Aufgabe (5+5=0 Punkte) (a) Bei einem Minigolfturnier traten 6 Spieler gegeneinander an. Die Anzahlen der von ihnen über das gesamte Turnier hinweg benötigten Schläge betrugen x = 24, x 2 = 27, x = 2, x

Mehr

Stetige Verteilungen, Unabhängigkeit & ZGS

Stetige Verteilungen, Unabhängigkeit & ZGS Mathematik II für Biologen Stetige Verteilungen, & ZGS 26. Juni 2009 Stetige Verteilungen, & ZGS Wiederholung Stetige Zufallsvariable Definition Eigenschaften, Standardisierung Zusammenhang von Poisson-

Mehr

4. Übungsserie: Stetige Zufallsgrößen 8 < ax 2 =100 0 < x < sonst

4. Übungsserie: Stetige Zufallsgrößen 8 < ax 2 =100 0 < x < sonst Stochastik f ur ET SS Juliane.Schuetze@fh-jena.de 4. Übungsserie: Stetige Zufallsgrößen a =. Es sei f() = a( 3) =4 3 : sonst a) Bestimmen Sie a so, dass f eine Verteilungsdichte ist. b) Bestimmen Sie die

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management für Betriebswirtschaft und internationales Management Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Normalverteilung Eine Zufallsvariable X mit einer Dichtefunktion und σ > 0 heißt

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/51 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Verteilungen, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 8. Vorlesung: 09.06.2017 2/51 Inhalt 1 Verteilungen Normalverteilung Normalapproximation

Mehr

4.2 Moment und Varianz

4.2 Moment und Varianz 4.2 Moment und Varianz Def. 2.10 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: EX p

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

1. Grundbegri e der Stochastik

1. Grundbegri e der Stochastik . Grundbegri e der Stochastik Raum der Ereignisse. Die einelementigen Teilmengen f!g heißen auch Elementarereignisse. Das Ereignis A tritt ein, wenn ein! A eintritt. A ist ein geeignetes System von Teilmengen

Mehr

2. Übung zur Vorlesung Statistik 2

2. Übung zur Vorlesung Statistik 2 2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

Stetige Verteilungen, Unabhängigkeit & ZGS

Stetige Verteilungen, Unabhängigkeit & ZGS Mathematik II für Biologen Stetige Verteilungen, & ZGS 19. Juni 2015 Stetige Verteilungen, & ZGS Stetige Zufallsvariable Dichte & Verteilungsfunktion Eigenschaften & Kennzahlen Definition Eigenschaften,

Mehr

Statistik für Ingenieure Vorlesung 4

Statistik für Ingenieure Vorlesung 4 Statistik für Ingenieure Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 21. November 2017 3.3 Wichtige diskrete Wahrscheinlichkeitsverteilungen 3.3.1 Diskrete

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 30. April 2018 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 4 Version: 24.

Mehr

1. Was ist eine Wahrscheinlichkeit P(A)?

1. Was ist eine Wahrscheinlichkeit P(A)? 1. Was ist eine Wahrscheinlichkeit P(A)? Als Wahrscheinlichkeit verwenden wir ein Maß, welches die gleichen Eigenschaften wie die relative Häufigkeit h n () besitzt, aber nicht zufallsbehaftet ist. Jan

Mehr

Korrektur, Änderungen sowie Ergänzungen zu den Vorlesungsskripten: Statistik-I SS-2015

Korrektur, Änderungen sowie Ergänzungen zu den Vorlesungsskripten: Statistik-I SS-2015 Korrektur, Änderungen sowie Ergänzungen zu den Vorlesungsskripten: Statistik-I SS-05!"!## x 8 0 8 0 8 0 0, 0, 3 0 0, 05 $ $ % 3, 75 $ Geben Sie für das vorige Beispiel. (Bsp. ) die Anteile der jeweiligen

Mehr

Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm.

Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm. Veranstaltung: Statistik für das Lehramt 16.12.2016 Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm Erwartungswert Varianz Standardabweichung Die Wahrscheinlichkeitsverteilung

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 09.12.2011 1/58 Inhalt 1 2 Kenngrößen von Lagemaße 2/58 mit Dichte Normalverteilung

Mehr

Wahrscheinlichkeitstheorie und Statistik für Studierende des Maschinenbaus vom

Wahrscheinlichkeitstheorie und Statistik für Studierende des Maschinenbaus vom Institut für Stochastik WS 009/10 Karlsruher Institut für Technologie (KIT) Dr. B. Klar Klausur Wahrscheinlichkeitstheorie und Statistik für Studierende des Maschinenbaus vom 08.0.010 Musterlösungen Aufgabe

Mehr

11. Approximation der Binomialverteilung durch die Normalverteilung

11. Approximation der Binomialverteilung durch die Normalverteilung 7. Approximation der Binomialverteilung durch die Normalverteilung Die Berechnung der Binomialverteilung ist wegen der Binomialkoeffizienten nicht unproblematisch. Man kann sie deshalb in gewissen Fällen

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Wikipedia http://de.wikipedia.org/wiki/chi-quadrat-verteilung 1 von 7 6/18/2009 6:13 PM Chi-Quadrat-Verteilung aus Wikipedia, der freien Enzyklopädie Die Chi-Quadrat-Verteilung ist

Mehr

Modellierung- und Simulation Mathis Plewa ( )

Modellierung- und Simulation Mathis Plewa ( ) Inhaltsverzeichnis Abbildungsverzeichnis... 1 Übungsaufgabe: Zufallsgeneratoren und Histogramme... 2 Standard Gleichverteilung... 2 Gaußverteilung... 3 Exponentialverteilung... 4 Übungsaufgabe: Geometrische

Mehr

1 Grundlagen der Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsräume. Ein erster mathematischer Blick auf Zufallsexperimente...

1 Grundlagen der Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsräume. Ein erster mathematischer Blick auf Zufallsexperimente... Inhaltsverzeichnis 1 Grundlagen der Wahrscheinlichkeitsrechnung 1 1.1 Wahrscheinlichkeitsräume Ein erster mathematischer Blick auf Zufallsexperimente.......... 1 1.1.1 Wahrscheinlichkeit, Ergebnisraum,

Mehr

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Georg Bol georg.bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Stetige Verteilungen Definition: Sei

Mehr